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Abstract: Recently, Creignou et al. (Theory Comput. Syst. 2017) have introduced the class1

DelayFPT into parameterised complexity theory in order to capture the notion of efficiently solvable2

parameterised enumeration problems. In this paper, we propose a framework for parameterised3

ordered enumeration and will show how to obtain enumeration algorithms running with an FPT delay4

in the context of general modification problems. We study these problems considering two different5

orders of solutions, namely, lexicographic order and order by size. Furthermore, we present two6

generic algorithmic strategies. The first one is based on the well-known principle of self-reducibility7

and is used in the context of lexicographic order. The second one shows that the existence of a8

neighbourhood structure among the solutions implies the existence of an algorithm running with9

FPT delay which outputs all solutions ordered non-decreasingly by their size.10

Keywords: Parameterised complexity; Enumeration; Bounded Search Tree; Parameterised11

Enumeration; Ordering12

1. Introduction13

The study of enumeration problems, that is, the task of generating all solutions of a given14

computational problem, finds a wealth of applications, e.g., in query answering in databases15

[1] and web search engines [2], bioinformatics [3] and computational linguistics [4]. From a16

complexity-theoretic viewpoint, the notion of DelayP, the class of problems whose instance solutions17

can be output in such a way that the delay between two outputs is bounded by a polynomial, is of18

high importance [5].19

For many enumeration problems often it is central that the output solutions obey a given ordering:20

in many applications it is interesting to get the solutions with the smallest “cost” at the beginning.21

Enumerating all solutions in non-decreasing order allows to determine not only the smallest solution,22

but also the kth-smallest one. Also with such a generating algorithm, it is possible to find the smallest23

solution satisfying additional constraints in checking at each generation step whether these constraints24

are satisfied. The disadvantage of this method is that it cannot guarantee fast results because a long25

prefix of candidates may not satisfy them. However, this technique has the advantage to be applicable26

to any additional decidable constraint (see, e.g., [6]). Let us illustrate this with some examples.27

The question for which classes of propositional CNF formulas enumerating all satisfying solutions28

is possible in DelayP, as defined above, was studied by Creignou and Hébrard [7]. In terms of the29
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well-known Schaefer framework for classification of Boolean constraint satisfaction problems, it was30

shown that for the classes of Horn, anti-Horn, affine or bijunctive formulas, such an algorithm exists.31

For any other classes of formulas, the existence of a DelayP-algorithm implies P = NP. It is interesting32

to note that the result hinges on the self-reducibility of the propositional satisfiability problem. Since33

variables are tried systematically first with an assignment 0 and then 1, it can be observed that the34

given enumeration algorithms output all satisfying assignments in lexicographic order.35

Creignou et al. [8] studied the enumeration of satisfying assignments for propositional formulas36

under a different order, namely in non-decreasing weight, and it was shown that under this new37

requirement, enumerating with polynomial delay is only possible for Horn formulas and width-238

affine formulas (i.e., affine formulas with at most 2 literals per clause). One of the main ingredients of39

these algorithms is the use of a priority queue to ensure enumeration in order (as is observed already40

by Johnson et al. [5]).41

While parameterised enumeration has already been considered before (see, e.g., the works42

of Fernau, Damaschke and Fomin et al. [9–11]), the notion of fixed-parameter tractable delay was43

introduced only recently in this context, leading to the definition of the complexity class DelayFPT [12].44

The “polynomial time” in the definition of DelayP here is simply replaced by a time-bound of the form45

p(n) · f (k), where n denotes the input length, k is the input parameter, p is an arbitrary polynomial, and46

f is a computable function. By this, the notion of efficiency in the context of the parameterised world,47

i.e., fixed-parameter tractability (FPT), has been combined with the enumeration framework. A number48

of problems from propositional logic were studied by Creignou et al. [12] and enumeration algorithms49

based on self-reducibility and on the technique of kernelisation were developed. In particular, it was50

shown that membership of an enumeration problem in DelayFPT can be characterised by a certain51

tailored form of kernelisability, very much as in the context of usual decision problems.52

As this area of parameterised enumeration is rather young and has received less attention, we53

want to further push the topic with this paper. Here, we study ordered enumeration in the context of54

parameterised complexity. First, we develop a novel formal framework for enumeration with arbitrary55

orders. Then we consider the special context of graph modification problems where we are interested in56

ordered enumeration for the two mostly studied orders, namely by lexicographic and by non-decreasing57

size (where the size is the number of modifications that have to be made). We use two algorithmic58

strategies, depending on the respective order as follows. Based on the principle of self-reducibility we59

obtain DelayFPT (and polynomial-space) enumeration algorithms for lexicographic order, as soon as60

the decision problem is efficiently solvable. Secondly, we present a DelayFPT enumeration algorithm61

for order by size as soon as a certain FPT-computable neighbourhood function on the solutions62

set exists (see Theorem 1). Notice that, the presented enumeration algorithms do not start from a63

minimal solution but solutions of bounded size. Extending to such solutions from minimal ones in the64

enumeration process is not generally trivial. To cope with the order, we use a priority queue that may65

require exponential space in the input length (as there exist potentially that many solutions).66

Eventually, we show that the observed principles and algorithmic strategies can be applied to67

general modification problems as well. It is a rather rare situation that a general algorithmic scheme68

is developed. Usually algorithms are devised on a very individual basis. We prove a wide scope69

of applicability of our method by presenting new FPT-delay ordered enumeration algorithms for70

a large variety of problems, such as cluster editing [13], triangulation [14], triangle deletion [15],71

closest-string [16], and backdoor sets [17]. Furthermore, there already exists work which adopts the72

introduced framework of Creignou et al. [12] in the area of conjunctive query enumeration [18], triangle73

enumeration [19], combinatorial optimisation [20], abstract argumentation [21], and global constraints74

