N

N

General or Idiosyncratic Item Effects: What Is the
Good Target for Models?

Pierre Courrieu, Arnaud Rey

» To cite this version:

Pierre Courrieu, Arnaud Rey. General or Idiosyncratic Item Effects: What Is the Good Target for
Models?. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015, 41 (5),
pp.1597-1601. 10.1037/xIm0000062 . hal-02438489

HAL Id: hal-02438489
https://hal.science/hal-02438489
Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02438489
https://hal.archives-ouvertes.fr

General or idiosyncratic item effects: what is the good target for models?

Pierre COURRIEU and Arnaud REY

CNRS, Aix Marseille Université, LPC UMR 7290, 13331, Marseille, France

Final publication of this manuscript:
Courrieu, P., & Rey, A. (2015). General or idiosyncratic item effects: what is the good

target for models? Journal of Experimental Psychology: Learning, Memory, and Cognition,
41(5), 1597-1601. DOI: 10.1037 /xIm0000062

Running head: Idiosyncratic item effects

Corresponding author:

Pierre Courrieu,

Laboratoire de Psychologie Cognitive (LPC),
UMR 7290, CNRS-Université d'Aix-Marseille,
Centre Saint-Charles, 3 place Victor Hugo,

13331 Marseille Cedex 3, France

E-mail: pierre.courrieu@univ-amu.fr



Abstract. Recently, Adelman et al. (2013) formulated severe criticisms about
approaches based on averaging item RTs over participants, and associated methods for
estimating the amount of item variance that models should try to account for. Their
main argument is that item effects include stable idiosyncratic effects. In this
commentary, we provide supplementary empirical evidences that this assertion is
indeed valid. However, the actual implications of this result are not those defended in
Adelman et al. (2013), where there seems to be a confusion between the precision of
measures and the nature of target effects. Indeed, basic statistical considerations show
that any arbitrary data precision level can be achieved in all cases using an appropriate
number of observations per item, while general and idiosyncratic item effects are both

targets of interest for modelling, but in different questionings.
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Introduction

Recently, Adelman, Marquis, Sabatos-DeVito, and Estes (2013) proposed to
model individual participants performance in the word-naming task. Their paper
includes severe criticisms about approaches based on averaging item RTs over
participants, while using an intraclass correlation coefficient (ICC) for estimating the
amount of item-related variance that models should try to account for (Courrieu, Brand-
D'Abrescia, Peereman, Spieler, and Rey, 2011; Courrieu and Rey, 2011; Rey, Courrieu,
Schmidt-Weigand, and Jacobs, 2009). The Adelman et al. (2013) criticisms are based on
the idea that there is no general item effect in the RTs, but that item effects depend on
each possible participant in a way that is not random, and that does not reduce to a
simple linear transformation of a general item effect. As a consequence, "analysis
techniques that treat individual differences as noise will necessarily overestimate the
amount of noise contributing to the mean RT for each word. This overestimation of
noise results in an underestimation of the variability that a model should explain,

leading to an overestimation of the success of models" (Adelman et al., 2013, p. 1038).

The authors present empirical evidences supporting their idea, based in
particular on Kristof's (1973) method. However, the idea that there is no general item
effect must not be considered in a radical sense since, averaging RTs over participants in
word naming tasks, one commonly observes that the percentage of available systematic
item variance is greater than 80% (Courrieu et al., 2011; Rey and Courrieu, 2010; Rey,
Courrieu, Madec, and Grainger, 2013). This would not be possible if there was no

general item effect common to all participants. Thus, the correct modelling of an



individual participant item effect probably involves a general item effect plus an
independent idiosyncratic item effect. The question is now: what is the relative
contribution of these two item effects, on the average? If the general item effect
contributes for 80%, it is clear that the idiosyncratic item effect contributes for less than
20% of the observable item variance, since in addition, there is always a non-zero

contribution of the random noise.

