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Abstract

The probability distributions that statistical methods use to represent uncertainty fail to

capture all of the uncertainty that may be relevant to decision making. A simple way to adjust

probability distributions for the uncertainty not represented in their models is to average the

distributions with a uniform distribution or another distribution of maximum uncertainty. A

decision theoretic framework leads to averaging the distributions by taking the means of the

logit transforms of the probabilities. That method does not prevent convergence to the truth, as

does taking the means of the probabilities themselves. The mean-logit approach to moderating

distributions is applied to natural language processing performed by a deep neural network.

Keywords: big data; data science; deep learning; deep neural network; discounting probability

distributions; maximum entropy; unknown loss function



1 Introduction

Statistical models do not incorporate all uncertainty into their probability distributions. As Cox

(2001) noted, statistical models only provide lower bounds on uncertainty about a quantity of in-

terest. That is clear in frequentist inference, for each hypothesis test or confidence interval relies

on assumptions that remain assumptions even when they pass statistical tests, for the absence of

evidence against those assumptions is not evidence for their truth. Bayesian models also under-

represent uncertainty since they could only incorporate all the uncertainty about the models if all

reasonable models, their priors, and a hyperprior over the models could be specified with certainty.

Even machine learning algorithms fail to capture all uncertainty. For example, neural networks

that minimize log loss in effect provide nonparametric maximum likelihood estimates of sampling

distributions. They fail to fully quantify the uncertainty in classifications or other predictions, for

estimated sampling distributions, as opposed to posterior predictive distributions, neglect the error

in the estimates.

Many decision makers are aware that the statistical models they use do not fully represent all

uncertainty. They may manage the unrepresented uncertainty by either ignoring it, by hoping it

does not negatively impact decisions, or by compensating for it. Such compensation can be informal,

without guidance from theory, or formal, with guidance from theory (e.g., Augustin et al., 2014,

§4.7).

A simple way to implement the last approach is to adjust reported probabilities for unrepresented

uncertainty by combining the reported distribution with a uniform distribution or other distribution

of maximum uncertainty, as described in Section 2. A method of distribution combination suitable

for that purpose is then proposed in Section 3. Using the framework of the previous two sections,

Section 4 specifies the proposed method of moderating a probability distribution to the extent of

unrepresented uncertainty and then records its convergence to the truth as the sample size increases.

That method is illustrated in Section 5 by using it with a deep neural network to classify movie

reviews into two categories: reviews expressing a positive sentiment and those expressing a negative

sentiment.
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2 Moderating a distribution by combining it with another

distribution

Let P0 denote the raw distribution, a probability distribution that may require moderation in order

to incorporate unrepresented uncertainty. Let P1 denote the moderating distribution, a probability

distribution that would be used for decision making in the extreme case of maximal uncertainty. If

uncertainty is measured as entropy and if the domain is finite, then P1 could be the probability mass

function than maximizes the entropy subject to some constraints. In the absence of constraints,

that P1 would be the uniform distribution.

Finally, let Pµ denote a µ-moderated probability distribution, where µ ∈ [0, 1] is the degree of

moderation. A method of distribution moderation is a function that transforms P into Pµ such that

Pµ weakly converges to P0 as µ → 0 and to P1 as µ → 1.

Example 1. In classification problems, machine learning algorithms assign a probability to each

of K categories y (1) , . . . , y (K ). Let P0 (y (k) | (x , y) , x t ) denote the reported probability that the

category yt of the independent variable x t is y (k), where (x , y) is (x 1, y1) , . . . , (xn , yn), a training

data set of n pairs of independent variables and their categories, and where each t = n +1, n +2, . . .

is the index of a data pair beyond the training data. Let P1 (y (k)) = 1/K for k = 1, . . . ,K .