[22].75

2. Preliminaries76

We start by defining parameterised enumeration problems with a specific ordering and their77

corresponding enumeration algorithms. Most definitions in this section transfer those of Johnson et al.78
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and Schmidt [5,23] from the context of enumeration and those of Creignou et al. [12] from the context79

of parameterised enumeration to the context of parameterised ordered enumeration.80

The studied orderings of enumeration problems in this paper are quasi-orders which will be81

defined in the following.82

Definition 1 (Quasi-order). Let R be a set and � a binary relation on R. Then � is a preorder (or quasi-order)83

if we have for all elements a, b, c ∈ R:84

• a � a, and85

• if a � b and b � c then a � c.86

We will write z 6� y whenever z � y is not true.87

Now, we proceed by introducing parameterised enumeration problems with ordering. Intuitively,88

the corresponding enumeration algorithm for such problems has to obey the given ordering, that is, it89

has to produce solutions without violating that ordering.90

Definition 2. A parameterised enumeration problem with ordering is a quadruple E = (I, κ, Sol,�)91

such that the following holds:92

• I is the set of instances.93

• κ : I → N is the parameterisation function; κ is required to be polynomial-time computable.94

• Sol is a function such that for all x ∈ I, Sol(x) is a finite set, the set of solutions of x. Further we write95

S =
⋃

x∈I Sol(x).96

• � is a quasi-order on S .97

Notice that this order on all solutions is only a lazy way of simultaneously giving an order for98

each instance. Furthermore, we will write an index E letter, e.g., IE, κE, to denote that we talk about99

instance set, parameterisation function, etc. of a given enumeration problem E. In the next step, we fix100

the notion of enumeration algorithms in our setting.101

Definition 3 (Enumeration Algorithm). Let E = (I, κ, Sol,�) be a parameterised enumeration problem102

with ordering. Then an algorithm A is an enumeration algorithm for E if the following holds:103

• For every x ∈ I, A(x) terminates after a finite number of steps.104

• For every x ∈ I, A(x) outputs exactly the elements of Sol(x) without duplicates.105

• For every x ∈ I and y, z ∈ Sol(x), if y � z and z 6� y then A(x) outputs solution y before solution z.106

Before we define complexity classes for parameterised enumeration, we need the notion of delay107

for enumeration algorithms.108

Definition 4 (Delay). Let E = (I, κ, Sol,�) be a parameterised enumeration problem with ordering and A be109

an enumeration algorithm for E. Let x ∈ I be an instance. The i-th delay ofA is the elapsed runtime with respect110

to |x| of A between outputting the i-th and (i + 1)-st solution in Sol(x). The 0-th delay is the precomputation111

time which is the elapsed runtime with respect to |x| of A from the start of the computation to the first output112

statement. Analogously, the n-th delay, for n = |Sol(x)|, is the postcomputation time which is the elapsed113

runtime with respect to |x| of A after the last output statement until A terminates. Then, the delay of A is the114

maximum over all 0 ≤ i ≤ n of the i-th delay of A.115

Now we are able to define two different complexity classes for parameterised enumeration116

following the notion of Creignou et al. [12].117

Definition 5. Let E = (I, κ, Sol,�) be a parameterised enumeration problem. We say E is FPT-enumerable if118

there exists an enumeration algorithm A, a computable function f : N→ N, and a polynomial p such that for119

every x ∈ I, A outputs all solutions of Sol(x) in time f (κ(x)) · p(|x|).120
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An enumeration algorithm A is a DelayFPT-algorithm if there exists a computable function f : N→ N,121

and a polynomial p such that for every x ∈ I, A outputs all solutions of Sol(x) with delay of at most122

f (κ(x)) · p(|x|).123

The class DelayFPT consists of all parameterised enumeration problems that admit a124

DelayFPT-enumeration algorithm.125

Some of our enumeration algorithms will make use of the concept of priority queues to126

enumerate all solutions in the correct order and to avoid duplicates. We will follow the approach127

of Johnson et al. [5]. For an instance x of a parameterised enumeration problem whose sizes of128

solutions are polynomially bounded in |x|, we use a priority queue Q to store a subset of Sol(x), of129

cardinality potentially exponential in |x|. The insert operation of Q requires O(|x| · log |Sol(x)|) time.130

The extract minimum operation requires O(|x| · log |Sol(x)|) time, too. It is important, however, that the131

computation of the order between two elements takes at most O(|x|) time. As pointed out by Johnson132

et al. the required queue can be implemented with the help of standard balanced tree schemes [24].133

2.1. Graph Modification Problems134

Graph modifications problems have been studied for a long time in computational complexity135

theory [25]. Already in the monograph by Garey and Johnson [26], among the graph-theoretic problems136

considered, many fall into this problem class. To the best of our knowledge, graph modification137

problems were studied in the context of parameterised complexity for the first time in [27].138

In this paper, we consider only undirected graphs. Let G denote the set of all undirected graphs.139

A graph property P ⊆ G is a set of graphs.140

Definition 6 (Graph Operations). Given a graph property P and an undirected graph G, we write G |= P if141

the graph G obeys the property P , that is, G ∈ P . A (graph) operation for G is either of the following:142

