H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, C 60 : buckminsterfullerene, Nature, vol.318, p.162, 1985.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

G. Flagship and ;. Url,

D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environ Int, vol.77, pp.132-147, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01344057

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J Nanopart Res, p.15, 2013.

E. J. Petersen, L. Zhang, N. T. Mattison, O. Carroll, D. M. Whelton et al., Potential release pathways, environmental fate, and ecological risks of carbon nanotubes, Environ Sci Technol, vol.45, pp.9837-9856, 2011.

C. Larue, H. Castillo-michel, R. Stein, and B. Fayard, Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant, Acta Part B At, vol.119, pp.17-24, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02325166

E. J. Petersen, D. X. Flores-cervantes, T. D. Bucheli, L. Elliott, J. A. Fagan et al., This recent review lists all the available analytical methods for extraction and quantification of CNTs in complex organic matrices. This allows having a clear and complete overview of the available analytical tools, with strengths and weaknesses inherent to each method (i.e. limit of detection, ease of use, etc.). Furthermore, the authors provide case studies with different scenarios, Environ Sci Technol, 2016.

C. Herrero-latorre, J. Alvarez-mendez, J. Barciela-garcia, S. Garcia-martin, and R. M. Pena-crecente, Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review, Anal Chim Acta, vol.853, pp.77-94, 2015.

X. Hu, A. Sun, L. Mu, and Q. Zhou, Separation and analysis of carbon nanomaterials in complex matrix, TrAC Trends Anal Chem, vol.80, pp.416-428, 2016.

A. M. Jastrzebska and A. R. Olszyna, The ecotoxicity of graphene family materials: current status, knowledge gaps and future needs, J Nanopart Res, p.17, 2015.

F. Bourdiol, D. Dubuc, K. Grenier, F. Mouchet, L. Gauthier et al., Quantitative detection of carbon nanotubes in biological samples by an original method based on microwave permittivity measurements, Carbon N Y, vol.81, pp.535-545, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01448319

K. Doudrick, T. Nosaka, P. Herckes, and P. Westerhoff, Quantification of graphene and graphene oxide in complex organic matrices, Environ Sci Nano, vol.2, pp.60-67, 2015.

T. Y. Sun, F. Gottschalk, K. Hungerbü-hler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ Pollut, vol.185, pp.69-76, 2014.

T. Y. Sun, N. A. Bornhö-ft, K. Hungerbü-hler, and B. Nowack, This mathematical modeling study provides the most recent assessment to date concerning the concentrations of CNTs in different environmental compartment. As direct detection of CNPs by analytical tools still need improvement, this study allows a predicted overview of the potential concentrations in water. Combined with sensitivity assessment of organisms to CNPs, the data, Environ Sci Technol, vol.50, pp.4701-4711, 2016.

T. Y. Sun, G. Conroy, E. Donner, K. Hungerbü-hler, E. Lombi et al., Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach, Environ Sci Nano, vol.2, pp.340-351, 2015.

S. Harper, W. Wohlleben, M. Doa, B. Nowack, S. Clancy et al., Measuring nanomaterial release from carbon nanotube composites: review of the state of the science, J Phys Conf Ser, vol.617, p.12026, 2015.

B. Nowack, M. Baalousha, N. Bornhö-ft, Q. Chaudhry, J. Lead et al., Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements, Environ Sci Nano, vol.2, pp.421-428, 2015.

A. L. Dale, E. A. Casman, G. V. Lowry, J. R. Lead, E. Viparelli et al., Modeling nanomaterial environmental fate in aquatic systems, Environ Sci Technol, vol.49, pp.2587-2593, 2015.

A. D. Dwivedi, S. P. Dubey, M. Sillanpaa, Y. N. Kwon, C. Lee et al., Fate of engineered nanoparticles: implications in the environment, Coord Chem Rev, vol.287, pp.64-78, 2015.

M. Bundschuh, F. Seitz, R. R. Rosenfeldt, and R. Schulz, Effects of nanoparticles in fresh waters: risks, mechanisms and interactions, Freshw Biol, vol.61, pp.2185-2196, 2016.

