Z. Abedin, S. Sen, and J. Field, Aldo-keto reductases protect lung adenocarcinoma cells from the acute toxicity of B[a]P-7,8-trans-dihydrodiol, Chem Res Toxicol, vol.25, pp.113-121, 2012.

W. M. Baird, L. A. Hooven, and B. Mahadevan, Carcinogenic polycyclic aromatic hydrocarbon-DNA adduct and mechanism of action, Environ Mol Mutagen, vol.45, pp.106-114, 2005.

D. R. Bickers, H. Mukhtar, T. Dutta-choudhury, C. L. Marcelo, and J. J. Voorhees, Aryl Hydrocarbon Hydroxylase, Epoxide Hydrolase, and Benzo[a]pyrene Metabolism in Human Epidermis: Comparative Studies in Normal Subjects and Patients with Psoriasis, J Invest Dermatol, vol.83, pp.51-56, 1984.

B. Binkova and R. J. Sram, The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts, Mutat Res, vol.547, pp.109-121, 2004.

P. Boffetta, N. Jourenkova, and P. Gustavsson, Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons, Cancer Causes Control, vol.8, pp.444-72, 1997.

E. Bourgart, R. Persoons, and M. Marques, Influence of exposure dose, complex mixture and ultraviolet radiation on skin absorption and bioactivation of polycyclic aromatic hydrocarbons ex vivo, Arch Toxicol, vol.93, pp.2165-2184, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02180840

J. Brinkmann, K. Stolpmann, and S. Trappe, Metabolically Competent Human Skin Models: Activation and Genotoxicity of Benzo a pyrene, Toxicol Sci, vol.131, pp.351-359, 2013.

C. Costa, S. Catania, D. Pasquale, R. Stancanelli, R. Scribano et al., Exposure of human skin to benzo[a]pyrene: role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation, Toxicology, vol.271, pp.83-89, 2010.

L. A. Courter, A. Luch, and T. Musafia-jeknic, The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo, Cancer Lett, vol.265, pp.135-182, 2008.

R. A. Crallan, E. Ingham, and M. N. Routledge, Wavelength dependent responses of primary human keratinocytes to combined treatment with benzo[a]pyrene and UV light, Mutagenesis, vol.20, pp.305-310, 2005.

D. A. Dankovic, C. W. Wright, R. C. Zangar, and D. L. Springer, Complex mixture effects on the dermal absorption of benzo a pyrene and other polycyclic aromatic-hydrocarbons from mouse skin, J Appl Toxicol, vol.9, pp.239-244, 1989.

N. Darwiche, A. Ryscavage, and R. Perez-lorenzo, Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion, Oncogene, vol.26, pp.6885-95, 2007.

F. Deschamps, M. Barouh, G. Deslee, A. Prevost, and J. Munck, Estimates of work-related cancers in workers exposed to carcinogens, Occup Med, vol.56, pp.204-209, 2006.

H. Dickel, O. Blome, B. Dickel, T. Bruckner, E. Stockfleth et al., Occupational syncarcinogenesis in the skin -combined effects of two carcinogens from the German occupational disease list, J Dtsch Dermatol Ges, vol.14, pp.1284-1296, 2016.

K. Forster, R. Preuss, B. Rossbach, T. Bruning, J. Angerer et al., 3-Hydroxybenzo[a]pyrene in the urine of workers with occupational exposure to polycyclic aromatic hydrocarbons in different industries, Occup Environ Med, vol.65, pp.224-233, 2008.

E. Fritsche, C. Schafer, and C. Calles, Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation, Proc Natl Acad Sci, vol.104, pp.8851-8857, 2007.

S. Fustinoni, L. Campo, and P. E. Cirla, Dermal exposure to polycyclic aromatic hydrocarbons in asphalt workers, Occup Environ Med, vol.67, pp.456-63, 2010.

M. Gajecka, M. Rydzanicz, R. Jaskula-sztul, M. Kujawski, W. Szyfter et al., CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma, Mutat Res, vol.574, pp.112-123, 2005.

C. Genies, A. Jullien, E. Lefebvre, M. Revol, A. Maitre et al., Inhibition of the formation of benzo[a]pyrene adducts to DNA in A549 lung cells exposed to mixtures of polycyclic aromatic hydrocarbons, Toxicol In Vitro, vol.35, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01869592

C. Genies, A. Maitre, E. Lefebvre, A. Jullien, M. Chopard-lallier et al., The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs, PLoS One, vol.8, p.78356, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01903135

R. Godschalk, J. U. Ostertag, E. Moonen, H. Neumann, J. Kleinjans et al., Aromatic DNA adducts in human white blood cells and skin after dermal application of coal tar, Cancer Epidemiology Biomarkers & Prevention, vol.7, pp.767-773, 1998.

