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On Hypothesis Testing Against Conditional
Independence with Multiple Decision Centers

Sadaf Salehkalaibar, Michèle Wigger, and Roy Timo

Abstract—A distributed binary hypothesis testing prob-
lem is studied with one observer and two decision centers.
Achievable type-II error exponents are derived for test-
ing against conditional independence when the observer
communicates with the two decision centers over one
common and two individual noise-free bit pipes and when
it communicates with them over a noisy broadcast channel
(BC). The results are based on a coding and testing
scheme that splits the observations into subblocks, so that
transmitter and receivers can independently apply to each
subblock either Gray-Wyner coordination coding with side-
information or hybrid joint source-channel coding with
side-information, followed by a Neyman-Pearson test over
the subblocks at the receivers. This approach allows to
avoid introducing further error exponents that one would
expect from the receivers’ decoding operations related to
binning or the noisy transmission channel. The derived
exponents are shown to be optimal in some special cases
when communication is over noise-free links. The results
reveal a tradeoff between the type-II error exponents at
the two decision centers.

I. INTRODUCTION

Consider the distributed hypothesis testing problem
where a transmitter communicates with two receivers
that each wishes to decide on the joint probability
distribution underlying the observations at the three
terminals. In the scenario we consider, communication
from the transmitter to the receivers either takes place
over one common and two individual noise-free bit
pipes or over a discrete memoryless broadcast channel
(BC). For simplicity, we restrict attention to a binary
hypothesis where either H = 0 or H = 1. The focus
of this paper is on the asymptotic regime where the
length of the observed sequences n tends to infinity
and where both the type-I error probabilities (i.e., the
probabilities of deciding on hypothesis 1 when H = 0)
and the type-II error probabilities (i.e., the probabilities
of deciding on hypothesis 0 when H = 1) vanish. We
follow the approach in [1], [2], and aim to quantify
the fastest possible exponential decrease of the type-
II error probabilities, while we allow the type-I error
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Fig. 1. Multi-terminal hypothesis testing with side information.
probabilities to vanish arbitrarily slowly. Ahlswede and
Csiszar [1] and Han [2] studied the problem with only
a single receiver and where communication takes place
over a noise-free link. They presented general upper and
lower bounds on the maximum type-II error exponents,
and these bounds match when under H = 1 the joint
distribution of the observations Xn at the transmitter
and Y n at the receiver equals the product of the marginal
distributions under H = 0. This problem formulation is
widely known as testing against independence. Rahman
and Wagner [4] extended this result to a setup called
testing against conditional independence where the re-
ceiver observes two sequences (Y n, Zn): under both
hypotheses, sequence Zn has the same joint distribution
with the transmitter’s observation Xn and the same joint
distribution with Y n; and under H = 1, observation Y n

is conditionally independent of Xn given Zn. Similar
results were also found for scenarios with multiple
transmitters [2], [4], interactive transmitters, interactive
multi-round communications between nodes, successive
refinement and privacy setups [5]–[8].

When testing against conditional independence, in
contrast to the simpler testing against independence, a
code construction with binning [3], [4] has to be used
to send information from the transmitter to the receiver.
The roles of the two receiver observations Zn and Y n

decouple: Zn plays the role of side-information for the
source-coding scheme and thus reduces the required
communication rate by means of binning; Y n is solely
used for hypothesis testing but not for recovering the
correct codeword. Generally, the decoding operation at
the receiver introduced by binning causes a second
competing error exponent compared to the standard
scheme where the codeword index is directly sent over
the channel [3]. In the special case of testing against
conditional independence, the second error exponent is
however inactive. Rahman and Wagner [4] proposed
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a multi-letter extension of the binning scheme and an
analysis of this scheme that directly proves the final
result with the single error exponent.

A similar technique was recently applied also by
Sreekuma and Gunduz [9] to derive the optimal error
exponent for testing against conditional independence
over a discrete memoryless channel (DMC). Their result
shows that in this special case, the same error exponent
can be achieved as when communication is over a noise-
free link of rate equal to the capacity of the DMC.
Surprisingly, there is thus no competing error exponent
caused by the noisy communication channel. The work
in [9] also extends some of the results to a scenario with
multiple transmitters.

In contrast to these previous works, here we consider
a single transmitter and multiple receivers with different
local observations. The goal is to understand the tension
on the communication channel caused by the receivers
being interested in learning different informations from
the transmitter.

Multiple receivers with different observations can be
used to model a variety of situations:
• Multiple Decision Centers Deciding on Different

Hypotheses: Multiple decision centers wish to de-
cide on the same binary hypothesis but they have
different local informations. This work treats the
scenario where communication to the decision cen-
ters takes place over a common network.
Example 1: Consider a road-side sensor which
measures road conditions (e.g., wetness) and
vehicles parameters (e.g., speed or inter-car
distances). Suppose that there are two autonomous
cars which measure the same parameters using
the on-board sensors. Each of them verifies the
accuracy of its own measurements by comparing its
data to the data collected at the road-side sensors:
if the sets of data are independent, then the car
decides that its own data is faulty and raises an
alarm (or goes to a predefined mode).

• Single Decision Center with Uncertain Local Ob-
servation: There is only a single decision center,
and the probability distribution of the decision cen-
ter’s observation under each of the two hypotheses
is unknown to the transmitter. In this case, the trans-
mitter has to code for both options simultaneously,
and our results determine the exponent pairs that
are simultaneously achievable for the two options.
Example 2: Consider an earthquake alert system
with a remote sensor and a single local decision
center that also senses ground vibrations. At
unknown times of the day, there is heavy traffic
close to the decision center and thus the sensed
vibrations follow a different distribution. In this
scenario, the information communicated from
the sensor to the decision center needs to be
useful under both traffic conditions. Testing

against (conditional) independence can be used to
distinguish vibrations that are independent at the
sensor and the decision center and thus not coming
from larger-scale seismic activities.

• Single Decision Center Performing Two Simulta-
neous Tests: Assume there is a single decision
center with two sets of observations (Y n1 , Z

n
1 ) and

(Y n2 , Z
n
2 ) that wishes to decide on two hypotheses

and it suffices to take each decision only based on
one of the two sets of observations. For example,
because (Y n2 , Z

n
2 ) is irrelevant for the first hypoth-

esis test given (Y n1 , Z
n
1 ) and the opposite holds for

the second hypothesis test.
Example 3: Consider a remote combined
temperature and humidity sensor and a local
weather station that also senses these two
phenomena but can well separate the two
measurements. For simplicity, the local station
might then choose to decide on the temperature to
forecast based only on its temperature measurement
and to predict the humidity only based on the
humidity measurement.

A main feature of the scenario that we consider is that
the observer is interested in extracting and transmitting
information about its observation Xn that is useful to
both receivers. There is thus an inherent tradeoff in the
problem, in that some information might be more bene-
ficial for Receiver 1 than for Receiver 2 and vice versa.
The goal of this paper is to shed light on this tradeoff
when testing against conditional independence. As will
be explained shortly, we consider communications of
positive rates. Interestingly, for zero-rate communication,
such a tradeoff never exists. That means, there is a
single strategy at the transmitter that is optimal for
both decision centers. This optimal strategy is simply
the strategy from [2], [3] where the transmitter sends
a single bit indicating whether its observation is typical
with respect to the distribution under H = 0, irrespective
of the distribution of the receiver observation.