Adelman et al. (2013) consider, as an example, the case where the idiosyncratic
effect accounts for 10%, and the noise accounts for the remaining 10% of the observable
item variance. They argue that in this case "an analysis that treats individual differences
as noise would only set a target of 80% variance explained for a model, when, in fact,
90% could in fact be explained" (p. 1038). However, by accounting for idiosyncrasies,
we would generate an idiosyncratic model accounting for the behaviour of an
undetermined number of participants having similar idiosyncrasies, but the
generalization power of this model for other randomly chosen participants would
probably be quite poor. So, the first question is in fact: what do we plan to do with the
model? The answer obviously depends on the context and the goal of the investigation,
and there is no universal better choice. If we plan to model general mechanisms
governing the reading process, then we must randomly sample a number of participants
in the general population and take their average item effect as the target, which ensures
the best generalization power of the model for this population. Now, if one plans to
model individual performance in the perspective of clinical or educational applications
then an idiosyncratic modelling is certainly preferable. However, even in this case, one

will probably need references concerning the general population, and references



concerning particular subpopulations (e.g. dyslexics), which requires a general targeting

in the considered populations.

Moreover, as Adelman et al. (2013) noted, the state of the art in modelling the
reading performance is far from satisfactory. So, one can understand that many
researchers prefer trying to identify general mechanisms governing the reading process,
while not complicating the picture with a profusion of idiosyncrasies in a first time. It is
in this perspective that a number of very large-scale behavioural databases have
recently been developed, freely providing to researchers behavioural item level data for
thousands words in various languages (ELP: Balota, Yap, Cortese, Hutchison, Kessler,
Loftis, Neely, Nelson, Simpson, & Treiman, 2007; FLP: Ferrand, New, Brysbaert,
Keuleers, Bonin, Méot, Augustinova, & Pallier, 2010; DLP: Keuleers, Diependaele, &
Brysbaert, 2010; BLP: Keuleers, Lacey, Rastle, & Brysbaert, 2012). In these databases,
the general modelling perspective is clearly favoured, and the item effects are averaged
over randomly sampled participants. Since disqualifying these databases, and associated
methodologies, could have detrimental consequences on a number of research activities
and on the selection of publications, we think that it is necessary to carefully examine

the critical arguments of Adelman et al. (2013), and their actual implications.

The remaining of the paper is organized as follows. First, we describe the
statistical problem in a simple formal way, in order to clarify the critical argument of
Adelman et al. (2013). After this, we test the validity of this argument on two
independent data sets, and we estimate the contribution of idiosyncratic item effects.
Finally, we discuss the actual implications of the results, showing that Adelman et al.

(2013) draw an abusive conclusion from a valid argument.



Formalising the critical hypothesis of Adelman et al. (2013)

In order to be sure of what we are speaking about, let us rapidly describe the

problem in a simple formal way.

Let x be an experimental measure, such as a word naming time, for instance. The
usual approach assumes that x can be decomposed as follows, for the item i and the

participantj :

Xij = 1L+ o5 + Bi+ &, (1)

where p is the grand mean of x in the data population, a is the participant effect, 8 is the
item effect, and € is a random effect. The three effects are assumed to be independent,
with zero means, and variances var(a), var(f), and var(e), respectively. In these
conditions, one can easily show (see Courrieu et al., 2011) that if one averages x over n
independent participants, then the proportion of systematic item variance in the

resulting variable has the expected value:

p =var(B)/(var(B) + var(e)/n).  (2)

Setting q=var(3) /var(g), the expression (2) can also conveniently be written as:

p =nq/(nq+1). (29



One can note that (2) is the expected value of a well-known intraclass correlation
coefficient (ICC), namely the "ICC(2,k)" in the nomenclature of McGraw and Wong
(1996). The simplest way of estimating this coefficient, from an x-data table of m items
by n participants, consists in replacing the variances in (2) by their estimates (mean
squares) as provided by a standard ANOVA (Courrieu et al.,, 2011). There are other ways
of estimating the ICC, such as a permutation resampling Monte Carlo method (Rey et al.,
2009), and the various methods for estimating Cronbach's alpha coefficient (Cronbach,

1951), which is theoretically equal to (2).

