A "Kelp-Like" Microorganism Within the Belly

To cite this version:
Marie-Alix de Kyvon, Claudia Carvalho-Schneider, Adrien Lemaignen, David Dussart, Mathilde Barbaz, et al.. A "Kelp-Like" Microorganism Within the Belly. Clinical Infectious Diseases, Oxford University Press (OUP), 2018. hal-02443964

HAL Id: hal-02443964
https://hal.archives-ouvertes.fr/hal-02443964
Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A 50-year-old woman suffering from paranoid schizophrenia with carelessness symptom was referred on day 0 for peritonitis caused by a perforated gastro-duodenal ulcer. In her recent medical history, anorexia, constipation, and impairment of general health condition were reported. A biological inflammatory syndrome was noticed at admission, with C-reactive protein of 320.1 mg/L, procalcitonin of 216.68 µg/L, and polymorphonuclear neutrophil count of 16.4×10^9/L. To note, blood calcium, total serum protein, and hemoglobin were low at 1.77 mmol/L, 40 g/L (including 16 g/L for albumin), and 81 g/L, respectively. Several intraperitoneal abscesses were detected by computed tomography on day 3 (Figure 1). Abscess aspirate showed a moderately inflammatory liquid with no malignant cells (day 4). On the third day following...
the sampling (day 7), flat colonies started growing in vitro at 30°C on Sabouraud dextrose agar (BD Sabouraud Glucose Agar, Becton-Dickinson, Pont-Le-Claix, France) (Figure 2). Broad-spectrum antibiotic therapy (initially based on intravenous ceftriaxone, metronidazole, and fluconazole; amoxicillin and erythromycin were added on day 4 and on day 9, respectively) was inefficient. Noteworthy, on day 18, measurement of (1,3)-β-D-glucan antigen was positive at 474 ng/mL in serum. All blood cultures remained sterile.

What is your diagnosis?
A “Kelp-Like” Microorganism Within the Belly

Diagnosis: *Prototheca zopfii* peritonitis.

Macro- and microscopic observations were suggestive of *Prototheca* spp. (Figure 3), an achlorophyllous unicellular alga that has been previously described as being ubiquitous in sewage, ponds, soil and mud, fresh-water aquariums and marine waters, cow milk, fruit bats, animal waste, and so on. *Prototheca* spp. colonies could be easily mistaken with yeasts, especially with *Candida krusei*, but microscopic examination usually highlights round, thick-walled sporangia containing mulberry-shaped sporangiospores (also referred to as endospores or autosporos). *Prototheca* spp. must be differentiated from other endosporulating microorganisms that undergo internal septation (eg, *Coccidioides immitis* and *Rhinosporidium seeberi*); asexual multiplication in mature *Prototheca* cells begins with the nuclear division of the mother cell, followed by cleavage of the cytoplasm surrounding each daughter cell. Thereafter, sporangia are lysed and shed free sporangiospores. Two *Prototheca* species are involved in human medicine, *Prototheca wickerhamii* and *Prototheca zopfii*. Distinguishing one from the other is challenging [1]: *P. zopfii* sporangiospores are more spherical and bulkier than those of *P. wickerhamii* [2]. Moreover, *P. zopfii* sporangia are more subdivided than those of *P. wickerhamii*, but not so symmetrical regarding the internal segmentation. In this case, carbohydrate assimilation profile identified *P. zopfii* (score of Api20C AUX system, bioMerieux, Craponne, France: 87.6% probability; no identification incompatibility). Sequence of D1/D2 variable domain of the 28S large-subunit ribosomal DNA gene confirmed *P. zopfii var. hydrocarbonea* (99% identical, 537 nucleotides/540; 100% query cover; GenBank accession number issued: MF421524). *Prototheca zopfii* was shown in vitro to contain approximately 10% glucose residues that are (1,3)-β-linked in the polymerized oligosaccharides of its cell wall [3], which is likely the reason why measurement of (1,3)-β-D-glucan antigen was positive in the patient’s blood [4].