One of the main contributions of this paper is to
propose and analyze a coding and testing scheme for
testing against conditional independence with two re-
ceivers either over a source coding network with a
common and two individual noise-free bit-pipes or over
a discrete memoryless BC. In both scenarios, there is
a single type-II error exponent as in the scenario with
a single receiver. Moreover, the decoding operations at
the receivers only limit the rate of communication and
the bin sizes that one is allowed to choose, but do
not introduce a second competing error exponent. In
our scheme, each terminal splits its observation into
many subblocks and then applies either a Gray-Wyner
coordination coding scheme with side-information [10],
[11] or a hybrid source-channel coding scheme [14] to
each subblock, and each receiver performs a Neyman-
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Pearson test over all these subblocks to decide on the
desired hypothesis. The idea of using block coding
followed by a Neyman-Pearson test is inspired by [4]
and [9]. However, here we use different block codings
compared to the works in [4] and [9], as these latter
only consider only a single decision center. Moreover, we
perform the Neyman-Pearson test over the reconstructed
codeword sequences and not directly over the transmitted
messages or channel outputs. This approach allows to
simplify the analysis compared to an analysis that closely
follows the steps proposed in [4] for the single-decision
center scenario.

The second main contribution of the paper is to show
that the proposed schemes achieve the optimal type-II
error exponents when testing against independence over
a common and two individual noise-free bit-pipes and
when testing against conditional independence only over
a common pipe under some less-noisy assumptions on
the side-informations. For this latter result, a Gaussian
example is presented that clearly illustrates the tradeoff
on the communication channel stemming from the pres-
ence of two decision centers.

A. Notation

Random variables are denoted by capital letters, e.g.,
X , Y , and their realizations by lower case letters,
e.g., x, y. Script symbols such as X and Y stand for
alphabets of random variables and realizations, and Xn
and Yn for the corresponding n-fold Cartesian products.
Sequences of random variables (Xi, ..., Xj) and realiza-
tions (xi, . . . , xj) are abbreviated by Xj

i and xji . When
i = 1, then we also use the notations Xj and xj instead
of Xj

1 and xj1.
The probability mass function (pmf) of a finite random

variable X is written as PX ; the conditional pmf of X
given Y is written as PX|Y . Entropy, conditional entropy,
and mutual information of random variables X and Y are
denoted by H(X), H(X|Y ), and I(X;Y ). Differential
entropy and conditional differential entropy of continu-
ous random variables X and Y are indicated by h(X)
and h(X|Y ). All entropies and mutual informations in
this paper are meant with respect to the distribution under
hypothesis H = 0. The term D(P ||Q) stands for the
Kullback-Leibler divergence between two pmfs P and
Q over the same alphabet.

For a given PX and a constant µ > 0, let T nµ (PX) =
{xn : |#{i : xi = x}/n− PX(x)| ≤ µPX(x),∀x ∈ X}
be the set of µ-typical sequences in Xn [16]. Simi-
larly, T nµ (PX,Y ) stands for the set of jointly µ-typical
sequences.

The expectation operator is written as E[.]. A Gaussian
distribution with mean a and variance σ2 is written
as N (a, σ2). We abbreviate independent and identically
distributed by i.i.d.. Finally, the log(.)-function is taken
with respect to base 2.

II. HYPOTHESIS TESTING OVER A GRAY-WYNER
NETWROK WITH SIDE INFORMATION

Consider the distributed hypothesis testing problem
with one transmitter and two receivers in Fig. 2. The
transmitter observes the sequence Xn, and Receivers 1
and 2 observe Y n1 and Y n2 , respectively. In this model,
for i ∈ {1, 2}, Receiver i additionally also observes a
side information Zni whose pairwise distribution with
Xn and with Y ni does not depend on the hypothesis H.
In fact, under the null hypothesis

H = 0:

(Xn, Y n1 , Y
n
2 , Z

n
1 , Z

n
2 ) ∼ i.i.d. PXY1Y2Z1Z2

, (1)
and under the alternative hypothesis,
H = 1:

(Xn, Y n1 , Y
n
2 , Z

n
1 , Z

n
2 ) ∼ i.i.d. PXZ1Z2

PY1|Z1
PY2|Z2

.
(2)

Here PXY1Y2Z1Z2
is a given joint distribution over a fi-

nite product alphabet X×Y1×Y2×Z1×Z2, and PXZ1Z2 ,
PY1|Z1

and PY2|Z2
denote its conditional marginals, i.e.,

PXZ1Z2
(x, z1, z2)

=
∑

y1∈Y1,y2∈Y2

PXZ1Z2Y1Y2
(x, z1, z2, y1, y2),

(x, z1, z2) ∈ X × Z1 ×Z2,

PY1|Z1
(y1|z1)

=
∑

x∈X ,y2∈Y2,z2∈Z2

PXY1Y2Z2|Z1
(x, y1, y2, z2|z1),

(y1, z1) ∈ Y1 ×Z1,

PY2|Z2
(y2|z2)

=
∑

x∈X ,y1∈Y1,z1∈Z1

PXY1Y2Z1|Z2
(x, y1, y2, z1|z2),

(y2, z2) ∈ Y2 ×Z2.

The test here is “against conditional independence” be-
cause Zi has the same joint distribution with the source
X under both hypotheses and because under H = 1, Yi
is conditionally independent of X given Zi.

The transmitter communicates with the two receivers
over 1 common and 2 individual noise-free bit pipes.
Specifically, it computes messages (M0,M1,M2) =
φ(n)(Xn), using a possibly stochastic encoding func-
tion φ(n) of the form φ(n) : Xn → {0, ..., 2nR0} ×
{0, ..., 2nR1} × {0, ..., 2nR2}, and sends message M0

over the common pipe and messages M1 and M2 over
the two individual pipes. For i ∈ {1, 2}, Receiver i
observes messages M0 and Mi and decides on the
hypothesis H ∈ {0, 1} by means of a decoding function
g

(n)
i : Yni ×Zni ×{0, ..., 2nR0}×{0, ..., 2nRi} → {0, 1}.

It produces Ĥi = g
(n)
i (Y ni , Z

n
i ,M0,Mi).

Definition 1: For each ε ∈ (0, 1), an exponents-rates
tuple (θ1, θ2, R0, R1, R2) is called ε-achievable over
the Gray-Wyner network with side information if there
exists a sequence of encoding and decoding functions
{(φ(n), g

(n)
1 , g

(n)
2 )}∞n=1 such that for i ∈ {1, 2} and all



4

Y n
1 , Zn

1

Y n
2 , Zn

2
Fig. 2. Hypothesis testing over a Gray-Wyner network with side information.

positive integers n, the corresponding sequences of type-
I error probabilities

αi,n
∆
= Pr[Ĥi = 1|H = 0], (3)

and type-II error probabilities

βi,n
∆
= Pr[Ĥi = 0|H = 1], (4)

satisfy
αi,n ≤ ε,

and

− lim
n→∞

1

n
log βi,n ≥ θi.