Assume that a theoretical model provided predictions having a squared
correlation r?, or a squared determination coefficient R%, with the observed item means.
Then the ratio r2/ICC, or R2/ICC, is the proportion of systematic item variance accounted
for. Moreover, one can show that if the model predictions are not correlated with the
data noise, then the ratio r2/ICC, or R%/ICC, is the true squared correlation of the model
predictions with the underlying item effect 3, and it does not depend on the data

precision (Courrieu and Rey, 2011).

Now, Adelman et al. (2013) pointed out that the assumption that there is a
general item effect B is wrong. Their idea is that the item effect depends on the
considered participant in a way that is not random, and that does not reduce to a simple

linear transformation of 8. Accordingly, we must modify (1) as:

Xij =+ o+ By + Ay, (3)



where the item effect depends now on the participant j, and A is a noise variable of zero
mean and variance var(A), that accounts for the random fluctuations of the performance

as they can be observed in repeated measures.

We can think of i in (1) as the expected value of Bij's of all possible participants. Setting

Sij = Bij - Bi, one can write (3) as:

Xij =+ o+ Bi + 85+ 4. (3)

Identifying the terms of (3') with those of (1), we can conclude that:

gj=8j+Aj. (4)

An important consequence of this is that var(¢) = var(§) + var(A) > var(A).

Moreover, denoting the item effect variable of participant j as 3.;, we have also:

Bi=B+3dj, (4)

with the consequence that var(.;)) = var(p) + var(d.;) > var(p), if 8.; is independent of f.
Assume that one performed two experiments, the first one using n1 randomly

selected participants, and each participant providing one measure per item, while the

second experiment used only one participant providing n2 repeated measures per item.

Assuming also that n1=n2=n, we obtain:

pl = var(B)/(var(B) + var(e)/n) < p2 =var(B,)/(var(Bs) + var(A)/n). (5)



This formally expresses the idea that "analysis techniques that treat individual
differences as noise will necessarily overestimate the amount of noise contributing to
the mean RT for each word. This overestimation of noise results in an underestimation
of the variability that a model should explain, leading to an overestimation of the success
of models" (Adelman et al., 2013, p. 1038). Fortunately, the prediction (5) can easily be

tested on available data, what we do hereafter.

Tests on empirical data

The data sets

In this section, we test the prediction (5) on two independent data sets. The first
data set is the one from Adelman et al. (2013)1, which consists of word naming times
collected for 2820 English words, 4 participants, and 50 repeated measures for each
word and each participant. The second data set consists of word naming times collected
for 200 French words, 48 participants, and 4 repeated measures for each word and each
participant. This last set of RTs was collected during an experiment primarily devoted to

the study of ERPs, which was presented in Rey, Madec, Grainger, and Courrieu (2013).

Analysis method

In the first data set (Adelman et al., 2013), we have n1=4 and n2=50, while in the

second data set (Rey et al, 2013), we have n1=48 and n2=4. Thus, the condition

nl=n2=n is met in none of these data sets, however, given an ICC for n' measures per
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item, we can easily compute the corresponding q ratio, and then compute the
corresponding ICC for n measures per item using (2'). The q ratio for a given ICC r with

n' measures per item is simply given by:

g=r/n'(1-r). (6)

Using this q value in the formula (2'), we can extrapolate the corresponding ICC
for any arbitrary n. For the first data set, we choose n=n2=50, directly obtaining 4 ICCs
(one for each participant), and extrapolating 50 ICCs with n'=4 (one for each repetition).
This gives a set of 4 ICCs with a random repetition factor, and a comparable set of 50
ICCs with a random participant factor. For the second data set, we choose n=n1=48,
directly obtaining 4 ICCs (one for each repetition), and extrapolating 48 ICCs with n'=4
(one for each participant). This gives a set of 4 ICCs with a random participant factor,

and a comparable set of 48 ICCs with a random repetition factor.

