S. A. Ellis and J. A. Hammond, The functional significance of cattle major histocompatibility complex class I genetic diversity, Annu. Rev. Anim. Biosci, vol.2, pp.285-306, 2014.

M. Tanaka-matsuda, A. Ando, C. Rogel-gaillard, P. Chardon, and H. Uenishi, Difference in number of loci of swine leukocyte antigen classical class I genes among haplotypes, Genomics, vol.93, pp.261-73, 2009.

C. Rogel-gaillard, M. Vaiman, C. Renard, P. Chardon, and M. Yerle, Localization of the beta 2-microglobulin gene to pig chromosome 1q17, Mamm. Genome, vol.8, p.948, 1997.

S. Kusza, L. Flori, Y. Gao, A. Teillaud, and R. Hu, Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes, Anim. Genet, vol.42, pp.510-530, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000170

M. D. Crew, B. Phanavanh, and C. N. Garcia-borges, Sequence and mRNA expression of nonclassical SLA class I genes SLA-7 and SLA-8, Immunogenetics, vol.56, pp.111-125, 2004.

D. M. Smith, J. K. Lunney, C. S. Ho, G. W. Martens, and A. Ando, Nomenclature for factors of the swine leukocyte antigen class II system, Tissue Antigens, vol.66, pp.623-662, 2005.

R. Horton, R. Gibson, P. Coggill, M. Miretti, and R. J. Allcock, Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project, Immunogenetics, vol.60, pp.1-18, 2008.

R. Horton, L. Wilming, V. Rand, R. C. Lovering, and E. A. Bruford, Gene map of the extended human MHC, Nat. Rev. Genet, vol.5, pp.889-99, 2004.

K. T. Ballingall, R. E. Bontrop, S. A. Ellis, U. Grimholt, and J. A. Hammond, Comparative MHC nomenclature: report from the ISAG/IUIS-VIC committee, Immunogenetics, vol.70, pp.625-657, 2018.

, AV08CH14_Lunney ARjats.cls November, vol.26, p.26, 2019.

C. S. Ho, J. K. Lunney, M. H. Franzo-romain, G. W. Martens, and Y. J. Lee, Molecular characterization of swine leucocyte antigen class I genes in outbred pig populations, Anim. Genet, vol.40, pp.468-78, 2009.

C. S. Ho, J. K. Lunney, M. H. Franzo-romain, G. W. Martens, and Y. J. Lee, Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations, Anim. Genet, vol.41, pp.428-460, 2010.

H. O. Cho, C. S. Ho, Y. J. Lee, I. C. Cho, and S. S. Lee, Establishment of a resource population of SLA haplotype-defined Korean native pigs, Mol. Cells, vol.29, pp.493-99, 2010.

S. C. Yeom, C. G. Park, B. C. Lee, and W. J. Lee, SLA typing using the PCR-SSP method and establishment of the SLA homozygote line in pedigreed SNU miniature pigs, Anim. Sci. J, vol.81, pp.158-64, 2010.

C. Gao, Q. Jiang, D. Guo, J. Liu, L. Han et al., Characterization of swine leukocyte antigen (SLA) polymorphism by sequence-based and PCR-SSP methods in Chinese Bama miniature pigs, Dev. Comp. Immunol, vol.45, pp.87-96, 2014.

C. Gao, J. Quan, X. Jiang, C. Li, X. Lu et al., Swine leukocyte antigen diversity in Canadian specific pathogen-free Yorkshire and Landrace pigs, Front. Immunol, vol.8, p.282, 2017.

A. Ando, A. Shigenari, M. Ota, M. Sada, and H. Kawata, SLA-DRB1 and -DQB1 genotyping by the PCR-SSOP-Luminex method, Tissue Antigens, vol.78, pp.49-55, 2011.

A. Ando, N. Imaeda, S. Ohshima, A. Miyamoto, and N. Kaneko, Characterization of swine leukocyte antigen alleles and haplotypes on a novel miniature pig line, Microminipig, Anim. Genet, vol.45, pp.791-98, 2014.