Definition 2: Given nonnegative rates (R0, R1, R2),
define the exponents region ESI

GW(R0, R1, R2) as the clo-
sure of all non-negative exponent pairs (θ1, θ2) for which
(θ1, θ2, R0, R1, R2) is ε-achievable over the Gray-Wyner
network with side information for every ε ∈ (0, 1).

Remark 1: The exponents region ESI
GW(R0, R1, R2)

only depends on the marginal distributions PXZ1Z2
,

PXY1|Z1
and PXY2|Z2

under both hypotheses.

A. Coding and Testing Scheme

We propose to split the block of n transmissions into
B subblocks of k consecutive transmissions each such
that n = kB. So, for each b ∈ {1, . . . , B}, let

Xk
b := (X(b−1)k+1, . . . , Xbk), (5)

Y ki,b := (Yi,(b−1)k+1, . . . , Yi,bk), i ∈ {1, 2}, (6)

Zki,b := (Zi,(b−1)k+1, . . . , Zi,bk), i ∈ {1, 2}. (7)
For each of the subblocks, we propose to apply an inde-
pendent instance of the coordination code for the Gray-
Wyner network with side-information in [10], where the
receivers only account for side-informations Zn1 and Zn2
but not for Y n1 and Y n2 . More specifically, choose a small
real number µ > 0, as well as auxiliary alphabets U0, U1,
and U2, and a conditional joint probability distribution
PU0U1U2|X over U0 × U1 × U2 so that

R0 +R1 ≥ I(U0, U1;X|Z1) + µ, (8)
R0 +R2 ≥ I(U0, U2;X|Z2) + µ, (9)

R0 +R1 +R2 ≥ max
i∈{1,2}

I(U0;X|Zi)

+I(U1;X|U0, Z1)

+I(U2;X|U0, Z2) + µ. (10)

Construct for each block a coordination
code as described in [10, Section V-
B1)] for suitably chosen auxiliary rates
R0,0, R0,1, R0,2, R1,0, R1,1, R2,0, R2,2, R

′
0, R

′
1, R

′
2 > 0

satisfying R′0 > max{R1,0, R2,0} and Constraints (50)
in [10, Appendix B].

Codebook Generation: Let PU0
, PU1|U0

and PU2|U0

be the marginal and conditional marginal pmfs of PX ·
PU0U1U2|X .

For each block b ∈ {1, . . . , B}, generate three code-
books C0,b,C1,b(.),C2,b(.) independently of each other
in the following way. Codebook C0,b consists of 2kR0,0

superbins, each containing 2kR
′
0 length-k codewords

whose entries are randomly and independently generated
according to the law PU0

.
We make two partitions of the codewords in each

superbin. In the first partition, the codewords of each
superbin are assigned to 2kR1,0 subbins, each con-
taining 2k(R′0−R1,0) codewords; in the second partition
they are assigned to 2kR2,0 subbins, each containing
2k(R′0−R2,0) codewords. There are thus two different
ways to refer to a specific codeword in C0,b. When we
consider the first partition, we denote the codewords
in the m1,0,b ∈ {1, . . . , 2kR1,0}-th subbin of superbin
m0,0,b ∈ {1, . . . , 2kR0,0} by

{uk0,b(1;m0,0,b,m1,0,b, `1,0,b)}2
k(R′0−R1,0)

`1,0,b=1 ;

when we consider the second partition, we denote the
codewords in the m2,0,b ∈ {1, . . . , 2kR2,0}-th subbin of
superbin m0,0,b ∈ {1, . . . , 2kR0,0} by

{uk0,b(2;m0,0,b,m2,0,b, `2,0,b)}2
k(R′0−R2,0)

`2,0,b=1 .

Thus, here the first index indicates whether the last two
indices refer to the first or the second partition of the
superbins.

For i ∈ {1, 2}, Codebook Ci,b(.) consists of 2kR0,i

superbins each containing 2kRi,i subbins with 2kR
′
i

codewords of length k, where all entries of all codewords
are randomly and independently drawn according to PUi .
For mi,i,b ∈ {1, . . . , 2kRi,i}, we denote the codewords
in the mi,i,b-th subbin of superbin m0,i,b ∈ 2kR0,i by

{uki,b(m0,i,b,mi,i,b, `i,b)}2
kR′i
`i,b=1.

All codebooks are revealed to the sender, and code-
books {C0,b,Ci,b(.)} are revealed to Receiver i ∈ {1, 2}.

Transmitter: The transmitter first decomposes
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the observed source sequence Xn = xn into B
blocks, each consisting of k consecutive symbols,
xk1 , . . . , x

k
B . For each block b ∈ {1, . . . , B}, it

then forms a list of all the tuples of indices
(m0,0,b,m1,0,b, `1,0,b,m0,1,b,m1,1,b, `1,b,m0,2,b,
m2,2,b, `2,b) so that the triplet of codewords
uk0,b(1;m0,0,b,m1,0,b, `1,0) ∈ C0,b, uk1,b(m0,1,b,m1,1,b,

`1,b) ∈ C1,b(.), uk2,b(m0,2,b,m2,2,b, `2,b) ∈ C2,b(.)
satisfies

(xkb , u
k
0,b(1;m0,0,b,m1,0,b, `1,0,b),

uki,b(m0,i,b,mi,i,b, `i,b)) ∈ T kµ/2(PXU0Ui), ∈ {1, 2}.
(11)

If for some block b this list is empty, the trans-
mitter sends the messages m0 = 0, m1 = 0
and m2 = 0 over the bit pipes. Otherwise, it
chooses for each block b the tuple (m?

0,0,b,m
?
1,0,b, `

?
1,0,b,

m?
0,1,b,m

?
1,1,b, `

?
1,b,m

?
0,2,b,m

?
2,2,b, `

?
2,b) uniformly at ran-

dom over the generated list, and sends the following
messages over the bit pipes
m0 = (m?

0,0,1, . . . ,m
?
0,0,B ,m

?
0,1,1, . . . ,m

?
0,1,B ,

m?
0,2,1, . . . ,m

?
0,2,B), (12)

m1 = (m?
1,0,1, . . . ,m

?
1,0,B ,m

?
1,1,1, . . . ,m

?
1,1,B), (13)

m2 = (m?
2,0,1, . . . ,m

?
2,0,B ,m

?
2,2,1, . . . ,m

?
2,2,B). (14)

Receiver i: Assume that Receiver i observes messages
M0 = m0, Mi = mi and source sequences Y ni = yni
and Zni = zni . If m0 = mi = 0, Receiver i declares
Ĥi = 1. Otherwise, it decomposes its observations into
B blocks {(

m0,b,mi,b, y
k
i,b, z

k
i,b

)}B
b=1

. (15)
It parses the common message m0,b as
(m0,0,b,m0,1,b,m0,2,b) and its private message mi,b

as mi,b = (mi,0,b,mi,i,b). Then, it seeks a codeword
uk0,b(i;m0,0,b,mi,0,b, `i,0,b) in codebook C0,b and a
codeword uki,b(m0,i,b,mi,i,b, `i,b) in codebook Ci,b(.)
such that(
uk0,b(i;m0,0,b,mi,0,b, `i,0,b), u

k
i,b(m0,i,b,mi,i,b, `i,b),

zki,b
)
∈ T kµ (PU0UiZi). (16)

If exactly one such pair of codewords exists, Re-
ceiver i produces the coordination sequence ûki,b =

uki,b(m0,i,b,mi,i,b, `i,b). Otherwise, it randomly chooses
a triplet (m∗0,i,b,m

∗
i,i,b, `

∗
i,b) and produces the coordina-

tion sequence ûki,b = uki,b(m
∗
0,i,b,m

∗
i,i,b, `

∗
i,b). Finally, it

applies a Neyman-Pearson test to decide on hypothesis
H based on the i.i.d. sequence of tuples{(

ûki,b, y
k
i,b, z

k
i,b

)}B
b=1

, (17)
in a way that the type-I error probability does not exceed
ε.