• removing a vertex: a function remv : G → G such that remv(G) is the graph obtained by removing the143

vertex v from G (if v is present; otherwise remv is the identity) and deleting all incident edges to v,144

• adding/removing an edge: a function add{u,v}, rem{u,v} : G → G such that add{u,v}(G), rem{u,v}(G)145

is the graph obtained by adding/removing the edge {u, v} to G if u and v are present in G; otherwise both146

functions are the identity147

Two operations o, o′ are dependent if148

• o = remv and o′ = rem{u,v} (one removes a vertex v and the other removes or adds an edge incident to149

v), or150

• o = rem{u,v} and o′ = add{u,v} (one removes an edge {u, v} and the other adds the same edge {u, v}151

again).152

A set of operations is consistent if it does not contain two dependent operations. Given such a consistent set of153

operations S, the graph obtained from G by applying the operations in S on G is denoted by S(G).154

Now, we turn towards the definition of solutions and will define minimality in terms of being155

inclusion-minimal.156

Definition 7 (Solutions). Given a graph property P , a graph G, k ∈ N, and a set of operations O, we say that157

S is a solution for (G, k, O) with respect to P if the following three properties hold:158

1. S ⊆ O is a consistent set of operations,159

2. |S| ≤ k, and160

3. S(G) |= P .161

A solution S is minimal if there is no solution S′ such that S′ ( S.162
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Cai [27] was interested in the following parameterised graph modification decision problem with163

respect to a given graph property P :164

Problem: MP
Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Question: Does there exist a solution for (G, k, O) with respect to P?

165

Some of the most important examples of graph modification problems are presented now. A chord166

in a graph G = (V, E) is an edge between two vertices of a cycle C in G which is not part of C. A given167

graph G = (V, E) is triangular (or chordal) if each of its induced cycles of 4 or more nodes has a chord.168

The problem TRIANGULATION then asks, given an undirected graph G and k ∈ N, whether there169

exists a set of at most k edges such that adding this set of edges to G makes it triangular. Yannakakis170

showed that this problem is NP-complete [14]. Kaplan et al. [28], and independently Cai [27] have171

shown that the parameterised problem is in FPT. For this problem, a solution is a set of edges which172

have to be added to the graph to make the graph triangular. Observe that, in this special case of the173

modification problem, the underlying property P , “to be triangular”, does not have a finite forbidden174

set characterisation (since cycles of any length are problematic). Nevertheless, we will see later, that175

one can efficiently enumerate all minimal solutions as well.176

A cluster is a graph such that all its connected components are cliques. In order to transform177

(or modify) a graph G we allow here only two kinds of operations: adding or removing an edge.178

CLUSTER-EDITING asks, given a graph G and a parameter k, whether there exists a consistent set of179

operations of cardinality at most k such that S(G) is cluster. It was shown by Shamir et al. that the180

problem is NP-complete [13].181

The problem TRIANGLE-DELETION asks whether a given graph can be transformed into a182

triangle-free graph by deletion of at most k vertices. Yannakakis has shown that the problem is183

NP-complete [15].184

Analogous problems can be defined for many other classes of graphs, e.g., line graphs, claw-free185

graphs, Helly circular-arc graphs, etc., see [29].186

Now, we turn towards the main focus of the paper. Here, we are interested in corresponding187

enumeration problems with ordering. In particular, we will focus on two well-known preorders,188

lexicographic ordering and ordering by size. Since our solutions are subsets of an ordered set of189

operations, they can be encoded as binary strings in which the ith bit from right indicates whether the190

ith operation is in the subset. We define the lexicographic ordering of solutions as the lexicographic191

ordering of these strings. Then, the size of a solution simply is its cardinality.192

Problem: ENUM-MLEX
P

Input: (G, k, O), G undirected graph, k ∈ N, O ordered set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in lexicographic order.

193

Problem: ENUM-MSIZE
P

Input: (G, k, O), G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Output: All solutions of (G, k, O) with respect to P in non-decreasing size.

194

If the context is clear, we omit the subscript P for the graph modification problem and simply195

writeM. Furthermore, we write SolM(x) for the function associating solutions to a given instance,196

and also SM for the set of all solutions ofM.197
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3. Enumeration of Graph Modification Problems with Ordering198

In this section, we study the two previously introduced parameterised enumeration problems199

with ordering (lexicographic and size ordering).200

3.1. Lexicographic Ordering201

We first prove that, for any graph property P , if the decision problemMP is in FPT then there is202

an efficient enumeration algorithm for ENUM-MLEX
P .203

Lemma 1. LetMP be a graph modification problem. IfMP is in FPT then ENUM-MLEX
P ∈ DelayFPT with204

polynomial space.205

Proof. Algorithm 1 enumerates all solutions of an instance of a given modification problemMP by206

the method of self-reducibility (it is an extension of the flash light search of Creignou and Hébrard [7]).207

The algorithm uses a function ExistsSol(G, k, O) that tests if the instance (G, k, O) of the modification208

problemMP has a solution. By assumption of the lemma,MP ∈ FPT so this function runts in fpt-time.209

We use calls to this function to avoid exploration of branches of the recursion tree that do not lead to210

any output. Also, we ensure that the solutions using op have to be consistent. This consistency check211

runs in polynomial time for graph operations. The rest yields a search tree of depth at most k. From212

this it follows that, for any instance of length n, the time beween the output of any two solutions is213

bounded by f (k) · p(n) for some polynomial p and a computable function f .214

Algorithm 1: Enumerate all solutions ofMP in lexicographic order

Input: (G, k, O): a graph G, k ∈ N, an ordered set of operations O = {o1, . . . , on}
Output: all consistent sets S ⊆ O s.t. |S| ≤ k, S(G) |= P in lexicographic order

1 if ExistsSol(G, k, O) then Generate(G, k, O, ∅);

Procedure Generate(G, k, O, S):
1 if O = ∅ or k = 0 then return S;
2 else
3 let op be the lexicographically last operation in O, O := O \ {op};
4 if ExistsSol(S(G), k, O) then Generate(S(G), k, O, S);
5 if S ∪ {op} is consistent and ExistsSol((S ∪ {op})(G), k− 1, O) then
6 Generate((S ∪ {op})(G), k− 1, O, S ∪ {op}).