W. Y. Jung, N. R. Choi, D. W. Seo, H. T. Lim, C. S. Ho et al., Sequence-based characterization of five SLA loci in Asian wild boars, Int. J. Immunogenet, vol.41, pp.397-400, 2014.

M. Le, H. Choi, M. K. Choi, H. Cho, and J. H. Kim, Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes, Gene, vol.564, pp.228-260, 2015.

C. S. Ho, G. W. Martens, M. S. Amoss, L. Gomez-raya, C. W. Beattie et al., Swine leukocyte antigen (SLA) diversity in Sinclair and Hanford swine, Dev. Comp. Immunol, vol.34, pp.250-57, 2010.

S. E. Essler, W. Ertl, J. Deutsch, B. C. Ruetgen, and S. Groiss, Molecular characterization of swine leukocyte antigen gene diversity in purebred Pietrain pigs, Anim. Genet, vol.44, pp.202-207, 2013.

L. E. Pedersen, G. Jungersen, M. R. Sorensen, C. S. Ho, and D. F. Vadekaer, Swine leukocyte antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers, Vet. Immunol. Immunopathol, vol.162, pp.108-124, 2014.

U. Gimsa, C. S. Ho, and S. E. Hammer, Preferred SLA class I/class II haplotype combinations in German Landrace pigs, Immunogenetics, vol.69, pp.39-47, 2017.

J. C. Schwartz, J. D. Hemmink, S. P. Graham, E. Tchilian, and B. Charleston, The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine, HLA, vol.92, pp.40-43, 2018.

J. R. Dunkelberger, C. S. Ho, A. S. Hess, N. Serão, J. K. Lunney et al., Predicting MHC haplotypes from high-density SNP genotypes in pigs, Proceedings of the World Congress on Genetics Applied to Livestock Production (WCGALP), vol.532, 2014.

T. Shiina, S. Suzuki, and J. K. Kulski, MHC genotyping in human and non-human species by PCR-based next-generation sequencing, Next Generation Sequencing: Advances, Applications and Challenges, vol.14, p.21, 2016.

Y. F. Kita, A. Ando, K. Tanaka, S. Suzuki, and Y. Ozaki, Application of high-resolution, massively parallel pyrosequencing for estimation of haplotypes and gene expression levels of swine leukocyte antigen (SLA) class I genes, Immunogenetics, vol.64, pp.187-99, 2012.

R. Sørensen, M. Ilsøe, M. Strube, M. L. Bishop, R. Erbs et al., Sequence-based genotyping of expressed swine leukocyte antigen class I alleles by next-generation sequencing reveal novel swine leukocyte antigen class I haplotypes and alleles in Belgian, Danish, and Kenyan fattening pigs and Göttingen minipigs, Front. Immunol, vol.8, p.701, 2017.

C. Lee, M. Moroldo, A. Perdomo-sabogal, N. Mach, and S. Marthey, Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing, Immunogenetics, vol.70, pp.401-418, 2018.

E. W. Petersdorf and C. O'huigin, The MHC in the era of next-generation sequencing: implications for bridging structure with function, Hum. Immunol, vol.80, p.2, 2018.

S. Fuselli, R. P. Baptista, A. Panziera, A. Magi, and S. Guglielmi, A new hybrid approach for MHC genotyping: high-throughput NGS and long read MinION nanopore sequencing, with application to the non-model vertebrate Alpine chamois (Rupicapra rupicapra), Heredity, vol.121, pp.293-303, 2018.

K. Lang, V. Surendranath, P. Quenzel, G. Schöfl, A. H. Schmidt et al., Full-length HLA class I genotyping with the MinION Nanopore sequencer, Methods Mol. Biol, vol.1802, pp.155-62, 2018.