The µ-moderated probability distribution is Pµ (•| (x , y) , x t), a combination of the probability

mass functions P0 (•| (x , y) , x t ) and P1 (•). Kittler et al. (1998) reviews many methods of averaging

classification probabilities over machine learning algorithms. A simple method of combination uses

the weighted arithmetic mean (Cooke, 1991), which in this case is

Pµ,arithmetic (y (k) | (x , y) , x t) = (1− µ)P0 (y (k) | (x , y) , x t ) + µP1 (y (k)) . (1)

Cooke (1991) had considered the weighted arithmetic mean as a way to combine probability distri-

butions elicited from experts. N

Example 2. Let P stand for either {P0,P1} or the set of mixture distributions of P0 and P1:

P = {(1− w)P0 +wP1 : w ∈ [0, 1]} . (2)

With either of those cases of P as a set of distributions generated by P0 and P1, methods of

transforming a set of distributions to a single distributions lead to ways to combine P0 with P1 in

order to moderate P0.
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Several such methods are reviewed by Troffaes (2007) and, in a Bayesian setting, by Bickel

(2015). Weighted versions of those methods could be used to transform P to Pµ by making the

weights depend on µ in such a way that Pµ satisfies the above definition of a µ-moderated probability

distribution.

The simplest version would simply equate the weight w in equation (2) with µ, yielding Pµ =

(1− µ)P0 +µP1. In the special case of supervised classification, that is equivalent to equation (1).

An alternative version is described in Section 4. N

3 Combining distributions into an adversarial distribution

As noted in Example 2, there are many methods for transforming a set P of distributions to a single

distribution. The transformation method proposed in this section will be applied to that example

in Section 4.

The method is based on the following method of combining the probabilities of that y (k) is

in some sense the true hypothesis among K mutually exclusive hypotheses y (1) , . . . , y (K ). For

example, y (k) could represent the hypothesis that a parameter of interest is in an interval of possible

parameter values or the hypothesis that the next dependent variable is equal to category y (k). The

set of possible probabilities to be combined is denoted by P (y (k)).

Consider future decision makers who must decide whether or not to accept y (k) on the basis of

its combined probability. A scale-free, reciprocal invariant distribution of the loss functions of the

decision makers leads to

logit−1
(
(1− ck) logitP (y (k)) + ck logitP (y (k))

)

as the adversarial probability, the minimax optimal value of the probability to report to the decision

makers (Bickel, 2019), where P = inf P (y (k)), P (y (k)) = supP (y (k)),

logitP (y) = log
P (y)

1− P (y)
,

and ck ∈ [0, 1] is the degree of caution toward accepting y (k).

Consider instead the k-independent degree c (P0) ∈ [0, 1] of caution toward any probability

specified by P0 rather than by P1, where P0 and P1 are any two distributions defined on the

same domain. If P (y (k)) = {P0 (y (k)) ,P1 (y (k))}, then the corresponding c (P0)-adversarial
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probability is

P̃c(P0) (y (k)) = logit−1 ((1− c (P0)) logitP0 (y (k)) + c (P1) logitP1 (y (k))) . (3)

That method of combining two probabilities suggests considering P̃c(P0) as the combination

of P0 and P1, where P̃c(P0) is the function such that P̃c(P0) (y (k)) satisfies equation (3) for all

k = 1, . . . ,K . Since P̃c(P0) need not satisfy
∑K

k=1 P̃c(P0) (y (k)) = 1, P̃c(P0) can only be a guess at

the combined probability distribution, which is denoted by Pc(P0).

If P̃c(P0) is the initial measure to be updated by a genuine probability distribution Pc(P0) that

satisfies intuitively reasonable regularity, locality, transitivity, and weak scaling conditions, then

Pc(P0) maximizes entropy in the sense that it minimizes the entropy relative to P̃c(P0), that is,

Pc(P0) = arg inf
P ′:

∑
K
k=1 P′(y(k))=1

K∑

k=1

P ′ (y (k)) log

(
P ′ (y (k))

P̃c(P0) (y (k))

)
, (4)

according to Csiszár (2008, §4), which summarizes Csiszár (1991). The distribution Pc(P0) satisfying

those conditions is called the c (P0)-adversarial distribution.

Lemma 1. The c (P0)-adversarial distribution Pc(P0) satisfies

Pc(P0) (y (k)) =
P̃c(P0) (y (k))

∑K

k′=1 P̃c(P0) (y (k′))
(5)

for all k = 1, . . . ,K.