Corollary 1. ENUM-TRIANGULATIONLEX ∈ DelayFPT with polynomial space.215

Proof. Kaplan et al. [28] and Cai [27] showed that TRIANGULATION ∈ FPT. Now, by applying216

Lemma 1, we get the result.217

Cai [27] identified a class of graph properties whose associated modification problems belong to218

FPT. Let us introduce some terminology.219

Definition 8. Given two graphs G = (V, E) and H = (V′, E′), we write H E G if H is an induced subgraph220

of G, i.e., V′ ⊆ V and E′ = E ∩ (V′ ×V′). Let F be a set of graphs and P be a graph property. We say that F221

is a forbidden set characterisation of P if for any graph G it holds that: G |= P iff for all H ∈ F , H 6E G.222

Among the problems presented in the previous section (see page 5), TRIANGLE-DELETION and223

CLUSTER-EDITING have a finite forbidden set characterisation, namely by triangles and paths of224

length two. In contrast to that, TRIANGULATION has a forbidden set characterisation which is infinite,225



Version August 28, 2019 submitted to Algorithms 7 of 16

since cycles of arbitrary length are problematic. Actually, for properties having a finite forbidden set226

characterisation, the corresponding modification problem is fixed-parameter tractable. Together with227

Lemma 1, this provides a positive result in terms of enumeration.228

Proposition 1 ([27]). If a property P has a finite forbidden set characterisation thenMP is in FPT.229

Corollary 2. For any graph modification problem, if P has a finite forbidden set characterisation then230

ENUM-MLEX
P ∈ DelayFPT with polynomial space.231

Proof. This result follows by combining Proposition 1 with Lemma 1.232

3.2. Size Ordering233

A common strategy in the enumeration context consists of defining a notion of a neighbourhood234

that allows to compute a new solution from a previous one with small amounts of computation235

time (see, e.g., the work of Avis and Fukuda [30]). We introduce the notion of a neighbourhood236

function, which, roughly speaking, generates some initial solutions from which all solutions can237

be produced. A priority queue then takes care of the ordering and avoids duplicates, which may238

require exponential space. For the graph modification problems of interest, we show that if the239

inclusion-minimal solutions can be generated in FPT, then such a neighbourhood function exists,240

accordingly providing a DelayFPT-enumeration algorithm. In the following, O (the “seed”) is a241

technical symbol that will be used to generate the initial solutions.242

Definition 9. Let M be a graph modification problem. A neighbourhood function for M is a (partial)243

function NM : IM × (SM ∪ {O})→ 2SM such that the following holds:244

1. For all x = (G, k, O) ∈ IM and S ∈ SolM(x) ∪ {O}, NM(x, S) is defined.245

2. For all x ∈ IM, NM(x,O) = ∅ if SolM(x) = ∅, and NM(x,O) is an arbitrary set of solutions246

otherwise.247

3. For all x ∈ IM and S ∈ SolM(x), if S′ ∈ NM(x, S) then |S| < |S′|.248

4. For all x ∈ IM and all S ∈ SolM(x), there exists p > 0 and S1, . . . , Sp ∈ SolM(x) such that (i)249

S1 ∈ NM(x,O), (ii) Si+1 ∈ NM(x, Si) for 1 ≤ i < p, and (iii) Sp = S.250

Furthermore, we say that NM is FPT-computable, when NM(x, S) is computable in time f (κ(x)) · poly(|x|)251

for any x ∈ IM and S ∈ SolM(x).252

As a result, a neighbourhood function for a problemM is a function that in a first phase computes253

from scratch an initial set of solutions (see Definition 9(2)). In many of our applications below,254

NM(x,O) will be the set of all minimal solutions for x. In a second phase these solutions are iteratively255

extended (see condition (3)), where condition (4) guarantees that we do not miss any solution, as we256

will see in the next theorem.257

Theorem 1. Let M be a graph modification problem. If M admits a neighbourhood function NM that is258

FPT-computable, then ENUM -MSIZE ∈ DelayFPT.259

Proof. Algorithm 2 outputs all solutions in DelayFPT-time. By the definition of the priority queue260

(recall in particular that insertion of an element is done only if the element is not yet present in the261

queue) and by the fact that all elements of NM((G, k, O), S) are of bigger size than S by Definition 9(3),262

it is easily seen that the solutions are output in the right order and that no solution is output twice.263

Besides, no solution is omitted. Indeed, given S ∈ SolM(G, k, O) and S1, . . . , Sp associated with S264

by Definition 9(4), we prove by induction that each Si is inserted in Q during the run of the algorithm:265

i = 1: This proceeds from line 2 of the algorithm.266
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Algorithm 2: DelayFPT algorithm for ENUM-M
Input : (G, k, O) : G is an undirected graph, k ∈ N, and O is a set of operations.