C. Liu, F. Xiao, J. Hoisington-lopez, K. Lang, and P. Quenzel, Accurate typing of human leukocyte antigen class I genes by oxford nanopore sequencing, J. Mol. Diagn, vol.20, pp.428-463, 2018.

J. K. Lunney, C. S. Ho, M. Wysocki, and D. M. Smith, Molecular genetics of the swine major histocompatibility complex, the SLA complex, Dev. Comp. Immunol, vol.33, pp.362-74, 2009.

M. Nambiar and G. R. Smith, Repression of harmful meiotic recombination in centromeric regions, Semin. Cell Dev. Biol, vol.54, pp.188-97, 2016.

M. Carrington, Recombination within the human MHC, Immunol. Rev, vol.167, pp.245-56, 1999.

P. Kwiatkowski, J. H. Artrip, R. John, N. M. Edwards, and S. F. Wang, Induction of swine major histocompatibility complex class I molecules on porcine endothelium by tumor necrosis factor-? reduces lysis by human natural killer cells, Transplantation, vol.67, pp.211-229, 1999.

L. M. Tennant, C. Renard, P. Chardon, and P. P. Powell, Regulation of porcine classical and nonclassical MHC class I expression, Immunogenetics, vol.59, pp.377-89, 2007.

M. D. Pescovitz, F. Popitz, D. H. Sachs, J. K. Lunney, . Jw-streilein et al., Expression of Ia antigens on resting porcine T cells: a marker of functional T cells subsets, Advances in Gene Technology: Molecular Biology of the Immune System, pp.271-72, 1985.

A. Saalmüller, F. Weiland, and M. J. Reddehase, Resting porcine T lymphocytes expressing class II major histocompatibility antigen, Immunobiology, vol.183, pp.102-116, 1991.

A. Saalmüller and S. Maurer, Major histocompatibility antigen class II expressing resting porcine T lymphocytes are potent antigen-presenting cells in mixed leukocyte culture, Immunobiology, vol.190, pp.23-34, 1994.

H. H. Takamatsu, M. S. Denyer, and T. E. Wileman, A subpopulation of circulating porcine ?? T cells can act as professional antigen presenting cells, Vet. Immunol. Immunopathol, vol.87, pp.223-247, 2002.

H. H. Takamatsu, M. S. Denyer, C. Stirling, S. Cox, and N. Aggarwal, Porcine ?? T cells: possible roles on the innate and adaptive immune responses following virus infection, Vet. Immunol. Immunopathol, vol.112, pp.49-61, 2006.

J. D. Seebach, M. K. Schneider, C. A. Comrack, A. Leguern, and S. A. Kolb, Immortalized bone-marrow derived pig endothelial cells, Xenotransplantation, vol.8, pp.48-61, 2001.

A. Carrillo, S. Chamorro, M. Rodríguez-gago, B. Álvarez, and M. J. Molina, Isolation and characterization of immortalized porcine aortic endothelial cell lines, Vet. Immunol. Immunopathol, vol.89, pp.91-98, 2002.

D. Kim, J. Y. Kim, H. S. Koh, J. P. Lee, and Y. T. Kim, Establishment and characterization of endothelial cell lines from the aorta of miniature pig for the study of xenotransplantation, Cell Biol. Int, vol.29, pp.638-684, 2005.

K. Park, S. Cha, C. Ahn, and H. Woo, Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro, Vet. Res. Commun, vol.37, pp.293-301, 2013.

A. D. Wilson, K. Haverson, K. Southgate, P. W. Bland, C. R. Stokes et al., Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium, Immunology, vol.88, pp.98-103, 1996.

M. D. Pescovitz, D. H. Sachs, J. K. Lunney, and S. M. Hsu, Localization of class II MHC antigens on porcine renal vascular endothelium, Transplantation, vol.37, pp.627-658, 1984.

A. Summerfield and N. Ruggli, Immune responses against classical swine fever virus: between ignorance and lunacy. Front, Vet. Sci, vol.2, p.10, 2015.