Proof. By definition, Pc(P0) satisfies equation (4), the solution of which is equation (5), as proved

using Lagrange multipliers (Jaynes, 2003, §12.3).

4 The adversarial distribution as the moderated distribution

4.1 The degree of caution as the degree of moderation

This section equates the degree µ to which a raw distribution P0 is moderated (§2) with the degree

c (P0) of caution toward P0 as opposed to P1 (§3). In short, µ = c (P0). That P1 would be the

distribution for decision making under complete uncertainty, as in Section 2.

Then, for any c (P0) between 0 and 1, a c (P0)-adversarial distribution is a special case of a

c (P0)-moderated distribution. That is formally stated with µ in place of c (P0):
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Theorem 1. Consider any µ ∈ [0, 1]. Every µ-adversarial distribution Pµ is a µ-moderated distri-

bution and satisfies

Pµ (y (k)) =
logit−1 ((1− µ) logitP0 (y (k)) + µ logitP1 (y (k)))

∑K

k′=1 logit
−1 ((1− µ) logitP0 (y (k′)) + µ logitP1 (y (k′)))

(6)

for all k = 1, . . . ,K.

Proof. Plugging µ into the c (P0) of equation (3) yields P̃µ. By Lemma 1, every µ-adversarial

distribution Pµ satisfies equation (5) with µ substituted for c (P0). The substitution of P̃µ then

yields equation (6). Since Pµ weakly converges to P0 as µ → 0 and to P1 as µ → 1, Pµ is a

µ-moderated distribution.

Example 3. In the notation of Example 1, equation (6) is

Pµ (y (k) | (x , y) , x t ) =
logit−1 ((1− µ) logitP0 (y (k) | (x , y) , x t) + µ logitP1 (y (k)))

∑K

k′=1 logit
−1 ((1− µ) logitP0 (y (k′) | (x , y) , x t ) + µ logitP1 (y (k′)))

(7)

rather than equation (1). That expression will be illustrated in Section 5. N

4.2 Convergence as the sample size increases

As the sample size n increases, the µ-adversarial distribution converges to the truth, provided that

the raw distribution does so, except in degenerate cases such as µ = 1:

Corollary 1. Suppose there is a category y such that limn→∞ P0 (y) = 1 with probability 1 and

0 < P1 (y) < 1. Then limn→∞ Pµ (y) = 1 with probability 1 for any µ < 1, where Pµ is a

µ-adversarial distribution.

Proof. Assume 0 ≤ µ < 1. Equation (6) holds by Theorem 1. Thus, since limn→∞ P0 (y) = 1 with

probability 1,

lim
n→∞

Pµ (y) ∝ logit−1
(
(1− µ) logit lim

n→∞
P0 (y) + µ logitP1 (y)

)

= logit−1

(
(1− µ) lim

n→∞
log

P0 (y)

1− P0 (y)
+ µ log

P1 (y)

1− P1 (y)

)

= logit−1

(
(1− µ) lim

n→∞
log

P0 (y)

1− P0 (y)

)

=

(
1 + e

−(1−µ) limn→∞ log
P0(y)

1−P0(y)

)−1

= (1 + 0)
−1

= 1

with probability 1. Since limn→∞ P0 (y) = 1 with probability 1 and
∑K

k=1 P0 (y (k)) = 1, we have
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limn→∞ P0 (y (k)) = 0 with probability 1 for all k = 1, . . . ,K such that y (k) 6= y . Therefore, for

each of those values of k, equation (6) gives

lim
n→∞

Pµ (y (k)) ∝ logit−1
(
(1− µ) logit lim

n→∞
P0 (y (k)) + µ logitP1 (y (k))

)

= logit−1

(
(1− µ) lim

n→∞
log

P0 (y (k))

1− P0 (y (k))
+ µ log

P1 (y (k))

1− P1 (y (k))

)

= logit−1

(
(1− µ) lim

n→∞
log

P0 (y (k))

1− P0 (y (k))

)
= logit−1

(
− (1− µ) lim

n→∞
log

1− P0 (y (k))

P0 (y (k))

)

=

(
1 + e

+(1−µ) limn→∞ log
1−P0(y(k))

P0(y(k))

)−1

= 0

with probability 1. Those two expressions of proportionality together yield the claim since
∑K

k=1 Pµ (y (k)) =

1 according to equation (6).