L. Verneuil, J. Silvestre, I. Randrianjatovo, C. Marcato-romain, E. Girbal-neuhauser et al., Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea: an adhesive response for an adaptive issue, Carbon N Y, vol.88, pp.113-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472904

L. Verneuil, J. Silvestre, F. Mouchet, E. Flahaut, J. Boutonnet et al., Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: "a sticky story, Nanotoxicology, vol.5390, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475246

X. Hu, S. Ouyang, L. Mu, J. An, and Q. Zhou, Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles, Environ Sci Technol, vol.49, pp.10825-10833, 2015.

C. Hu, Q. Wang, H. Zhao, L. Wang, S. Guo et al., Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis, Chemosphere, vol.128, pp.184-190, 2015.

R. Saria, F. Mouchet, A. Perrault, E. Flahaut, C. Laplanche et al., Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles, Ecotoxicol Environ Saf, vol.107, pp.22-29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01963106

F. Bourdiol, F. Mouchet, A. Perrault, I. Fourquaux, L. Datas et al., Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae, Carbon N Y, vol.54, pp.175-191, 2012.

F. Mouchet, P. Landois, P. Puech, E. Pinelli, E. Flahaut et al., Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with doublewalled carbon nanotubes, Nanomedicine, vol.5, pp.963-974, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01339444

T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg et al., Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice, Environ Health Perspect, vol.114, pp.328-333, 2006.

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface area of carbon nanoparticles: a dose metric for a more realistic ecotoxicological assessment, Nano Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

, By using a methodology previously described in aerial nanotoxicology studies, this research article highlighted the importance of using "nonclassical" dose metrics for studying the ecotoxicological effects of CNPs. The authors evidenced using an amphibian model that the toxicity of different kinds CNPs is mainly governed by surface area. Moreover the different types of CNPs could be considered as one when their toxic effects are compared based on surface area concentrations

C. Coll, D. Notter, F. Gottschalk, T. Sun, C. Som et al., Probabilistic environmental risk assessment of five nanomaterials (nano-TiO 2 , nano-Ag, nano-ZnO, CNT, and fullerenes), Nanotoxicology, vol.5390, pp.1-9, 2015.

K. L. Garner, S. Suh, H. S. Lenihan, and A. A. Keller, Species sensitivity distributions for engineered nanomaterials, Environ Sci Technol, vol.49, pp.5753-5759, 2015.

M. Auffan, M. Tella, C. Santaella, L. Brousset, C. Paillè-s et al., An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems, Sci Rep, vol.4, p.5608, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01426264

A. Bour, F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli, Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review, J Hazard Mater, vol.283, pp.764-777, 2015.

, In this review the authors list the most recent approaches for an environmentally relevant evaluation of NPs ecotoxicity. This review highlights the importance of "dusted off" ecotoxicology with the use of complex exposure systems and integrated biomarkers for the evaluation of the impact of NPs

A. Bour, F. Mouchet, L. Verneuil, L. Evariste, J. Silvestre et al., Toxicity of CeO 2 nanoparticles at different trophic levels-effects on diatoms, chironomids and amphibians, Chemosphere, vol.120, pp.230-236, 2015.

A. Bour, F. Mouchet, S. Cadarsi, J. Silvestre, L. Verneuil et al., Toxicity of CeO 2 nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms, Nanotoxicology, vol.5390, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01494965

P. E. Buffet, A. Zalouk-vergnoux, C. Tel, A. Berthet, B. Mé-tais-i,-perrein-ettajani et al., A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana, Sci Total Environ, pp.1151-1159, 2014.

P. Buffet, M. Richard, F. Caupos, A. Vergnoux, H. Perrein-ettajani et al., A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor), Environ Sci Technol, vol.2013, issue.3, pp.1620-1628

A. Schierz, B. Espinasse, M. R. Wiesner, J. H. Bisesi, T. Sabo-attwood et al., Fate of single walled carbon nanotubes in wetland ecosystems, Environ Sci Nano, vol.1, pp.574-583, 2014.