B. Result on Exponents Region

The scheme described in the previous section gives
the following achievable exponents region.

Let ESI,in
GW (R0, R1, R2) be given by the following:

ESI,in
GW (R0, R1, R2) :=⋃

(U0,U1,U2) :

(U0,U1,U2)→X
→(Y1,Y2,Z1,Z2)

R0+R1+R2≥maxi∈{1,2}
I(U0;X|Zi)
+I(U1;X|U0,Z1)
+I(U2;X|U0,Z2)

R0+R1≥I(U1,U0;X|Z1)

R0+R2≥I(U0,U2;X|Z2)

 (θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0,
θ1 ≤ I(U1;Y1|Z1)
θ2 ≤ I(U2;Y2|Z2)

 .

Notice that, to evaluate ESI,in
GW (R0, R1, R2) it suffices

to consider auxiliary random variables U0, U1, U2 over
alphabets U0, U1, and U2 whose sizes satisfy the follow-
ing three conditions: |U0| ≤ |X |+3, |U1| ≤ |X |·|U0|+1,
and |U2| ≤ |X | · |U0|+ 1.

Theorem 1: The set ESI,in
GW (R0, R1, R2) is achievable,

i.e.,
ESI,in

GW (R0, R1, R2) ⊆ ESI
GW(R0, R1, R2). (18)

Proof: See Appendix A.
The two next-following results show that the expo-

nents region ESI,in
GW coincides with the optimal exponents

region ESI
GW in some special cases.

Let
EGW(R0, R1, R2) :=⋃

(U0,U1,U2) :

(U0,U1,U2)→X→(Y1,Y2)

R0≥I(U0;X)

R1≥I(U1;X|U0)

R2≥I(U2;X|U0)

 (θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0,
θ1 ≤ I(U1;Y1)
θ2 ≤ I(U2;Y2)

 .

(19)

Theorem 2: When there is no side-information, i.e.,
Z1 and Z2 are constants, then
ESI

GW(R0, R1, R2) = ESI,in
GW (R0, R1, R2)

= EGW(R0, R1, R2). (20)
Proof: Achievability follows by specializing The-

orem 1 to Z1 and Z2 constant. The converse can be
obtained from the converse in [17] where one has to
include U0 into U1.

In the above Theorem 2 it suffices to consider aux-
iliary random variables U0, U1, and U2 over alphabets
U0, U1, and U2 whose sizes satisfy:

|U0| ≤ |X |+ 2, (21)
|Uj | ≤ |X | · |U0|+ 1, j ∈ {1, 2}. (22)

This follows by simple applications of Caratheodory’s
theorem.

Theorem 3: Let Z2 be a constant and Z1 less noisy
than Y2, i.e., let for all auxiliary random variables U
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satisfying the Markov chain U → X → (Y1, Y2, Z1) the
following inequality hold:

I(U ;Z1) ≥ I(U ;Y2). (23)
Then:
ESI

GW(R0, R1 = 0, R2 = 0) =

ESI,in
GW (R0, R1 = 0, R2 = 0). (24)

Proof: Achievability follows by Theorem 1. The
converse is proved in Appendix B.

C. An Example

Theorem 3 was stated for discrete memoryless
sources. It can be shown that it remains valid also when
sources are memoryless and jointly Gaussian [16, Chap.
3].

Consider the following scenario. Under both hy-
potheses, X ∼ N (0, 1) and Z1 = X + Nz , where
Nz ∼ N (0, σ2

z) is independent of X . Moreover, under
hypothesis

H = 0: Y1 = X + Z1 +N1, (25)
Y2 = Z1 +N2, (26)

where N1 ∼ N (0, σ2
1) and N2 ∼ N (0, σ2

2) are indepen-
dent of each other and of (X,Z1), and under hypothesis

H = 1: Y1 = X ′ +
2 + σ2

z

1 + σ2
z

· Z1 +N1, (27)

Y2 = Z ′1 +N2, (28)

where X ′ ∼ N (0,
σ2
z

1+σ2
z
) and Z ′1 ∼ N (0, 1 +

σ2
z) are independent of each other and of the tuple

(X,Z1, N1, N2).
The described scenario satisfies the less noisy con-

dition in (23). By Theorem 3, when restricting to
R1 = R2 = 0, for this example, the region ESI

GW equals
ESI,in

GW . As is proved in Appendix C, the exponents region
ESI

GW(R0, R1 = 0, R2 = 0) evaluates to the set of all
nonnegative exponent pairs (θ1, θ2) that satisfy

θ1 ≤
1

2
log

(
σ2
z + σ2

1(1 + σ2
z)

22α̃σ2
z + σ2

1(1 + σ2
z)

)
, (29a)

θ2 ≤
1

2
log

(
1 + σ2

z + σ2
2

2−2(α̃+R0)(1 + σ2
z) + σ2

2

)
, (29b)

for some α̃ ∈ [−R0, 0].
The boundary of the exponents region ESI

GW(R0, R1 =
0, R2 = 0) is illustrated in Fig. 3 for different values
of the rate R0. Generally, on this boundary θ1 > θ2,
because Receiver 1 has the additional side-information
Z1. One observes a trade-off between the two exponents
θ1 and θ2, which is captured by the parameter α̃ in (29).
In other words, having a larger exponent θ1 comes at the
expense of a smaller exponent θ2, and vice versa.

III. HYPOTHESIS TESTING OVER NOISY CHANNELS

This section considers hypothesis testing over a dis-
crete memoryless BC (W,V1,V2, PV1V2|W ), where W
denotes the finite channel input alphabet, V1 and V2 the
finite channel output alphabets at Receivers 1 and 2, and

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ1

θ 2

R=0.5

R=0.75

R=1

Fig. 3. Exponents region for σ2
z = 0.7, σ2

1 = 0.2 and σ2
2 = 0.3.

PV1V2|W the BC transition pmf. The setup is illustrated
in Fig. 4. The transmitter observes a sequence Xn and
produces its channel inputs Wn := (W1, . . . ,Wn) as
Wn = Φ(n)(Xn) by means of a possibly stochastic
encoding function Φ(n) : Xn → Wn. Receivers 1 and
2 observe the corresponding channel outputs V n1 :=
(V1,1, . . . , V1,n) and V n2 := (V2,1, . . . , V2,n), as well as
the source sequences (Y n1 , Z

n
1 ) and (Y n2 , Z

n
2 ) defined in

the previous section. For i ∈ {1, 2}, Receiver i decides
on the hypothesis H ∈ {0, 1} by means of a decoding
function g

(n)
i : Yni × Zni × Vni → {0, 1}. It produces

Ĥi = g
(n)
i (Y ni , Z

n
i , V

n
i ).