That property is highly desirable since it means moderating the raw distribution does not

interfere with its convergence as the sample size increases. Intuitively, moderation becomes less

necessary as the sample becomes larger. That property is not shared by all moderated distributions;

for example, it does not hold for the arithmetic mean of equation (1).

4.3 Decision-theoretic moderation of distributions

For a parameter θ of interest, consider a null hypothesis y (1) such as H 0 : θ = 0 and a mutually

exclusive alternative hypothesis y (2) such as H 1 : θ 6= 0. The ∆-discounted posterior probability of

y (1) is

P̃
⋆

∆ (y (1)) =

(
1 +

(
P (y (1))

P (y (2))

)−∆
)−1

=

(
1 +

(
P (y (1))

1− P (y (1))

)−∆
)−1

, (8)

which is derived from a decision-theoretic method of moderating posterior distributions, where

∆ ≥ 1 is the degree of discounting (Bickel, 2017, Example 1). The case of no discounting (∆ = 1)

then results in P̃
⋆

∆ (y (1)) = P (y (1)). Analogously, the ∆-discounted posterior probability of y (2)

is

P̃
⋆

∆ (y (2)) =

(
1 +

(
P (y (2))

P (y (1))

)−∆
)−1

=

(
1 +

(
P (y (2))

1− P (y (2))

)−∆
)−1

. (9)

The maximum entropy argument of Section 3 leads to normalizing the discounted probabilities:

for k = 1 and k = 2,

P⋆
∆ (y (k)) =

P̃
⋆

∆ (y (k))

P̃
⋆

∆ (y (1)) + P̃
⋆

∆ (y (2))
. (10)

The probability mass function P⋆
∆ on {y (1) , y (2)} that satisfies equation (10) is called the ∆-

discounted posterior distribution. It is a special case of an adversarial distribution:
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Corollary 2. The ∆-discounted posterior distribution is the (1− 1/∆)-adversarial distribution

based on the moderating distribution given by P1 (y (1)) = P1 (y (2)) = 1/2.

Proof. By Theorem 1, the (1− 1/∆)-adversarial distribution based on the moderating distribution

given by P1 (y (1)) = P1 (y (2)) = 1/2 satisfies

P1− 1
∆
(y (k)) =

logit−1
(

1
∆ logitP0 (y (k)) +

(
1− 1

∆

)
logit 1

2

)
∑2

k′=1 logit
−1
(
1
∆ logitP0 (y (k′)) +

(
1− 1

∆

)
logit 1

2

)

∝ logit−1

(
1

∆
log

P (y (k))

1− P (y (k))
+

(
1−

1

∆

)
log

1
2

1− 1
2

)

= logit−1

(
log

(
P (y (k))

1− P (y (k))

) 1
∆

)

=

(
1 + e− log( P(y(k))

1−P(y(k)) )
1
∆

)−1

=

(
1 + elog(

P(y(k))
1−P(y(k)) )

−
1
∆

)−1

=

(
1 +

(
P (y (k))

1− P (y (k))

)− 1
∆

)−1

= P̃
⋆

∆ (y (k))

for k = 1, 2, with the last step following from equations (8) and (9). Since P1− 1
∆
(y (1)) +

P1− 1
∆
(y (2)) = 1 is required by equation (6), it follows that

P1− 1
∆
(y (k)) =

P̃
⋆

∆ (y (k))

P̃
⋆

∆ (y (1)) + P̃
⋆

∆ (y (2))
= P⋆

∆ (y (k))

for k = 1, 2, with the last step resulting from equation (10).

That result says that in the cases considered, the degrees of moderation and discounting are

related by µ = 1− 1/∆ and ∆ = 1/ (1− µ).

