D. N. Louis, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathol, vol.131, pp.803-820, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

K. Petrecca, M. Guiot, V. Panet-raymond, and L. Souhami, Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma, J. Neuro-Oncology, vol.111, pp.19-23, 2013.

E. R. Laws, Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project, J. Neurosurg, vol.99, pp.467-473, 2003.

M. Lacroix and S. A. Toms, Maximum Safe Resection of Glioblastoma Multiforme, J. Clin. Oncol, vol.32, pp.727-728, 2014.

Y. M. Li, D. Suki, K. Hess, and R. Sawaya, The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection?, J. Neurosurg, vol.124, pp.977-988, 2016.

A. Haj, Extent of resection in newly diagnosed glioblastoma: Impact of a specialized neuro-oncology care center, Brain Sci, vol.8, 2018.

G. N. Wu, J. M. Ford, and J. R. Alger, MRI measurement of the uptake and retention of motexafin gadolinium in glioblastoma multiforme and uninvolved normal human brain, J. Neuro-Oncology, vol.77, pp.95-103, 2006.

A. Nabavi, Serial Intraoperative Magnetic Resonance Imaging of Brain Shift, Neurosurgery, vol.48, pp.787-798, 2001.

P. L. Kubben, Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review, The Lancet Oncol, vol.12, issue.11, pp.70130-70139, 2011.

C. Senft, Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial, The Lancet Oncol, vol.12, issue.11, pp.70196-70202, 2011.

W. Stummer, Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue, Acta Neurochir, vol.140, pp.995-1000, 1998.

J. J. Bravo, Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors, Sci. Reports, vol.7, 2017.

C. G. Hadjipanayis, G. Widhalm, and W. Stummer, What is the surgical benefit of utilizing 5-Aminolevulinic acid for fluorescenceguided surgery of malignant gliomas?, Neurosurgery, vol.77, pp.663-673, 2015.

M. Jaber, Is visible aminolevulinic acid-induced fluorescence an independent biomarker for prognosis in histologically confirmed (World Health Organization 2016) low-grade gliomas?, Neurosurgery, vol.84, pp.1214-1224, 2019.

P. A. Valdés, Quantitative, spectrally-resolved intraoperative fluorescence imaging, Sci. Reports, vol.2, 2012.

P. A. Valdés, System and methods for wide-field quantitative fluorescence imaging during neurosurgery, Opt. Lett, vol.38, pp.2786-2788, 2013.

P. A. Valdés, Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery, J. Neurosurg, vol.123, pp.771-780, 2015.

T. Ando, Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification, Brain Tumor Pathol, vol.28, pp.43-51, 2011.

B. Montcel, L. Mahieu-williame, X. Armoiry, D. Meyronet, and J. Guyotat, Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas, Biomed. Opt. Express, vol.4, pp.548-558, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828529

M. Zanello, Multimodal optical analysis discriminates freshly extracted human sample of gliomas, metastases and meningiomas from their appropriate controls, Sci. Reports, vol.7, p.41724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744018

W. Dietel, C. Fritsch, R. H. Pottier, and R. Wendenburg, 5-aminolaevulinic-acid-induced formation of different porphyrins and their photomodifications, Lasers Med. Sci, vol.12, pp.226-236, 1997.

A. J. Figueredo and P. S. Wolf, Assortative pairing and life history strategy, Hum. Nat, vol.20, pp.317-330, 2009.

L. Alston, Spectral complexity of 5-ala induced ppix fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas, Biomed. Opt. Express, vol.10, pp.2478-2492, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02109250

C. K. Hope and S. M. Higham, Evaluating the effect of local pH on fluorescence emissions from oral bacteria of the genus Prevotella, J. Biomed. Opt, vol.21, p.84003, 2016.

B. Montcel, 5-ALA-induced PpIX fluorescence in gliomas resection: spectral complexity of the emission spectrum in the infiltrative compound, SPIE Proceedings, vol.8804, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850532

L. M. Alston, Interventional fluorescence spectroscopy: preliminary results to detect tumor margins during glioma resection with two fluorescence spectra of PpIX, SPIE Proc. 10411, 104110C, 2017.

G. Schwarz, Estimating the dimension of a model, The Annals Stat, vol.6, pp.461-464, 1978.

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, J. Royal Stat. Soc. Ser. B (Statistical Methodol.), vol.63, pp.411-423, 2001.

K. Pearson, On lines and planes of closest fit to systems of points in space. The London, Edinburgh, Dublin Philos. Mag, J. Sci, vol.2, pp.559-572, 1901.

R. B. Cattell, The scree test for the number of factors, Multivar. Behav. Res, vol.1, 1966.

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, Autofluorescence of living cells, J. microscopy, vol.191, pp.1-7, 1998.

T. Minamikawa, Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions, Sci. Reports, vol.6, 2016.

O. Warburg, F. Wind, and E. Negelein, The metabolism of tumors in the body, The J. Gen. Physiol, vol.8, pp.519-530, 1927.

L. Van-der-maaten and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res, vol.9, pp.2579-2605, 2008.

W. Dietel, R. Pottier, W. Pfister, P. Schleier, and K. Zinner, 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: A study of the biosynthesis of porphyrins by bacteria of the human digestive tract, J. Photochem. Photobiol. B: Biol, vol.86, pp.77-86, 2007.

L. Alston, D. Rousseau, M. Hébert, L. Mahieu-williame, and B. Montcel, Nonlinear relation between concentration and fluorescence emission of protoporphyrin IX in calibrated phantoms, J. Biomed. Opt, vol.23, p.97002, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890753

R. Bellman and R. Kalaba, Reduction of dimensionality, dynamic programming, and control processes, J. Basic Eng, vol.83, pp.82-84, 1961.

M. Steinbach, L. Ertöz, and V. Kumar, The challenges of clustering high dimensional data, New Directions in Statistical Physics: Econophysics, Bioinformatics, and Pattern Recognition, pp.273-309, 2004.

T. Jolliffe-ian and J. Cadima, Principal component analysis: a review and recent developments, Philos. Transactions Royal Soc. A: Math. Phys. Eng. Sci, vol.374, 2016.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol.1, pp.281-297, 1967.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. Ser. B (Methodological), vol.39, pp.1-22, 1977.

C. M. Bishop, Pattern Recognition And Machine Learning, 2006.