As in the previous section, assume that under hypoth-
esis
H = 0: (Xn, Y n1 , Y

n
2 , Z

n
1 , Z

n
2 ) ∼ i.i.d. PXY1Y2Z1Z2

,
(30)

and under hypothesis
H = 1: (Xn, Y n1 , Y

n
2 , Z

n
1 , Z

n
2 ) ∼ i.i.d.

PXZ1Z2
PY1|Z1

PY2|Z2
. (31)

Definition 3: For each ε ∈ (0, 1), an exponent pair
(θ1, θ2) is called ε-achievable over a BC with side
information if there exists a sequence of encoding and
decoding functions {(Φ(n), g

(n)
1 , g

(n)
2 )}∞n=1 such that for

i ∈ {1, 2} and all positive integers n, the corresponding
sequences of type-I and type-II error probabilities satisfy

αi,n ≤ ε,
and

− lim
n→∞

1

n
log βi,n ≥ θi,

where αi,n and βi,n are defined in (3) and (4).
Definition 4: Define the exponents region ESI

BC as the
closure of all non-negative exponent pairs (θ1, θ2) for
which (θ1, θ2) is ε-achievable over the BC with side
information for every ε ∈ (0, 1).

A. Coding and Testing Scheme

Fix µ > 0, sufficiently large positive integers k and
B, and a joint conditional distribution PU0U1U2|X over
finite auxiliary alphabets U0, U1 and U2. Consider also
nonnegative rates R0, R1, R2 that satisfy
R0 +R1 ≤ I(U1, U0;V1, Z1), (32)
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Trans.

Y n
2 , Zn

2

Fig. 4. Hypothesis testing over a BC.

R0 +R2 ≤ I(U2, U0;V2, Z2), (33)
R1 ≤ I(U1;V1, Z1|U0), (34)
R2 ≤ I(U2;V2, Z2|U0), (35)
R0 > I(U0;X), (36)
R1 > I(U1;X|U0), (37)
R2 > I(U2;X|U0), (38)

R1 +R2 > I(U1, U2;X|U0) + I(U1;U2|U0). (39)
Finally, fix a function f : U0 × U1 × U2 ×X →W .

Code Construction: For each block b ∈ {1, ..., B},
randomly generate a codebook C0,b = {Uk0,b(m0,b) :

m0,b ∈ {1, ..., 2kR0}} by drawing each entry of
the n-length codeword Uk0,b(m0,b) i.i.d. according
to the pmf PU0 . Moreover, for each index m0,b

and i ∈ {1, 2}, randomly generate a codebook
Ci,b(m0,b) := {Uki,b(mi,b|m0,b) : mi,b ∈ {1, ..., 2kRi}}
by drawing each entry of the k-length codeword
Uki,b(mi,b|m0,b) i.i.d. according to the conditional pmf
PUi|U0

(.|U0,b,j(m0,b)), where U0,b,j(m0,b) denotes the
j-th symbol of Uk0,b(m0,b). Reveal the realizations
{C0,b}, {C1,b(·)} and {C2,b(·)} of the randomly generated
codebooks to all terminals.

Transmitter: It observes a source sequence xn and
splits it into B subblocks xn = (xk1 , ..., x

k
B) as in

(5). For each block b, it looks for a triple of indices
(m0,b,m1,b,m2,b) ∈ {1, . . . , 2kR0} × {1, . . . , 2kR1} ×
{1, . . . , 2kR2} such that

(xkb , u
k
0,b(m0,b), u

k
1,b(m1,b|m0,b), u

k
2,b(m2,b|m0,b))

∈ T kµ/2(PXU0U1U2
), (40)

where uk0,b(m0,b), uk1,b(m1,b|m0,b) and
uk2,b(m2,b|m0,b) are codewords from the chosen
codebooks C0,b, {C1,b(·)} and {C2,b(·)}. If the typicality
test is successful, the transmitter picks one of the
triples satisfying the test at random. Otherwise, it picks
a triple (m0,b,m1,b,m2,b) uniformly at random over
{1, . . . , 2kR0} × {1, . . . , 2kR1} × {1, . . . , 2kR2}. It
finally sends the k inputs

w(b−1)k+j = f(u0,b,j(m0,b), u1,b,j(m1,b|m0,b),

u2,b,j(m2,b|m0,b), x(b−1)k+j),

j ∈ {1, . . . , k}, (41)

over the channel.
Receiver i ∈ {1, 2}: Assume that it observes the se-

quence of channel outputs vni,b and the source sequences
yni,b and zni,b. It looks for a pair of indices (m̂0,b, m̂i,b)
such that

(uki,b(m̂i,b|m̂0,b), v
k
i,b, z

k
i,b) ∈ T kµ (PUiViZi), (42)

and picks one of these pairs at random. If no
such pair can be found, pick (m̂0,b, m̂i,b) uniformly
over {1, . . . , 2kR0} × {1, . . . , 2kR1}. For the chosen
(m̂0,b, m̂i,b), set

ûki,b := uki,b(m̂0,b, m̂i,b). (43)
Receiver i then decomposes its observations (yki,b, z

k
i,b)

as in (6) and (7) and performs a Neyman-Pearson test
on the B i.i.d. blocks,{(

ûki,b, v
k
i,b, y

k
i,b, z

k
i,b}
)}B
b=1

,

in a way that the type-I error probability does not exceed
ε.

B. Exponents Region

Let Ehyb
BC be given by the following:

Ehyb
BC =

⋃
(U0,U1,U2)

 (θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0,
θ1 ≤ I(U1;Y1|Z1)
θ2 ≤ I(U2;Y2|Z2)

 ,

where the union is taken over all pmfs PU0U1U2W |X that
satisfy the following Markov chains

(U0, U1, U2)→ X → (Y1, Y2, Z1, Z2), (44)
(Y1, Y2, Z1, Z2)→ (U0, U1, U2, X)

→W → (V1, V2), (45)
and the mutual information constraints
I(U1, U0;X|Z1) ≤ I(U1, U0;V1|Z1), (46a)
I(U2, U0;X|Z2) ≤ I(U2, U0;V2|Z2), (46b)
I(U1;X|Z1, U0) ≤ I(U1;V1|Z1, U0), (46c)
I(U2;X|Z2, U0) ≤ I(U2;V2|Z2, U0), (46d)
I(U0, U1;X|Z1) + I(U2;X|Z2, U0) + I(U1;U2|U0)

≤ I(U0, U1;V1|Z1) + I(U2;V2|Z2, U0), (46e)
I(U0, U2;X|Z2) + I(U1;X|Z1, U0) + I(U1;U2|U0)

≤ I(U1;V1|Z1, U0) + I(U0, U2;V2|Z2), (46f)
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I(U1;X|Z1, U0) + I(U2;X|Z2, U0) + I(U1;U2|U0)

≤ I(U1;V1|Z1, U0) + I(U2;V2|Z2, U0), (46g)
I(U1, U0;X|Z1) + I(U2, U0;X|Z2) + I(U1;U2|U0)

≤ I(U1, U0;V1|Z1) + I(U2, U0;V2|Z2), (46h)
for some function f : U0×U1×U2×X →W where

W = f(U0, U1, U2, X).
Theorem 4: The exponents region Ehyb

BC is achievable,
i.e.,

Ehyb
BC ⊆ E

SI
BC .