5 Sentiment analysis improved by distribution moderation

5.1 Natural language processing by deep learning

Sentiment analysis is an approach to computational linguistics that automatically extracts opinions

from natural language communications between humans. Sentiment analysis has been applied not

only to the social sciences and business analytics but also to healthcare (Satapathy et al., 2018).

For example, it can be used to infer the quality of care from patients’ descriptions of them on

social media (Greaves et al., 2013) and can improve the determination of patients’ moods from

their participation in online networks (Beaunoyer et al., 2017).
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Figure 1: Two string-sentiment pairs randomly selected from the training set.

The hierarchical structure of natural language suggests the use of deep learning via neural

networks that have multiple hidden layers (Satapathy et al., 2018, §1.6). Such deep neural networks

have outperformed other forms of machine learning for problems in natural language processing

(Hasan and Farri, 2019). For instance, Lee et al. (2017) used a deep neural network to detect

adverse drug events from social media such as Twitter feeds.

5.2 A sentiment analysis based on a deep neural network

A simple form of sentiment analysis classifies text from a product review as expressing a positive

or negative sentiment (Satapathy et al., 2018, §1.5). That problem has been addressed by applying

deep neural networks to movie reviews (Radford et al., 2017). The description of that research in

Wolfram Research, Inc. (2019b) is summarized in the rest of this subsection.

The sentiment of each movie review is either negative or positive. The training set and non-

training set respectively consist of 7462 and 3200 string-sentiment pairs, with each pair consisting

of a string of text from a movie review and the sentiment corresponding to the string (Figure 1).

The value of a certain output state of a 27-layer neural network trained on that training set is

called a sentiment score since it quantifies the sentiment of each string. Replacing the strings in the

training set and in the non-training set with their sentiment scores results in a sentiment training

set and a sentiment non-training set, as seen in Figure 2. A naïve Bayes classifier trained on the

sentiment training set is surprisingly accurate according to the sentiment non-training set.

5.3 Application of adversarial distributions

The sentiment training set and the sentiment non-training set of Section 5.2 illustrate the method

proposed in Section 4. In the notation of Examples (1) and 3, the sentiment scores are the inde-

pendent variables and the possible sentiments are y (1) = negative and y (2) = positive.
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Figure 2: The two score-sentiment pairs from the sentiment training set that correspond to the two
pairs displayed in Figure 1.

The pairs in the sentiment non-training set were assigned randomly to a validation set and a

test set of equal size. Thus, the sentiment training set, the validation set, and the test set consist

of 7462, 1600, and 1600 score-sentiment pairs, respectively. To assess the effect of the sample size

on performance, the sentiment training set and validation set were randomly permuted and then

reduced to their first 7462φ and 1600φ pairs for each φ ∈ {0.01, 0.04, 0.16, 1}. After the random

permutations, the score-sentiment pair of the ith movie review is (x i, yi), where x i is the sentiment

score from the review of a movie and yi ∈ {negative, positive} is the sentiment of the movie for

i = 1, 2, . . . , 7462 + 3200.

Let n denote the number of text-sentiment pairs in (x , y), the data set actually used in training a

classifier at a value of φ. Depending on the classifier, either (x , y) is the sentiment training set of n =

7462φ text-sentiment pairs, in which case the validation set of 1600φ pairs could be used to optimize

the degree µ of moderation, or (x , y) is the union of the sentiment training set and the validation

set, in which case no data are available for optimizing µ. T = {7462 + 1601, . . . , 7462 + 3200} is the

set of indices of the test set
((

x7462+1601, y7462+1601

)
, . . . ,

(
x7462+3200, y7462+3200

))
, and |T | = 1600

is the size of the test set, which is not affected by the value of φ.