1 compute NM((G, k, O),O);
2 insert all elements of NM((G, k, O),O) into priority queue Q (ordered by size);
3 while Q is not empty do
4 extract the minimum solution S of Q and output it;
5 insert all elements of NM((G, k, O), S) into Q;

N((G, k, O),O)
priority
queue

output current
solution S

initial
solutions

extract
head

insert N((G, k, O), S)

Figure 1. Structure of Algorithm 2.

i > 1: The solution Si−1 is inserted in Q by induction hypothesis and hence all elements of267

NM((G, k, O), Si−1), including Si, are inserted in Q (line 5 of Algorithm 2). Consequently,268

each Si is inserted in Q and then output during the run. In particular, this is true for S = Sp.269

Finally, we claim that Algorithm 2 runs in DelayFPT-time. Indeed, the delay between the output270

of two consecutive solutions is bounded by the time required to compute a neighbourhood of the form271

NM((G, k, O),O) or NM((G, k, O), S) and to insert all its elements in the priority queue. This is in272

FPT due to the assumption on NM being FPT-computable and as there is only a single extraction and273

FPT-many insertion operations on the queue.274

A natural way to provide a neighbourhood function for a graph modification problemM is to275

consider the inclusion minimal solutions ofM. Let us denote by MIN-M the problem of enumerating276

all inclusion minimal solutions ofM.277

Theorem 2. LetM be a graph modification problem. If MIN-M is FPT-enumerable then ENUM -MSIZE ∈278

DelayFPT.279

Proof. Let A be an FPT-algorithm for MIN-M. Because of Theorem 1, it is sufficient to build an280

FPT-neighbourhood function forM. For an instance (G, k, O) ofM and for S ∈ SolM(G, k, O) ∪ {O},281

we define NM((G, k, O), S) as the result of Algorithm 3.282

Accordingly, the function NM clearly fulfils Conditions 2 and 3 of Definition 9. We prove by283

induction that it also satisfies Condition 4 (that is, each solution T of size k comes with a sequence284

T1, . . . , Tp = T such that T1 ∈ NM((G, k, O),O) and Ti+1 ∈ NM((G, k, O), Ti) for each i). If T is a285

minimal solution for (G, k, O), then T ∈ NM((G, k, O),O) and the expected sequence (Ti)1≤i≤p reduces286

to T1 = T. Otherwise, there exists an S ∈ SolM(G, k, O) and a non-empty set of transformations, say287

S′ ∪{t}, such that T = S∪S′ ∪{t} and there is no solution for G between S and S∪S′ ∪{t}. This entails288

that S′ is a minimal solution for
(
(S∪{t})(G), k− |S| − 1

)
and, as a consequence, T ∈ NM((G, k, O), S)289

(see lines 4–5 of Algorithm 3). The conclusion follows from the induction hypothesis that guarantees290

the existence of solutions S1, . . . , Sq such that S1 ∈ NM((G, k, O),O), Si+1 ∈ NM((G, k, O), Si) and291

Sq = S. The expected sequence T1, . . . , Tp for T is nothing but S1, . . . , Sq, T. To conclude, it remains to292

show that Algorithm 3 is FPT. This follows from the fact that A is an FPT-algorithm (Lines 1 and 4 of293

Algorithm 3).294

Corollary 3. ENUM-TRIANGULATIONSIZE ∈ DelayFPT.295
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Algorithm 3: Procedure for computing NM((G, k, O), S)
Input : (G, k, O), S: G is an undirected graph, k ∈ N, O and S are sets of operations.

1 if S = O then return A(G, k, O);
2 res := ∅;
3 forall the t ∈ O do
4 forall the S′ ∈ A((S ∪ {t})(G), k− |S| − 1, O \ {t}) do
5 if S ∪ S′ ∪ {t} is consistent then res := res∪ {S ∪ S′ ∪ {t}} ;

6 return res;

Proof. All size minimal k-triangulations can be output in time O(24k · |E|) for a given graph G and296

k ∈ N as shown by Kaplan et al. [28, Thm. 2.4]. This immediately yields the expected result via297

Theorem 2.298

Corollary 4. For any property P that has a finite forbidden set characterisation, the problem ENUM-MSIZE
P is299

in DelayFPT.300

Proof. The algorithm developed by Cai [27] for the decision problem is based on a bounded search301

tree, whose exhaustive examination provides all size minimal solutions in FPT. Theorem 2 yields the302

conclusion.303

Corollary 5. ENUM-CLUSTER-EDITINGSIZE and ENUM-TRIANGLE-DELETIONSIZE are in DelayFPT.304

Proof. Both problems have a finite forbidden set characterisation. For the cluster editing problem,305

paths of length two are the forbidden pattern, and, Regarding ENUM-TRIANGLE-DELETIONSIZE, the306

forbidden patterns are obviously just triangles. Finally, just apply Corollary 4.307

4. Generalisation to Modification Problems308

In this section, we will show how the algorithmic strategy that has been defined and formalised309

in the context of graph modification can be of use for many other problems, coming from various310

combinatorial frameworks.311

Definition 10 (General Operations). Let Q ⊆ Σ∗ be a language defined over an alphabet, and x ∈ Σ∗ be an312

input. A set of operations Ω(Q) = {ωn : Σ∗ → Σ∗ | n ∈ N } is an infinite set of operations on instances of313

