J. Bily, Propagation d'états cohérents et applications, 2001.

A. Bouzouina and D. Robert, Uniform semi-classical estimates for the propagation of quantum observables, Duke Math. J, vol.111, pp.223-252, 2002.

R. Carles and C. F. Kammerer, A Nonlinear Adiabatic Theorem for Coherent States, Nonlinearity, vol.24, pp.1-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00530175

R. Carles and C. F. Kammerer, Nonlinear coherent states and Ehrenfest time for Schrodinger equation, Comm. Math. Phys, vol.301, issue.2, pp.443-471, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00440273

M. Combescure and D. Robert, Coherent states and applications in mathematical physics, Theoretical and Mathematical Physics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01015340

T. Duyckaerts, C. F. Kammerer, and T. Jecko, Degenerated codimension 1 crossings and resolvent estimates, Asympt. Analysis, pp.147-174, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00338331

O. Elong, D. Robert, and A. Senoussaoui, On semiclassical Fourier Integral Operators, Schrödinger Propagators and Coherent States, J. Math. Phys, vol.59, issue.10, p.10150, 2018.

M. Buchholz, E. Fallacara, F. Gottwald, M. Ceotto, F. Grossmann et al., Herman-Kluk propagator is free from zero-point energy leakage, Chemical Physics, vol.515, pp.231-235, 2018.

D. Fang and J. Lu, A diabatic surface hopping algorithm based on time dependent perturbation theory and semiclassical analysis, Multiscale Model. Simul, vol.16, issue.4, 2018.

G. A. Hagedorn, Semiclassical quantum mechanics. I. The ? 0 limit for coherent states, Comm. Math. Phys, vol.71, 1980.

G. A. Hagedorn, Semiclassical quantum mechanics. III. The Large Order Asymptotics and More General States, Ann. Phys, vol.135, pp.58-70, 1981.

G. A. Hagedorn, Molecular Propagation through Electron Energy Level Crossings. Memoirs of the A. M. S, vol.111, p.536, 1994.

L. Hari, Nonlinear propagation of coherent states through avoided energy level crossing, Journal of the Institute of Mathematics of Jussieu, vol.15, issue.2, pp.319-365, 2016.

L. Hari, Coherent states for systems of L2-supercritical nonlinear Schrdinger equations, Comm. Part. Diff. Eq, vol.38, issue.3, pp.529-573, 2013.

F. Michael, E. Herman, and . Kluk, A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations, Chem. Phys, vol.91, issue.1, pp.27-34, 1984.

T. Jecko, Semiclassical resolvent estimates for Schrdinger matrix operators with eigenvalues crossings, Math. Nachr, vol.257, issue.1, pp.36-54, 2003.

T. Kato, On the Adiabatic Theorem of Quantum Mechanics, J. Phys. Soc. Japan, vol.5, pp.435-439, 1950.

T. T. Kato, Perturbation Theory for Linear Operators, 1980.

K. Kay, Integral expressions for the semi-classical time-dependent propagator, J. Chem. Phys, vol.100, issue.6, pp.4377-4392, 1994.

K. Kay, The Herman-Kluk approximation: derivation and semiclassical corrections, Chem. Phys, vol.322, pp.3-12, 2006.

C. Lasser and D. Sattlegger, Discretising the Herman-Kluk Propagator, Numerische Mathematix, vol.137, issue.1, pp.119-157, 2017.

J. Lu and Z. Zhou, Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms, Math. Comp, vol.87, pp.2189-2232, 2018.

C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zürich Lectures in Advanced Mathematics, 2008.

A. Martinez and V. Sordoni, Twisted pseudodifferential calculus and application to the quantum evolution of molecules, Memoirs of the AMS, vol.200, pp.1-82, 2009.

G. Nenciu, On the adiabatic theorem of quantum mechanics, J. Phys. A, Math. Gen, vol.13, pp.15-18, 1980.

G. Nenciu, Linear adiabatic theory. Exponential estimates, Commun. Math. Phys, vol.152, pp.479-496, 1993.

R. G. Littlejohn, The semiclassical evolution of wave packets, Phys. Rep, vol.138, issue.4-5, pp.193-291, 1986.

A. Maspero and D. Robert, On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, J. Funct. Anal, vol.273, issue.2, pp.721-781, 2017.

D. Robert, On the Herman-Kluk Semiclassical Approximation, Rev. Math. Phys, vol.22, issue.10, pp.1123-1145, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00409137

D. Robert, Propagation of coherent states in quantum mechanics and applications, Société Mathématique de France, Séminaires et Congrès, vol.15, pp.181-252, 2007.

T. Swart and V. Rousse, A mathematical justification for the Herman-Kluk Propagator, Comm. Math. Phys, vol.286, issue.2, pp.725-750, 2009.

S. Teufel, Adiabatic perturbation theory in quantum dynamics Lecture Notes in Mathematics 1821, 2003.

M. Thoss and H. Wang, Semiclassical description of molecular dynamics based on initial-value representation methods, Annu. Rev. Phys. Chem, vol.55, issue.1, pp.299-332, 2004.

T. Begu?i?, M. Cordova, and J. Vani?ek, Single-Hessian thawed Gaussian approximation, J. Chem. Phys, vol.150, p.154117, 2019.