Before computing the ICCs of the various data tables, we transformed the raw
RTs into their z-scores (Faust, Balota, Spieler, and Ferraro, 1999), for each participant
and each repetition separately. This transformation allows correcting possible

heteroscedasticities and frequently improves the ICC values.

Finally, for each data set, we compare the ICCs obtained with a random
participant factor to those obtained with a random repetition factor, using a
distribution-free Wilcoxon-Mann-Whitney test. This test being based on ranks, its result
is independent of the particular choice of n for the ICCs, and it would be exactly the same

using the q ratios as well.



11

Results

Adelman et al. (2013) data set

The ICCs obtained for the 4 participants (D, A, M, and U) with a random repetition
factor, and the ICC 99% confidence intervals are: ICC= 0.8744 [0.8655, 0.8829] for D,
[CC=0.9150 [0.9090, 0.9208] for A, ICC=0.6927 [0.6710, 0.7136] for M, and ICC= 0.8743
[0.8654, 0.8829] for U, with an average ICC of 0.8391 (sd= 0.0995). It is interesting to
compare these values with the "target from hypothetical correct model" estimated using
a very different method in Adelman et al. (2013). These estimates appear in their Table
5 (p. 1045), second row, and they are: 87.96% for D, 91.63% for A, 69.81% for M, and

87.17% for U. Clearly, these estimates are almost equal to the corresponding ICCs.

The 50 extrapolated ICCs with a random participant factor ranged between
0.6803-0.8613, with an average ICC of 0.7940 (sd= 0.0373). This is 0.0451 lower than
the average ICC with a random repetition factor, and the Wilcoxon-Mann-Whitney test

gave U(4, 50)= 161, p < 0.0482. Thus this result clearly supports the hypothesis (5).

Rey et al. (2013) data set

The ICCs obtained for the 4 presentations of the words, with a random
participant factor, and the ICC 99% confidence intervals are: ICC= 0.8372 [0.7914,
0.8765] for the first presentation, ICC= 0.7897 [0.7306, 0.8405] for the second

presentation, ICC= 0.8112 [0.7581, 0.8567] for the third presentation, and ICC= 0.7972
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[0.7402, 0.8462] for the fourth presentation, with an average ICC of 0.8088 (sd=

0.0209).

The 48 extrapolated ICCs with a random repetition factor ranged between
0.6560-0.9602, with an average ICC of 0.8645 (sd= 0.0777). This is 0.0557 greater than
the average ICC with a random participant factor, and the Wilcoxon-Mann-Whitney test

gave U(4, 48)= 51, p < 0.0298. Thus, at new, the result clearly supports the hypothesis

(5).

In summary, we observed in the two tested data sets significant contributions of
idiosyncratic item effects, corresponding to about 4.51%-5.57% of the item variance, on

the average.

What can we conclude from these results?

At this point, there is a great temptation of agreeing with the opinion of Adelman
et al. (2013), since their main argument is visibly valid, and this is per se an important
result. What have we missed? May be just some trivial consideration such as the fact that

the arithmetic mean is an unbiased, consistent estimator of its parent parameter.

In fact, in their reasoning, Adelman et al. (2013) implicitly set n1=n2, which is a
prerequisite for validating the inequality (5). However, relaxing this implicit hypothesis,
one obtains a quite different picture. Consider the data set from Adelman et al. (2013),

let q1 be the q ratio with a random participant factor, and let q2 be the q ratio with a
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random repetition factor. For simplicity, we use the average ICCs (with n=50) in the

following estimation. Using (6), we obtain:

ql=0.7940 / (50x(1-0.7940))= 0.0771, and q2= 0.8391/ (50x(1-0.8391))= 0.1043.

After (2'), one can obtain equal ICC values if nlxql=n2xq2, that is if
nl=n2x(q2/ql). In the present case, we have (q2/q1)=1.353. Thus we can achieve the
same precision in item means by collecting 35.3% more measures per item when these
measures are provided by distinct participants than when these are repeated measures

provided by a unique participant.