Q. We say an operation ω is valid with respect to an instance x ∈ Q, if ω(x) ∈ Q. We write Ω/x as the set of314

possible (valid) operations on an instance x.315

Two operations ω, ω′ are dependent with respect to an instance x ∈ Q if316

• ω(ω′(x)) = x, or317

• ω(ω′(x)) = ω′(x) or ω(ω′(x)) = ω(x)318

A set of operations O ⊆ Ω/x is consistent with respect to x if it does not contain two dependent operations.319

For instance, the set Ω could contain operations that add edges or, in another case, flip bits. It320

highly is the subject to the repective language Q.321

Example 1. Let G ⊆ {0, 1}∗ be the language of all undirected graphs encoded by adjacency matrices. Then
Ω(G) is the set of all graph operations in the sense of Definition 6: removing vertices or edges, adding edges.
Note that Ω(G) contains all operations of the kind

remi : G → G, rem{i,j} : G → G, add{i,j} : G → G
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for all i, j ∈ N. Furthermore, let G = (V, E) ∈ {0, 1}∗ be a concrete input graph. As a result, Ω/G then is the322

restriction of Ω to those i, j ∈ N such that vi, vj ∈ V encode vertices in G.323

Similarly as defined in Subsection 2.1, a property is just a set. In the following context, it is a324

subset of a considered language Q. Intuitively, you may think, in the view of graph modification325

problems, of Q as G. Then a graph property P was just a subset of G.326

Definition 11 (General Solutions). Let Q ⊆ Σ∗ be a language defined over an alphabet, S ⊆ Ω/x be a finite
set of operations on x ∈ Q and P ⊆ Q be a property. We say S is a solution (of x) if there exists an ordering
of S = {ωi1 , . . . , ωik} such that ωi1(ωi2(· · ·ωik (x) · · · )) ∈ P for iµ ∈ N and 1 ≤ µ ≤ k. In such a case, we
also just write ωi1(ωi2(· · ·ωik (x) · · · )) |= P . If for every pair of permutations on k elements α, β we have that

ωα(1)(ωα(2)(· · ·ωα(k)(x) · · · )) = ωβ(1)(ωβ(2)(· · ·ωβ(k)(x) · · · )),

then we say S is consistent.327

If S is a consistent set of operations then we write S(x) for the application of the operations in S to x. In short,328

whenever S is a consistent solution we just write S(x) |= P . Similarly, we say an operation ω is consistent with329

a set S if and only if S ∪ {ω} is consistent. Furthermore, we denote by SQ :=
⋃

x∈Q{ S | S is a solution of x }330

the set of all solutions for every instance x ∈ Q. Also Sol(x) is the set of solutions for every instance x ∈ Q.331

Example 2. Continuing the previous example, if the property P is “to be a cluster” then a consistent solution332

S to a given graph just then is a sequence of removing vertices, adding and deleting of edges where333

• there is no edge (i, j) added or deleted such that vertex i or j is removed,334

• there is no edge (i, j) added and removed, and335

• S(G) |= P .336

Similarly, adding edge (i, j) together with removing vertex i or j or removing edge (i, j) is an inconsistent set of337

operations.338

Now we want to define the corresponding decision and enumeration tasks. On that account, let339

P be a property, Π = (Q, κ) be a parametrised problem with Q ⊆ Σ∗, and Ω be a set of operations.340

Problem: ΠP — parameterised modification problem Π regarding property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Question: Is there a consistent solution S ⊆ Ω/x such that S(x) |= P and |S| ≤ k?

341

Problem: ENUM-MIN-ΠP — parameterised minimum enumeration modification problem
regarding property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k.
Output: All minimal (w.r.t. some order) consistent solutions S ⊆ Ω/x with |S| ≤ k such

that S(x) |= P .

342

The enumeration modification problem where we want to output all possible sets of343

transformations on a given instance x (and not only the minimum ones) then is ENUM-ΠP .344

In the following, we show how the notion of neighbourhood functions can be generalised as well.345

This will in turn yield generalisations of the results for graph modification problems afterwards.346

Definition 12. Let Σ be an alphabet, P ⊆ Σ∗ be a property and ΠP be a parameterised modification problem347

over Σ. A neighbourhood function for ΠP is a (partial) function NΠP : Σ∗ ×
(
SΠP ∪ {O}

)
→ 2SΠP such348

that the following holds:349
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1. For all x ∈ Σ∗ and S ∈ SolΠP (x) ∪ {O}, NΠP (x, S) is defined.350

2. For all x ∈ Σ∗, NΠP (x,O) = ∅ if SolΠP (x) = ∅, and NΠP (x,O) is an arbitrary set of solutions351

otherwise.352

3. For all x ∈ Σ∗ and S ∈ SolΠP (x), if S′ ∈ NΠP (x, S) then |S| < |S′|.353

4. For all x ∈ Σ∗ and all S ∈ SolΠP (x), there exists p > 0 and S1, . . . , Sp ∈ SolΠP (x) such that (i)354

S1 ∈ NΠP (x,O), (ii) Si+1 ∈ NΠP (x, Si) for 1 ≤ i < p, and (iii) Sp = S.355

Furthermore, we say that NΠP is FPT-computable, when NΠP (x, S) is computable in time f (k) · poly(|x|) for356

any x ∈ Σ∗ and S ∈ SolΠP (x).357

As already announced before, we are able to state generalised versions of Theorems 1 and 2 which358

can be proven in a similar way. However, one has to replace the graph modification problems by359

general modification problems.360

Corollary 6. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem, and Ω be a set of361

operations such that Ω/x is finite for all x ∈ Σ∗. If ΠP admits a neighbourhood function that is FPT-computable362

then ENUM-ΠP ∈ DelayFPT and363

• polynomial space for lexicographic order, and364

• exponential space for size order.365

Corollary 7. Let P be a property, Π ⊆ Σ∗ ×N be a parameterised modification problem, and Ω be a set of366

operations such that Ω/x is finite for all x ∈ Σ∗. If ENUM-MIN-ΠP is FPT-enumerable and consistency of367

solutions can be checked in FPT then ENUM-ΠP ∈ DelayFPT and368

• polynomial space for lexicographic order, and369

• exponential space for size order.370

4.1. Closest String371

In the following, we consider a central NP-complete problem in coding theory [31]. Given a set of372

binary strings I, we want to find a string s whose maximum Hamming distance max{ dH(s, s′) | s′ ∈373