M. Kim, H. Seo, Y. Choi, J. Shim, F. W. Bazer et al., Swine leukocyte antigen-DQ expression and its regulation by interferon-gamma at the maternal-fetal interface in pigs, Biol. Reprod, vol.86, p.43, 2012.

S. Basta, C. P. Carrasco, S. M. Knoetig, R. C. Rigden, and H. Gerber, Porcine alveolar macrophages: poor accessory or effective suppressor cells for T-lymphocytes, Vet. Immunol. Immunopathol, vol.77, pp.177-90, 2000.

A. Summerfield, L. Guzylack-piriou, A. Schaub, C. P. Carrasco, and V. Tâche, Porcine peripheral blood dendritic cells and natural interferon-producing cells, Immunology, vol.110, pp.440-489, 2003.

G. Auray, I. Keller, S. Python, M. Gerber, and R. Bruggmann, Characterization and transcriptomic analysis of porcine blood conventional and plasmacytoid dendritic cells reveals striking species-specific differences, J. Immunol, vol.197, pp.4791-806, 2016.

J. C. Edwards, H. E. Everett, M. Pedrera, H. Mokhtar, and E. Marchi, CD1 ? and CD1 + porcine blood dendritic cells are enriched for the orthologues of the two major mammalian conventional subsets, Sci. Rep, vol.7, p.40942, 2017.

W. Gerner, M. S. Denyer, H. Takamatsu, T. E. Wileman, and K. Wiesmüller, Identification of novel foot-and-mouth disease virus specific T-cell epitopes in c/c and d/d haplotype miniature swine, Virus Res, vol.121, pp.223-251, 2006.

S. C. Talker, H. C. Koinig, M. Stadler, R. Graage, and E. Klingler, Magnitude and kinetics of multifunctional CD4 + and CD8? + T cells in pigs infected with swine influenza A virus, Vet. Res, vol.46, p.52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01316009

A. H. Gutiérrez, C. Loving, M. L. Terry, F. E. Brockmeier, and S. L. , In vivo validation of predicted and conserved T cell epitopes in a swine influenza model, PLOS ONE, vol.11, 2016.

B. Holzer, V. Martini, M. Edmans, and E. Tchilian, T and B cell immune responses to influenza viruses in pigs, Front. Immunol, vol.10, p.98, 2019.

G. Franzoni, N. V. Kurkure, S. E. Essler, H. E. Everett, and K. Bodman-smith, Proteome-wide screening reveals immunodominance in the CD8 T cell response against classical swine fever virus with antigen-specificity dependent on MHC class I haplotype, PLOS ONE, vol.8, p.84246, 2013.

G. Franzoni, S. P. Graham, G. Sanna, P. Angioi, and M. S. Fiori, Interaction of porcine monocytederived dendritic cells with African swine fever viruses of diverse virulence, Vet. Microbiol, vol.216, pp.190-97, 2018.

Q. Van-chanh-le, T. M. Le, H. S. Cho, W. I. Kim, and K. Hong, Analysis of peptide-SLA binding by establishing immortalized porcine alveolar macrophage cells with different SLA class II haplotypes, Vet. Res, vol.49, p.96, 2018.

H. Mokhtar, M. Eck, S. B. Morgan, S. E. Essler, and J. P. Frossard, Proteome-wide screening of the European porcine reproductive and respiratory syndrome virus reveals a broad range of T cell antigen reactivity, Vaccine, vol.32, pp.6828-6865, 2014.

H. Mokhtar, M. Pedrera, J. P. Frossard, L. Biffar, and B. Choudhury, The non-structural protein 5 and matrix protein are major antigenic targets of T cell immunity to porcine reproductive and respiratory syndrome virus, Front. Immunol, vol.7, p.40, 2016.

A. Burgara-estrella, I. Díaz, I. Rodríguez-gómez, S. E. Essler, J. Hernández et al., Predicted peptides from non-structural proteins of porcine reproductive and respiratory syndrome virus are able to induce INF-? and IL-10, Viruses, vol.5, pp.663-77, 2013.