Z. N. He, H. W. Duan, and B. A. Zhang, CpG site-specific RASSF1a hypermethylation is associated with occupational PAH exposure and genomic instability, Toxicology Research, vol.4, pp.848-857, 2015.

R. Herbert, M. Marcus, and M. S. Wolff, Detection of adducts of deoxyribonucleic acid in white blood cells of roofers by 32P-postlabeling. Relationship of adduct levels to measures of exposure to polycyclic aromatic hydrocarbons, Scand J Work Environ Health, vol.16, pp.135-178, 1990.

N. B. Hopf, P. Spring, and N. Hirt-burri, Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S), 2018.

, Toxicol Lett, vol.287, pp.122-130

J. J. Hu and Y. X. Yu, Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review, Chemosphere, vol.226, pp.259-272, 2019.

N. C. Hughes and D. H. Phillips, 32P-postlabelling analysis of the covalent binding of benzo[ghi]perylene to DNA in vivo and in vitro, Carcinogenesis, vol.14, pp.127-160, 1993.

, Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol.92, 2010.

C. Jacques, E. Perdu, and H. Duplan, Disposition and biotransformation of 14C-Benzo(a)pyrene in a pig ear skin model: ex vivo and in vitro approaches, Toxicol Lett, vol.199, pp.22-33, 2010.

I. Jarvis, C. Bergvall, M. Bottai, R. Westerholm, U. Stenius et al., Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter, Toxicol Appl Pharmacol, vol.266, pp.408-418, 2013.

I. Jarvis, K. Dreij, A. Mattsson, B. Jernstrom, and U. Stenius, Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment, Toxicology, vol.321, pp.27-39, 2014.

A. M. Jeffrey, I. B. Weinstein, and K. W. Jennette, Structures of benzo(a)pyrene--nucleic acid adducts formed in human and bovine bronchial explants, Nature, vol.269, pp.348-50, 1977.

Y. L. Liu, X. J. Li, and B. Zhang, CYP1A1 methylation mediates the effect of smoking and occupational polycyclic aromatic hydrocarbons co-exposure on oxidative DNA damage among Chinese coke-oven workers, Environmental Health, vol.18, 2019.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-410, 2001.

C. Marie, A. Maître, and T. Douki, Influence of the metabolic properties of human cells on the kinetic of formation of the major benzo[a]pyrene DNA adducts, J Appl Toxicol, vol.28, pp.579-590, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02054586

Y. E. Marin, M. Seiberg, and C. B. Lin, Aldo-keto reductase 1C subfamily genes in skin are UVinducible: possible role in keratinocytes survival, Exp Dermatol, vol.18, pp.611-619, 2009.

C. P. Marston, C. Pereira, and J. Ferguson, Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis, Carcinogenesis, vol.22, pp.1077-86, 2001.

R. J. Mauthe, V. M. Cook, S. L. Coffing, and W. M. Baird, Exposure of mammalian cell cultures to benzo[a]pyrene and light results in oxidative DNA damage as measured by 8-hydroxydeoxyguanosine formation, Carcinogenesis, vol.16, pp.133-140, 1995.

R. P. Moody, B. Nadeau, and I. Chu, In-Vivo and in-Vitro Dermal Absorption of Benzo[a]Pyrene in Rat, Guinea-Pig, Human and Tissue-Cultured Skin, J Dermatol Sci, vol.9, pp.48-58, 1995.

S. Nair, V. D. Kekatpure, and B. L. Judson, UVR exposure sensitizes keratinocytes to DNA adduct formation, Cancer Prev Res, vol.2, pp.895-902, 2009.

K. M. Ng, I. Chu, R. L. Bronaugh, C. A. Franklin, and D. A. Somers, Percutaneous absorption and metabolism of pyrene, benzo[a]pyrene, and di(2-ethylhexyl) phthalate: comparison of in vitro and in vivo results in the hairless guinea pig, Toxicol Appl Pharmacol, vol.115, pp.216-223, 1992.

I. C. Nisbet and P. K. Lagoy, Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regul Toxicol Pharmacol, vol.16, pp.290-300, 1992.

A. F. Olshan, M. C. Weissler, M. A. Watson, and D. A. Bell, GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer, Cancer Epidemiology Biomarkers & Prevention, vol.9, pp.185-191, 2000.

N. T. Palackal, S. H. Lee, R. G. Harvey, I. A. Blair, and T. M. Penning, Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells, J Biol Chem, vol.277, pp.24799-24808, 2002.

J. H. Park, D. Mangal, A. J. Frey, R. G. Harvey, I. A. Blair et al., Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione, J Biol Chem, vol.284, pp.29725-29734, 2009.

K. Peltonen and A. Dipple, Polycyclic aromatic hydrocarbons: chemistry of DNA adduct formation, J Occup Environ Med, vol.37, pp.52-58, 1995.