I } ≤ d for a d ∈ N, where dH(s, s′) is the Hamming distance between two strings.374

Definition 13 (Bit-flip operation). Given a string w = w1 · · ·wn with wi ∈ {0, 1}, n ∈ N, and a set375

S ⊆ {1, . . . , n}, S(w) denotes the string obtained from w in flipping the bits indicated by S, more formally376

S(w) := S(w1) · · · S(wn), where S(wi) = 1− wi if i ∈ S and S(wi) = wi otherwise.377

The corresponding parametrised version is the following.378

Problem: CLOSEST-STRING

Input: A sequence (s1, s2, ..., sk) of k strings over {0, 1} each of given length n ∈ N and
an integer d ∈ N..

Parameter: The integer d.
Question: Does there exist S ⊆ {1, . . . , n} such that dH(S(s1), si) ≤ d for all 1 ≤ i ≤ k?

379

Proposition 2 ([16]). CLOSEST-STRING is in FPT.380

Moreover, an exhaustive examination of a bounded search tree constructed from the idea of381

Gramm et al. [16, Fig. 1] allows to produce all minimal solutions of this problem in FPT. Accordingly,382

we get the following result for the corresponding enumeration problems.383

Theorem 3.384

• ENUM-CLOSEST-STRINGLEX ∈ DelayFPT with polynomial space.385
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• ENUM-CLOSEST-STRINGSIZE ∈ DelayFPT with exponential space.386

Proof. Ω is just the set of operations which flip the i-th bit of a string for every i ∈ N. Then use387

Proposition 2 and Corollary 7.388

4.2. Backdoors389

In this section, we will consider the concept of backdoors. Let C be a class of propositional390

formulas. Intuitively, a C-backdoor is a set of variables of a given propositional formula with the391

following property. Applying assignments over these variables to the formula always yields a formula392

in the class C. Of course, one aims for formula classes for which satisfiability can be decided efficiently.393

Informally speaking, with the parameter backdoor size of a formula one tries to describe a distance to394

tractability. This definition was first introduced by Golmes, Williams and Selman [17] to model short395

distances to efficient subclasses. Until today, backdoors gained copious attention in many different396

areas: abduction [32], answer set programming [33,34], argumentation [35], default logic [36], temporal397

logic [37], planning [38], and constraint satisfaction [39,40].398

Consider a formula φ in conjunctive normal form. Denote by φ[τ] for a partial truth assignment τ399

the result of removing all clauses from φ which contain a literal ` with τ(`) = 1 and removing literals400

` with τ(`) = 0 from the remaining clauses.401

Definition 14. Let C be a class of CNF-formulas and φ be a CNF-formula. A set V ⊆ Vars(φ) of variables of402

φ is a strong C-backdoor set of φ if for all truth assignments τ : V → {0, 1} we have that φ[τ] ∈ C.403

Definition 15 ([41,42]). Let C be a class of CNF-formulas and φ be a CNF-formula. A set V ⊆ Vars(φ) of404

variables of φ is a C-deletion backdoor set of φ if φ[V] is in C, where φ[V] denotes the formula obtained from405

φ in deleting in φ all occurrences of variables from V.406

Definition 16 (Weak Backdoor Sets). Let C be a class of CNF-formulas, and φ be a propositional CNF407

formula. A set V ⊆ Vars(φ) of variables from φ is a weak C-backdoor set of φ if there exists an assignment408

θ ∈ Θ(V) such that φ[θ] ∈ C and φ[θ] is satisfiable.409

Now let us consider the following enumeration problem.410

Problem: ENUM-WEAK-BACKDOORSET(C)

Input: A formula φ in CNF, k ∈ N.
Parameter: The integer k.
Output: The set of all weak C-backdoor sets of φ of size at most k.

411

Similarly, define ENUM-STRONG-BACKDOORSET(C) as the set of all strong C-backdoor sets of φ412

of size at most k. Observe that the backdoor set problems can be seen as modification problems where413

solutions are sequences of variable assignments. The target property then simply is the class of CNF414

formulas C.415

Notice that Creignou et al. [12, Thm. 4] have studied enumeration for exact strong416

HORN-backdoor sets and provided an algorithm running in DelayFPT, where HORN denotes the417

set of all Horn-formulas, that is, CNF-formulas whose clauses contain at most one positive literal.418

Definition 17 (Base Class, [43]). The class C is a base class if it can be recognised in P (that is, C ∈ P),419

satisfiability of its formulas is in P, and the class is closed under isomorphisms w.r.t. variable names. We say C is420

clause-defined if for every CNF-formula φ we have: φ ∈ C if and only if {C} ∈ C for all clauses C from φ.421

Proposition 3 ([43, Prop. 2]). For every clause-defined base class C, detection of weak C-backdoor sets is in422