Although its pathogenicity was initially overlooked, *Prototheca* infection, so called protothecosis, is now clearly acknowledged as an opportunistic infection. It usually results from environmental exposure, through water or soiled vegetables/plants [1]. *P. zopfii* can cross natural barriers when the latter are impaired or after a trauma or surgery [2]. In our patient, the portal of entry was assumed to be digestive, starting from the perforated gastro-duodenal ulcer and inducing thereafter.

![Figure 3](https://academic.oup.com/cid/article-abstract/67/9/1463/5129004/1465)
peritonitis caused by *P. zopfii*. It was hypothesized that, because of her mental disorder, she might have ingested soil before hospital admission. Noteworthy, she was also receiving intramuscular injections of flupentixol decanoate antipsychotic and cyamémazine, which are both known to slow down the intestinal transit and may have played a role in the infectious process. According to the literature, protothecosis seems to be more common in immunocompromised patients [1, 5], especially when polymorphonuclear neutrophils have functional impairment. In the present case report, the patient was not highly immunocompromised but suffered from severe malnutrition underscored by important hypocalcemia, hypoalbuminemia, and anemia, as well as a body mass index of 17 kg/m².

Prevalence of protothecosis is low: 140 human cases have been reported so far [6]. Peritonitis is very unusual. *Prototheca wickerhamii* was involved in five cases. Four of them were concomitant with peritoneal dialysis; only 1 case resulted in death (potentially because it was associated with bacterial superinfection [7]; indeed, *Prototheca* spp. are often isolated with other pathogens such as bacteria or yeasts [1], as in the present case, in which *P. zopfii* was concomitant with *Streptococcus salivarius* and *Escherichia coli*). In contrast, except for in our patient, no peritonitis was reported in the 17 human cases caused by *P. zopfii* species; most *P. zopfii* infections have involved skin and nails [4, 8–10] (Supplementary Data). The prognosis of deeply seated infection is poorer with *P. zopfii* species than with *P. wickerhamii* (23.5% vs 2.2% overall mortality, and even 100.0% when patients are immunocompromised).

In light of previous therapeutic successes against *P. wickerhamii* [1], and because *Prototheca* spp. possesses a plasma membrane with up to 4% ergosterol, amphotericin B is usually given for profound infection, but it remains a matter of debate, and there are currently no available therapeutic guidelines [7]. In vitro minimum inhibitory concentrations to amphotericin B andazole drugs were shown to be variable for *P. zopfii*, such that approximately 50% of isolates were assumed to be not susceptible to clinically achievable drug levels [11]. In our patient, intravenous treatment was initiated on day 15 based on a daily dose of 150 mg of liposomal amphotericin B and 500 mg of gentamicin. Although (1,3)-β-D-glucan antigen was still elevated at 500 ng/mL on day 31, gentamicin was finally withdrawn on day 20 and amphotericin B on day 36. To date on day 410, the patient no longer reports any functional digestive disorders.

Supplementary Data

Supplementary materials are available at http://academic.oup.com/cid. Consisting of data provided by the author to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the author, so questions or comments should be addressed to the author.

Notes

Acknowledgment. We thank the patient for her cooperation. She did not object to the publication of this case report.

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Marie-Alix De Kyvon,1 Claudia Carvalho-Schneider,2 Adrien Lemaignen,2 David Dussart,1 Mathilde Barbaz,3 Pierre-Guillaume Barbe,4 Philippe Lanotte,5,7 Louis Bernard,2 Éric Bailly,7 Jacques Chandenier,1 and Guillaume Desoubeaux1

1Parasitologie, Mycologie, Médecine tropicale, 2Médecine interne & Maladies infectieuses, 3Chirurgie digestive, Transplantation médicale, 4Rénalisation chirurgicale, 5Psychiatrie, 6Service de Bactériologie-Virologie, CHU de Tours, and 7IRM SP1282 INRA Université de Tours, France

References

Correspondence: Marie-Alix De Kyvon, Service de Parasitologie, Mycologie, Médecine tropicale, Hôpital Bretonneau, Bâtiment B2A, 1er étage, 2 boulevard Tonnellé, 37044 CHU de Tours, France.

Clinical Infectious Diseases® 2018;67(9):1463–6 © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

DOI: 10.1093/cid/ciy112