Proof: The region is achieved by the coding and
testing scheme described in the previous subsection. This
is proved in Appendix D.
To evaluate the region Ehyb

BC , it suffices to consider
auxiliaries whose alphabets satisfy the following two
conditions: |U0| ≤ |X | + 8, |U1| ≤ |X | · |U0| + 3 and
|U2| ≤ |X | · |U0|+ 3.

The exponents region Ehyb
BC is achieved by means

of hybrid joint source-channel coding with side-
information. The constraints in (44) ensure that the
receivers can decode their intended hybrid coding code-
words; a U0-codeword is decoded at both receivers and
a Ui-codeword at Receiver i only. These codewords are
then used at the receivers for testing against conditional
independence, see the exponents expression in (44). No-
tice that hybrid joint source-channel coding also includes
separate source-channel coding as a special case [14]. In
fact, the separate scheme’s exponents region can be de-
rived by considering U0 = (W0, Ũ0) and Ui = (Wi, Ũi),
for i ∈ {1, 2}, where (Ũ0, Ũ1, Ũ2,W0,W1,W2) are aux-
iliary random variables which satisfy the Markov chains
(Ũ0, Ũ1, Ũ2) → X → (Z1, Z2) and (W0,W1,W2) →
W → (V1, V2) and the tuple (W0,W1,W2) is indepen-
dent of (Ũ0, Ũ1, Ũ1, X, Y1, Z1, Y2, Z2).

This theorem recovers the optimal error exponent for
hypothesis testing over a point-to-point channel found in
[9]. It can be verified that the optimal error exponent of
[9] for the discrete memoryless channel from W to V1

can be recovered by specializing Theorem 4 to U0, U2

constants and U1 = (Ũ ,W ) with W independent of
(Ũ ,X, Y1, Z1).

C. An Example

We investigate the achievable exponent region of
Theorem 4 by means of an example. Reconsider the first
example in Section II-C, but where now communication
takes place over a Gaussian BC. Since the exponents
region depends on the BC transition law only through the
conditional marginals PV1|W and PV2|W , we assume that
the Gaussian BC is degraded and described as follows:

V1 = W + T1, (47)
V2 = V1 + T2, (48)

where T1 and T2 are independent Gaussian random
variables of variances r2

1 and r2
2 − r2

1 (r2
2 ≥ r2

1). The
input W is subject to an expected power constraint
E[|W |2] ≤ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ1

θ 2

 

 

hybrid scheme
seprate scheme

Fig. 5. Achievable exponents region using hybrid scheme for σ2
z =

0.7, σ2
1 = 0.2, σ2

2 = 0.3, r21 = 0.1, r22 = 0.3.

Likewise to the first example, we choose the aux-
iliaries U0 and U1 jointly Gaussian with X so that
X = U1 + Q1 and U1 = U0 + Q0, and we choose
U2 = U0. Due to the degradedness of the channel,
for such a choice of auxiliaries (i.e., when U2 = U0)
constraints (46) simplify to the two constraints

I(U0;X) ≤ I(U0;V2), (49)
I(U1;X|Z1, U0) ≤ I(U1;V1|Z1, U0). (50)

Let Q0, Q1, U0 be independent zero-mean Gaussian
random variables of variances σ2

q0 , σ2
q1 , and 1−σ2

q0−σ
2
q1

so that X = Q0 + Q1 + U0 and U1 = U0 + Q0. Then,
set the channel input to W = αU0 + βU1 for some
parameters α, β ≥ 0 satisfying

(α+ β)2(1− σ2
q0 − σ

2
q1) + β2σ2

q0 = 1. (51)

Specializing the achievable exponents region Ehyb
BC to

the proposed choices, proves achievability of all nonneg-
ative pairs (θ1, θ2) that satisfy
θ1 ≤

1

2
log

((
σ2

1 +
σ2
z

1 + σ2
z

)
·

(
σ2
q1 + σ2

z

σ2
q1(σ2

1 + σ2
z) + σ2

1σ
2
z

))
,

(52)

θ2 ≤
1

2
log

(
1 + σ2

z + σ2
2

σ2
q0 + σ2

q1 + σ2
z + σ2

2

)
, (53)

for some σ2
q0 , σ

2
q1 ∈ [0, 1], β > 0 so that

σ2
q0 + σ2

q1 ≤ 1, (54)
and

1

σ2
q0 + σ2

q1

≤ 1 + r2
2

β2σ2
q0 + r2

2

, (55)

1 +
σ2
z

σ2
q1

1 +
σ2
z

σ2
q0

+σ2
q1

≤ 1 +
σ2
q0

σ2
q1 + σ2

z

+
β2σ2

q0

r2
1

. (56)

The boundary of the achievable exponents region Ehyb
BC

is illustrated in Fig. 5 for a setup parametrized by
σ2
z = 0.7, σ2

1 = 0.2, σ2
2 = 0.3, r2

1 = 0.1 and r2
2 = 0.3.

One observes a trade-off between the two exponents
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θ1 and θ2. Comparing this exponents region with the
region shown in Figure 3 for the noiseless channel,
we observe that the asymmetric channel (different noise
variances at the different receivers) changes the nature
of this tradeoff. The second line shown in the figure
depicts the boundary of the exponents region that is
achieved by a separation based scheme that combines the
Gray-Wyner coordination coding with side-information
from the previous section with a superposition code for
the Gaussian broadcast channel. As it can be seen, the
exponents region achieved by this separate coding and
testing scheme is strictly smaller than the exponents
region of our joint coding and testing scheme.

IV. CONCLUSION AND DISCUSSION

This paper considers a distributed binary hypothesis
testing problem in a one-observer, two-decision center
setup. Achievable error exponents are presented for
testing against conditional independence when commu-
nication from the observer to the centers is over one
common and two individual noise-free bit-pipes and
when communication is over a BC. To this end, we
presented coding and testing schemes where:
• all terminals split their observations into many

subblocks;
• transmitter and receivers apply a Gray-Wyner coor-

dination code with side-information [10] or hybrid
joint source-channel coding with side-information
for a BC;

• the receivers apply a Neyman-Pearson test to the
i.i.d. subblocks of side-information and recon-
structed source sequences.

Similarly to [4], [9], in the above approach, the “multi-
letter” decision over subblocks avoids introducing a
competing error exponent due to the binning or the
channel decoding procedure.

The derived type-II error exponents are optimal when
testing against independence over a common and two
individual noise-free bit pipes, and when testing against
conditional independence over a single noise-free bit
pipe if some of the receiver side-informations are less
noisy. An explicit characterization of this latter optimal
error exponent is given for a Gaussian example. This
characterization clearly reveals a tradeoff between the
error exponents achieved at the two decision centers.
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APPENDIX A
PROOF OF THEOREM 1

The proof is based on scheme in Section II-A which
we analyze in the following.