FPT for input formulas in 3CNF.423
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In their proof, Gaspers and Szeider [43] describe how utilising a bounded search tree allows one424

to solve the detection of weak C-backdoors in FPT time. Interestingly to note, this technique results in425

obtaining all minimal solutions in FPT-time. This observation results in the following theorem.426

Theorem 4. For every clause-defined base class C and input formulas in 3-CNF427

• ENUM-WEAK-C-BACKDOORSLEX ∈ DelayFPT with polynomial space, and428

• ENUM-WEAK-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.429

Proof. The set of operations Ω then contains functions that replace a specific variable i ∈ N430

by a truth value t ∈ {0, 1}. A solution then encodes the chosen backdoor sets together with431

the required assignment. Then, Proposition 3 yields ENUM-MIN-WEAK-CBACKDOORSLEX, resp.,432

ENUM-MIN-WEAK-C-BACKDOORSSIZE being FPT-enumerable. As the consistency check for solutions433

is in polynomial time, applying Corollary 7 completes the proof.434

In the following result, we will examine the parametrised enumeration complexity of the task to435

enumerate all strong C-backdoor sets of a given 3CNF formula for some clause-defined base class C.436

Crucially, every strong backdoor set has to contain at least one variable from a clause that is not in C437

which relates to ’hitting all bad clauses’ like in the definition of deletion backdoors (see Def. 15).438

Theorem 5. For every clause-defined base class C and input formulas in 3-CNF:439

• ENUM-STRONG-C-BACKDOORSLEX ∈ DelayFPT with polynomial space, and440

• ENUM-STRONG-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.441

Proof. We show that for every clause-defined base class C and input formulas in 3-CNF, the problem442

MIN-STRONG-C-BACKDOORS is FPT-enumerable. Indeed, we only need to branch on the variables443

from a clause C /∈ C and remove the corresponding literals over the considered variable from φ. The444

size of the branching tree is at most 3k. As for base classes the satisfiability test is in P, this yields445

an FPT-algorithm. The neighbourhood function N(x, S) for x = (φ, k) is defined to be the set of the446

pairwise unions of all minimal strong C-backdoors of (φ[(S∪ {xi})], k− |S| − 1) together with S∪ {xi}447

for all variables xi 6∈ S. If Vars(φ) = {x1, . . . , xn}, then the operations are ωi : φ 7→ φ(0/xi) ∧ φ(1/xi).448

As applying the functions ωi happens only with respect to the backdoor size k, which is the parameter,449

the formula size increases by an exponential factor in the parameter only. This yields the preconditions450

for Corollary 7 constituting the proof.451

4.3. Weighted Satisfiability Problems452

Finally, we consider satisfiability questions for formulas in the Schaefer framework [44]. A453

constraint language Γ is a finite set of relations. A Γ-formula φ, is a conjunction of constraints using only454

relations from Γ and, consequently, is a quantifier-free first order formula.455

As opposed to the approach of Creignou et al. [12], who examined maximum satisfiability, we456

now focus on the problem MINONES-SAT(Γ) defined below.457

Definition 18 (Minimality). Given a propositional formula φ and an assignment θ over the variables in φ458

with θ |= φ, we say θ is minimal if there does not exist an assignment θ′ ⊂ θ and θ′ |= φ. The size |θ| of θ is459

the number of variables it sets to true.460

Formally, the problem of interest is defined with respect to any fixed constraint language Γ:461
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Problem: MIN-MINONES-SATSIZE(Γ)

Input: (φ, k), a Γ-formula φ, k ∈ N.
Parameter: The integer k.
Output: Generate all inclusion-minimal satisfying assignments θ of φ with |θ| ≤ k by

non-decreasing size.

462

Similarly, the problem ENUM-MINONES-SAT(Γ) asks for all satisfying assignments θ of φ with463

|θ| ≤ k. In this context, the operations in Ω are functions that replace the variable with index i ∈ N by464

true.465

Theorem 6. For all constraint languages Γ, we have: MIN-MINONES-SATSIZE(Γ) is FPT-enumerable and466

ENUM-MINONES-SATSIZE(Γ) ∈ DelayFPT with exponential space.467

Proof. For the first claim we can simply compute the minimal assignments by a straight forward468

branching algorithm: initially, begin with the all 0-assignment, then consider all unsatisfied clauses in469

turn and flip one of the occurring variables to true. The second claim follows by a direct application of470

Corollary 7.471

5. Conclusion472

We presented FPT-delay ordered enumeration algorithms for a large variety of problems, such473

as cluster editing, chordal completion, closest-string, and weak and strong backdoors. An important474

point of our paper is that we propose a general strategy for efficient enumeration. This is rather rare in475

the literature, where algorithms are usually devised individually for specific problems. In particular,476

our scheme yields DelayFPT algorithms for all graph modification problems that are characterised by477

a finite set of forbidden patterns.478

Initially, we focussed on graph-theoretic problems. Afterwards, the generic approach we479

presented, covers problems which are not only of a graph-theoretic nature. Here, we defined general480

modification problems, detached from graphs and constructed generic enumeration algorithms for481

arising problems in the world of strings, numbers, formulas, constraints, etc.482

As an observation we would like to mention that the DelayFPT algorithms presented in this paper483

require exponential space due to the inherent use of the priority queues to achieve ordered enumeration.484

An interesting question, continuing research of Meier [45], is whether there is a method which requires485

less space but uses a comparable delay between the output of solutions and still obeys the underlying486

order on solutions.487
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