E. Pukkala, J. I. Martinsen, and E. Weiderpass, Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries, Occup Environ Med, vol.71, pp.398-404, 2014.

D. S. Pushparajah and C. Ioannides, Antagonistic and synergistic interactions during the binding of binary mixtures of polycyclic aromatic hydrocarbons to the aryl hydrocarbon receptor, Toxicol In Vitro, vol.50, pp.54-61, 2018.

A. Rannug and E. Fritsche, The aryl hydrocarbon receptor and light, Biol Chem, vol.387, pp.1149-1157, 2006.

J. E. Rice, T. J. Hosted, J. Lavoie, and E. J. , Fluoranthene and pyrene enhance benzo[a]pyrene--DNA adduct formation in vivo in mouse skin, Cancer Lett, vol.24, pp.327-360, 1984.

J. Roelofzen, K. Aben, P. Van-der-valk, J. Van-houtum, P. Van-de-kerkhof et al., Coal tar in dermatology, Journal of Dermatological Treatment, vol.18, pp.329-334, 2007.

J. Roelofzen, P. Van-der-valk, and R. Godschalk, DNA adducts in skin biopsies and 1-hydroxypyrene in urine of psoriasis patients and healthy volunteers following treatment with coal tar, Toxicol Lett, vol.213, pp.39-44, 2012.

S. Safe, Polychlorinated-biphenyls (PCBS), dibenzo-para-dioxins (PCDDS), dibenzofurans (PCDFS), and related-compounds -environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFS), Crit Rev Toxicol, vol.21, pp.51-88, 1990.

R. Saladi, L. Austin, and D. Gao, The combination of benzo[a]pyrene and ultraviolet A causes an in vivo time-related accumulation of DNA damage in mouse skin, Photochem Photobiol, vol.77, pp.413-422, 2003.

P. Sartorelli, A. Cenni, G. Matteucci, L. Montomoli, M. T. Novelli et al., Dermal exposure assessment of polycyclic aromatic hydrocarbons: in vitro percutaneous penetration from lubricating oil, Int Arch Occ Env Hea, vol.72, pp.528-532, 1999.

A. Scarselli, M. Corfiati, D. Marzio, D. Marinaccio, A. Iavicoli et al., Gender differences in occupational exposure to carcinogens among Italian workers, BMC Public Health, vol.18, p.413, 2018.

O. Sevastyanova, B. Binkova, and J. Topinka, In vitro genotoxicity of PAH mixtures and organic extract from urban air particles: Part II: Human cell lines, Mutat Res, vol.620, pp.123-134, 2007.

T. Shimada and Y. Fujii-kuriyama, Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1, Cancer Sci, vol.95, pp.1-6, 2004.

T. Shimada, N. Murayama, K. Okada, Y. Funae, H. Yamazaki et al., Different mechanisms for inhibition of human cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic inhibitors, Chem Res Toxicol, vol.20, pp.489-96, 2007.

T. Shimada, N. Murayama, and K. Tanaka, Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity, Chem Res Toxicol, vol.21, pp.2313-2323, 2008.

L. K. Siddens, A. Larkin, and S. K. Krueger, Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse, Toxicol Appl Pharmacol, vol.264, pp.377-386, 2012.

T. A. Smolarek, W. M. Baird, E. P. Fisher, and J. Digiovanni, Benzo(e)pyrene-induced alterations in the binding of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene to DNA in Sencar mouse epidermis, Cancer Res, vol.47, pp.3701-3707, 1987.

J. Soeur, J. P. Belaidi, and C. Chollet, Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1, J Dermatol Sci, vol.86, pp.162-169, 2017.

Y. Staal, D. S. Pushparajah, and M. Van-herwijnen, Interactions between polycyclic aromatic hydrocarbons in binary mixtures: Effects on gene expression and DNA adduct formation in precision-cut rat liver slices, Mutagenesis, vol.23, pp.491-499, 2008.

Y. Staal, M. Van-herwijnen, and D. S. Pushparajah, Modulation of gene expression and DNA-adduct formation in precision-cut liver slices exposed to polycyclic aromatic hydrocarbons of different carcinogenic potency, Mutagenesis, vol.22, pp.55-62, 2007.

H. I. Swanson, Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective, Chem Biol Interact, vol.149, pp.69-79, 2004.

, Level of BPDE-N 2 -dGuo in the DNA of skin explants incubated with PAH for either 24 or 48 hours, and co-exposed to SSL (CTP: raw coal tar pitch extract; CTP-S: synthetic reconstitution of the PAH fraction of CTP). The latter was applied either 1 hour before or 24 hours after the beginning of the PAH treatment. The value in brackets is the decrease in adduct formation, namely the ratio between the data obtained in the absence and the presence of an irradiation step. Results were obtained from three donors studied in triplicate and represent the mean ± standard error, vol.3

. Ctp-s-,