Analysis:

From the way we constructed the Neyman-Pearson
tests, it immediately follows that the type-I error proba-
bilities at the two receivers cannot exceed ε. We turn our
attention to the type-II error probabilities. Notice that the
analysis in [10, Theorem 2] is easily modified to show
that for each b ∈ {1, . . . , B} and i ∈ {1, 2}:

Pr[(Xk
b , Û

k
i,b, Z

k
i,b) ∈ T kµ (PU |XPXZ)] > 1− µ, (57)

for sufficiently large k. In fact, it suffices to add the
sequence Zki,b into the typicality test defining event E3,i
in [10, Appendix B]. Thus, by the conditional typicality
lemma [16], under the null-hypothesis H = 0, also
Pr[(Xk

b , Û
k
i,b, Z

k
i,b, Y

k
i,b) ∈ T kµ (PU |XPXY Z)] > 1− µ.

(58)
Now, recall that each Receiver i only declares Ĥi = 0

if the applied Neyman-Pearson test produces 0. Since for
each i ∈ {1, 2}:

under H = 0:{
Ûki,b, Y

k
i,b, Z

k
i,b

}B
b=1

is i.i.d.
∼ PÛki Y ki Zki , (59a)

and
under H = 1:{
Ûki,b, Y

k
i,b, Z

k
i,b

}B
b=1

is i.i.d.
∼ PÛki Zki PY ki |Zki , (59b)

the Chernoff-Stein Lemma [22] can be applied to bound
the probabilities of type-II error. Thus, for sufficiently
large k:

− 1

n
log βi,n ≥

1

k
D
(
PÛki Y ki Zki |H=0

∥∥PÛki Y ki Zki |H=1

)
− µ

(a)
=

1

k
I
(
Ûki ;Y ki

∣∣Zki )− µ
= H

(
Yi
∣∣Zi)− 1

k
H
(
Y ki
∣∣Ûki , Zki )− µ,

(60)
where mutual informations and entropies have to be
computed according to the joint pmf PÛki Y ki Zki under
H = 0, and Equality (a) holds by (59). We continue by
defining the event

EV,i
∆
= {(Ûki , Y ki , Zki ) ∈ T kµ (PUiYiZi)},

and let 1V be the indicator function of EV,i.
The second term on the RHS of (60) can then be upper

bounded as:
H(Y ki |Zki , Ûki )

= H(Y ki ,1V |Zki , Ûki )

= H(Y ki |Zki , Ûki ,1V ) +H(1V |Zki , Ûki )

(a)

≤ H(Y ki |Zki , Ûki ,1V ) + 1

(b)

≤ H(Y ki |Zki , Ûki ,1V = 1) + k log |Yi| · µ+ 1

=
∑

(uki ,z
k
i )

∈T kµ (PUiZi )

[
Pr[Zki = zki , Û

k
i = uki |1V = 1]

·H(Y ki |Zki = zki , Û
k
i = uki ,1V = 1)

]
+ k log |Yi| · µ+ 1
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(c)

≤
∑

(uki ,z
k
i )

∈T kµ (PUiZi )

[
Pr[Zki = zki , Û

k
i = uki |1V = 1]

· log(|T kµ (Y ki |uki , zki )|)
]

+ k log |Yi| · µ+ 1

(d)

≤
∑

(uki ,z
k
i )

∈T kµ k(PUiZi )

[
Pr[Zki = zki , Û

k
i = uki |1V = 1]

· (kH(Yi|Zi, Ui) + kδ(µ))
]

+ k log |Yi| · µ+ 1

= kH(Yi|Zi, Ui) + kδ(µ) + k log |Yi| · µ+ 1. (61)
The steps leading to (61) are justified as follows:
• (a) follows from the fact that H(1V |Zk1 , Ûk1 ) ≤ 1

because 1V is a binary random variable;
• (b) follows by (58), because Pr[1V = 1] ≤ 1, and

because H(Y k1 |Zk1 , Ûk1 ,1V = 0) ≤ k log |Y1|;
• (c) follows because entropy is maximized by a

uniform distribution,
• (d) follows by bounding the size of the typical set

[16] where δ(µ) is a function that goes to 0 as µ→
0.

We combine (60) with (61) to obtain that for any choice
of µ > 0 and sufficiently large k,B:

− 1

n
log βi,n ≥ I(Ui;Yi|Zi)− δ′(µ), i ∈ {1, 2},

(62)
where δ′(µ) is a function that tends to 0 as µ → 0.
Taking µ→ 0 proves Theorem 1.

APPENDIX B
CONVERSE PROOF TO THEOREM 3

Fix a sequence of encoding and decoding functions
{φ(n), g

(n)
1 , g

(n)
2 } so that the inequalities in Definition 1

hold for sufficiently large blocklengths n. Fix also such
a sufficiently large n. Then, define U0,t

∆
= (M0, Z

t−1
1 )

and U1,t
∆
= (Xt−1, Zn1,t+1). Following similar steps as

in [23], it can be shown that
D(PM0Y n1 Z

n
1 |H=0||PM0Y n1 Z

n
1 |H=1) ≥ −(1− ε) log β1,n.

Therefore, the type-II error probability at Receiver 1 can
be upper bounded as

− 1

n
log β1,n

≤ 1

n(1− ε)
D(PM0Y n1 Z

n
1 |H=0||PM0Y n1 Z

n
1 |H=1)

(a)
=

1

n(1− ε)
I(M0;Y n1 |Zn1 )

=
1

n(1− ε)

n∑
t=1

I(M0;Y1,t|Y t−1
1 , Zn1 )

(b)

≤ 1

n(1− ε)

n∑
t=1

I(M0, Y
t−1
1 , Zt−1

1 , Zn1,t+1;Y1,t|Z1,t)

(c)

≤ 1

n(1− ε)

n∑
t=1

I(M0, X
t−1, Zt−1

1 , Zn1,t+1;Y1,t|Z1,t)

=
1

n(1− ε)

n∑
t=1

I(U0,t, U1,t;Y1,t|Z1,t),

where (a) follows because under hypothesis H = 1
and given Zn1 , the sequence Y n1 and message M0 are
independent; (b) follows from the memoryless property
of the sources; (c) follows from the Markov chain
(Y1,t, Z1,t) → (M0, X

t−1, Zt−1
1 , Zn1,t+1) → Y t−1

1 . For
the type-II error probability at Receiver 2, one obtains:

− 1

n
log β2,n

≤ 1

n(1− ε)
D(PM0Y n2 |H=0||PM0Y n2 |H=1)

=
1

n(1− ε)
I(M0;Y n2 )

=
1

n(1− ε)

n∑
t=1

I(M0;Y2,t|Y n2,t+1)

=
1

n(1− ε)

n∑
t=1

[
I(M0, Z

t−1
1 ;Y2,t|Y n2,t+1)

− I(Zt−1
1 ;Y2,t|M0, Y

n
2,t+1)

]
(b)
=

1

n(1− ε)

n∑
t=1

[
I(M0, Z

t−1
1 , Y n2,t+1;Y2,t)

− I(Zt−1
1 ;Y2,t|M0, Y

n
2,t+1)

]
(c)
=

1

n(1− ε)

n∑
t=1

[
I(M0, Z

t−1
1 , Y n2,t+1;Y2,t)

− I(Y n2,t+1;Z1,t|M0, Z
t−1
1 )

]
(d)

≤ 1

n(1− ε)

n∑
t=1

[
I(M0, Z

t−1
1 , Y n2,t+1;Y2,t)

− I(Y n2,t+1;Y2,t|M0, Z
t−1
1 )