Each classifier considered below is identified by a value of the variable written as clssfr. The

test-set mean log-loss and Brier-loss of each classifier are

ℓ̂log (•, clssfr) =
1

|T |

∑

t∈T

− logPclssfr (y t | (x , y) , x t ) ;

ℓ̂Brier (•, clssfr) =
1

|T |

∑

t∈T

2∑

k=1

(Pclssfr (y (k) | (x , y) , x t )− χt (k))
2

=
1

|T |

∑

t∈T

(Pclssfr (negative | (x , y) , x t)− χt (1))
2
+ (Pclssfr (positive | (x , y) , x t )− χt (2))

2
,

where χt (k) = 1 if y (k) = y t and χt (k) = 0 if y (k) 6= y t . Then χt (1) indicates whether
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y t = negative, and χt (2) whether y t = positive. Both loss functions penalize reporting high

probabilities of incorrect sentiments.

The mean losses of these classifiers are compared:

1. The data-independent classifier yielding the moderating distribution P1 that assigns 50%

probability to each sentiment: P1 (negative) = P1 (positive) = 1/2. That uniform classifier is

abbreviated as clssfr = "U".

2. Four classifiers using the Classify function in Wolfram Research, Inc. (2019a):

(a) The default logistic regression yields P
logistic
0 (•| (x , y) , x t) as the raw distribution P0 (•| (x , y) , x t ).

The classifier with the training set as (x , y), the data set actually used for training, is

denoted by clssfr = "tL", whereas the classifier instead trained on the union of the

sentiment training set and validation set as (x , y) is denoted by clssfr = "tvL".

(b) The default support vector machine yields PSVM
0 (•| (x , y) , x t ) as the raw distribution

P0 (•| (x , y) , x t). There are two SVM classifiers, named according to the convention used

for logistic: clssfr = "tS" and clssfr = "tvS".

3. The eight combined classifiers yielding these versions of the µ-moderated distributions P
logistic
µ,arithmetic (•| (x , y) , x t ),

P logistic
µ (•| (x , y) , x t ), PSVM

µ,arithmetic (•| (x , y) , x t ), and PSVM
µ (•| (x , y) , x t ), formed by combin-

ing either P
logistic
0 (•| (x , y) , x t ) or PSVM

0 (•| (x , y) , x t ) with P1, either according to equation

(1) for P
logistic
µ,arithmetic and PSVM

µ,arithmetic (“a” for arithmetic) or according to equation (7) for

P logistic
µ and PSVM

µ (“o” for odds-based), and with these degrees of moderation:

(a) In the simpler case, µ = 1/2 with training logistic or SVM on the union of the sentiment

training set and the validation set. In that way, "U" is combined with "tvL" or "tvS".

The resulting classifier’s name begins with “1/2” and ends with “L” or “S”.

(b) Alternatively, µ, denoted in this case by µ̂, is fit to minimize the mean log or Brier loss

of the validation set after training logistic or SVM on the training data alone. In other

words, "U" is combined with "tL" or "tS". The resulting classifier’s name begins with

“∗” and ends with “L” or “S”.

Each of those 13 classifiers is specified by a value for clssfr according to the above symbols in

quotation marks, as follows:

clssfr ∈ {"U", "tL", "tvL", "tS", "tvS", "*oL", "½oL", "*oS", "½oS", "½aL", "*aL", "*aS", "½aS"} .

(11)
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The test-set mean losses of the best-performing classifiers are displayed in Figure 3. When

1% of the sentiment training set and 1% of the validation set is used (φ = 1%), the µ̂-moderated

SVM distributions ("*oS","*aS") perform better than the SVM distributions ("tS", "tvS"), and

the µ̂-moderated logistic distributions ("*oL","*aL") perform better than the logistic distributions

("tL", "tvL"). When φ ∈ {4%, 16%, 100%}, the same pattern holds for SVM, but the moderation of

probabilities does not show a clear advantage for logistic. It thus appears that the original probabil-

ities reported by logistic require no moderation since they adequately reflect the uncertainty about

the sentiment. By contrast, the original probabilities reported by SVM, inadequately reflecting the

uncertainty about the sentiment, are improved by moderation.

Figure 3 does not indicate a clear advantage of the adversarial distribution ("*oL", "½oL", "*oS", "½oS")

over the arithmetic mean ("½aL", "*aL", "*aS", "½aS"). That suggests that the sentiment training

set is too small for Corollary 1 to be relevant.
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