Similarly, considering the data set from Rey et al. (2013), we have q1=0.0881,
q2=0.1329, and (q2/q1)= 1.5082. Thus we can achieve the same precision in item means
by collecting 50.82% more measures per item when these measures are provided by
distinct participants than when these are repeated measures provided by a unique

participant.

Collecting about 35%-51% more measures per item in the multi-participant case
than in the one-participant case is not an insuperable task. For instance, one can achieve
the same precision in item means by collecting 50 repeated measures per item from a
unique participant, or by collecting one measure per item from each of about 68-76

participants, which is probably easier to do when the number of items is very large.

The above observation contrasts with the definitive assertion of Adelman et al.

(2013): "analysis techniques that treat individual differences as noise will necessarily
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overestimate the amount of noise contributing to the mean RT for each word". This is

simply not the case if one collects an appropriate number of observations per item.

In fact, as a consequence of the consistency of the average estimator, one can
always achieve any arbitrary precision level in item means by choosing an appropriate
n, provided that g>0. Assume that we have an estimate of g, and we want an ICC equal to

r. Then it suffices to choose n using the simple formula:

n=r/q(l-r). (7)

Now, assume that in an experiment using n1 randomly sampled participants as
the random factor, and in another experiment using n2 repetitions as the random factor
(with one participant j), we choose n1 and n2 in order to obtain ICCs very close to 1 in
both cases. Then the item means converge towards noise free values in both cases,
however, these values are those of the general population p + 8 in the first case, while
the target (1 + o) + (B +9;j) includes idiosyncrasies in the second case. What is the most
appropriate target for a theoretical model? An idiosyncratic model will provide more
detailed predictions for the participant j, but it will probably provide quite poor
generalization for other participants. At the contrary, a general model will miss a
number of idiosyncratic details, however, its generalization power will be better for new
randomly sampled participants. So, the target to be preferred completely depends on

the goal of the investigation, and a priori there is no goal better than other ones.

Returning to the criticism of Adelman et al. (2013), we observe that it is based on

a confusion between the item mean precision, which determines the proportion of
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systematic item variance, and the nature of the target effects (general or idiosyncratic),
which just depends on the object of the research. Accounting for a maximum part of the
item variance in the general population is not the same thing as accounting for a
maximum part of the item variance for an individual. However, in both cases, one can
always make the available proportion of systematic item variance arbitrarily large,

simply by using an appropriate number of observations per item.

Conclusion

At the end of this commentary, we can confirm the finding of Adelman et al.
(2013) that there are stable idiosyncratic item effects in word naming times. This was
verified on two independent data sets, in two different languages (English an French).
When one averages RTs over participants, the variance corresponding to the
idiosyncrasies is transferred into the random variance, which contributes to lower the
proportion of systematic item variance in comparison to the case where one averages

the same number of repeated measures from the same participant.

However, contrarily to the assertion of Adelman et al. (2013) that the above
transfer of variance necessarily leads to an underestimation of the proportion of
systematic item variance, simple statistical considerations show that the same precision
can be achieved in both collective or individual item means provided that one uses
appropriate numbers of observations per item. Experimental results indicate that one
must use about 35-51% more observations per item in the collective case than in the
individual case, in order to compensate the increase of the random variance in the

collective case.
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Finally, one must remember that the target item effect is not the same in the
collective case than in the individual case, precisely because there are stable
idiosyncratic effects. In the collective case, one obtains a general item effect that can
suitably generalize to other random samples of participants from the same population.
However, in the individual case, one obtains an idiosyncratic item effect that can
possibly generalize to an undetermined number of potential participants having similar
idiosyncrasies, but that probably poorly generalizes to the general population. It is clear
that the better choice completely depends on the goal of the study, but there is in no way
matter to disqualify general psychology approaches that average observations over

randomly sampled participants, in order to account for general mechanisms of reading.
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