]
=

1

n(1− ε)

n∑
t=1

I(M0, Z
t−1
1 ;Y2,t)

=
1

n(1− ε)

n∑
t=1

I(U0,t;Y2,t),

where (b) follows from the memoryless property of
the sources; (c) follows from Csiszar and Körner’s
sum identity [16]; and (d) follows from the less noisy
assumption and the Markov chain (M0, Y

n
2,t+1, Z

t−1
1 )→

Xt → (Y1,t, Y2,t, Z1,t) which holds by the memoryless
property of the sources and because M0 is a function of
Xn. For the rate R0, one finds:
nR0 ≥ H(M0) ≥ I(M0;Xn, Zn1 )

= I(M0;Xn|Zn1 ) + I(Zn1 ;M0)

=

n∑
t=1

[I(M0;Xt|Xt−1, Zn1 ) + I(M0;Z1,t|Zt−1
1 )]

=

n∑
t=1

[
I(M0, X

t−1, Zt−1
1 , Zn1,t+1;Xt|Z1,t)

+ I(M0, Z
t−1
1 ;Z1,t)

]
=

n∑
t=1

[
I(Xt−1, Zn1,t+1;Xt|M0, Z1,t, Z

t−1
1 )
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+ I(M0, Z
t−1
1 ;Xt|Z1,t) + I(M0, Z

t−1
1 ;Z1,t)

]
=

n∑
t=1

[
I(Xt−1, Zn1,t+1;Xt|M0, Z1,t, Z

t−1
1 )

+ I(M0, Z
t−1
1 ;Z1,t, Xt)

]
≥

n∑
t=1

[
I(Xt−1, Zn1,t+1;Xt|M0, Z1,t, Z

t−1
1 )

+ I(M0, Z
t−1
1 ;Xt)

]
=

n∑
t=1

[I(U1,t;Xt|Z1,t, U0,t) + I(U0,t;Xt)].

Notice that by the memoryless property of the sources
and because M0 is a function of Xn, the Markov chain
(M0, Z

n
1,t+1, Z

t−1
1 , Xt−1) → Xt → (Y1,t, Y2,t, Zt)

holds, and thus (U0,t, U1,t) → Xt → (Y1,t, Y2,t, Zt).
The proof is then concluded by combining these ob-
servations with standard time-sharing arguments which
require introducing the auxiliary random variables T ∈
{1, ..., n}, U0

∆
= (U0,T , T ), U1

∆
= U1,T , X ∆

= XT ,
Y1

∆
= Y1,T , Y2

∆
= Y2,T , and Z1

∆
= Z1,T .

APPENDIX C
EVALUATION OF ESI

GW(R0, R1 = 0, R2 = 0) FOR THE
EXAMPLE IN SECTION II-C

That the exponent pairs in (29) lie in ESI
GW(R0, R1 =

0, R2 = 0) can be seen by evaluating (19) for auxiliaries
U0 and U1 that are jointly Gaussian with X and so
that X = U1 + W1 and U1 = U0 + W0 for indepen-
dent zero-mean Gaussians W1, W0 and U0 that are of
variances σ2

z

(σ2
z+1)2−2α̃−1 , (σ2

z + 1)2−2(α̃+R0) − σ2
z(1 +

1
(σ2
z+1)2−2α̃−1 ) and (1+σ2

z)(1−2−2(α̃+R0)), respectively.
That ESI

GW(R0, R1 = 0, R2 = 0) is no larger than the
region in (29) is proved as follows. By the EPI:

h(Y2|U0) ≥ 1

2
log
(
22h(Z1|U0) + 22h(N2)

)
,

h(Y1|U0, U1, Z1) ≥ 1

2
log
(
22h(X|U0,U1,Z1) + 22h(N1)

)
.

(63)
Moreover, rate-constraint on R0 is equivalent to
R0 ≥ I(U0;X) + I(U1;X|U0, Z1)

= h(X)− h(X|U0) + h(X|U0, Z1)

− h(X|U0, U1, Z1)

= h(X)− I(X;Z1|U0)− h(X|U0, U1, Z1)

= h(X)− h(Z1|U0) + h(Z1|X,U0)

− h(X|U0, U1, Z1)

= h(X,Z1)− h(Z1|U0)− h(X|U0, U1, Z1), (64)
where the last equality follows from the Markov chain
U0 → X → Z1.

Defining now
α := h(X|U0, U1, Z1) and β := h(Z1|U0), (65)

above inequalities show that ESI
GW(R0, R1 = 0, R2 = 0)

is included in the set of all pairs (θ1, θ2) that satisfy

θ1 ≤ h(Y1|Z1)− 1

2
log
(
22α + 22h(N1)

)
, (66)

θ2 ≤ h(Y2)− 1

2
log
(
22β + 22h(N2)

)
, (67)

for some choice of parameters α ≤ h(X|Z1) and β ≤
h(Z1) so that

(α− h(X|Z1)) + (β − h(Z1)) ≥ −R0. (68)
Now, since the right-hand sides of (66) and (67) are
decreasing in the parameters α and β, these parameters
should be chosen so that the rate-constraint (68) is
satisfied with equality. In other words, for fixed α, the
optimal β is obtained by solving (68) under the equality
constraint. Defining α̃ := (α − h(X|Z1)) ≤ 0 and
expressing the optimal β in terms of α̃ then establishes
the desired inclusion of ESI

GW(R0, R1 = 0, R2 = 0) in
the set of pairs (θ1, θ2) given in (29).

APPENDIX D
PROOF OF THEOREM 4

We analyze the probability of error of the scheme
in Section III-A. It immediately follows that the type-
I error probabilities at the two receivers cannot exceed
ε from the way the Neyman-Pearson test is designed.
Now, we consider the type-II error probabilities. They
can be upper bounded using the Chernoff-Stein lemma.
Thus, for sufficiently large k:

− 1

n
log βi,n ≥

1

k
D
(
PÛki Y ki Zki |H=0

∥∥PÛki Y ki Zki |H=1

)
− µ

(a)
=

1

k
I
(
Ûki ;Y ki

∣∣Zki )− µ
≥ H

(
Yi
∣∣Zi)− 1

k
H
(
Y ki
∣∣Zki , Ûki )− µ,

where mutual informations and entropies have to be
computed according to the joint pmf PÛki Y ki Zki under
H = 0, and Equality (a) follows because under H = 1,
the joint distribution of the variables decomposes as
PÛki Zki

PY ki |Zki . As shown in detail in [14], for suffi-
ciently large values of k, the rate constraints in (32)–(39)
ensure that

Pr
[
(Ûki,b, Y

k
i,b, Z

k
i,b) ∈ T kµ (PUiYiZi)

]
> 1− µ. (69)

Following similar steps as the ones leading to (61),
one obtains:

H
(
Y ki
∣∣Ûki , Zki ) ≤ H(Yi|Zi, Ui) + log |Yi| · µ+

1

k
+ δ(µ), (70)

for a function δ(µ) that tends to 0 as µ → 0. Thus, we
get

− 1

n
log βi,n ≥ I(Ui;Yi|Zi)− log |Yi| · µ−

1

k
−δ(µ). (71)

Taking µ→ 0 and k →∞ proves the theorem.
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