, www.annualreviews.org ? SLA Complex in Swine Health and Biomedicine, vol.14, issue.23

, AV08CH14_Lunney ARjats.cls November, vol.26, p.26, 2019.

S. Ramachandran, A. Jaramillo, X. C. Xu, B. W. Mckane, W. C. Chapman et al., Human immune responses to porcine endogenous retrovirus-derived peptides presented naturally in the context of porcine and human major histocompatibility complex class I molecules: implications in xenotransplantation of porcine organs, Transplantation, vol.77, pp.1580-88, 2004.

X. Pan, J. Qi, N. Zhang, Q. Li, and C. Yin, Complex assembly, crystallization and preliminary Xray crystallographic studies of the swine major histocompatibility complex molecule SLA-1 * 1502, Acta Crystallogr. F, vol.67, issue.5, pp.568-71, 2011.

N. Zhang, J. Qi, S. Feng, F. Gao, and J. Liu, Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides, J. Virol, vol.85, pp.11709-11733, 2011.

S. Fan, Y. Wu, S. Wang, Z. Wang, and B. Jiang, Structural and biochemical analyses of swine major histocompatibility complex class I complexes and prediction of the epitope map of important influenza A virus strains, J. Virol, vol.90, pp.6625-6666, 2016.

F. S. Gao, X. X. Zhai, P. Jiang, Q. Zhang, and H. Gao, Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-I proteins, Gene, vol.653, pp.91-101, 2018.

S. Fan, Y. Wang, S. Wang, X. Wang, and Y. Wu, Polymorphism and peptide-binding specificities of porcine major histocompatibility complex (MHC) class I molecules, Mol. Immunol, vol.93, pp.236-281, 2018.

L. Feng, M. W. Sun, P. Jiang, Z. B. Li, and H. Gao, Purification, crystallization and preliminary X-ray crystallographic studies of swine MHC class I complexed with an FMDV CTL epitope Hu64, Res. Vet. Sci, vol.119, pp.205-213, 2018.

, AV08CH14_Lunney ARjats.cls November, vol.26, p.26, 2019.

N. Yang, J. Li, Q. Yang, J. Qiao, and D. Cui, Reduced antigen presentation capability and modified inflammatory/immunosuppressive cytokine expression of induced monocyte-derived dendritic cells from peripheral blood of piglets infected with porcine circovirus type 2, Arch. Virol, vol.163, pp.1231-1270, 2018.

L. R. Walker, T. B. Engle, H. Vu, E. R. Tosky, and D. J. Nonneman, Synaptogyrin-2 influences replication of porcine circovirus 2, PLOS Genet, vol.14, p.1007750, 2018.

A. Ando, A. Shigenari, C. Kojima-shibata, M. Nakajoh, and K. Suzuki, Association of swine leukocyte antigen class II haplotypes and immune-related traits in a swine line selected for resistance to mycoplasmal pneumonia, Comp. Immunol. Microbiol. Infect. Dis, vol.48, pp.33-40, 2016.

S. Zhang, J. Yang, L. Wang, Z. Li, P. Pang et al., SLA-11 mutations are associated with litter size traits in Large White and Chinese DIV pigs, Anim. Biotechnol, vol.30, pp.212-230, 2018.

T. Matsubara, M. Takasu, N. Imaeda, N. Nishii, and S. Takashima, Genetic association of swine leukocyte antigen class II haplotypes and body weight in Microminipigs, Asian-Australas. J. Anim. Sci, vol.3, pp.163-66, 2018.

O. Demeure, M. P. Sanchez, J. Riquet, N. Iannuccelli, and J. Demars, Exclusion of the swine leukocyte antigens as candidate region and reduction of the position interval for the Sus scrofa chromosome 7 QTL affecting growth and fatness, J. Anim. Sci, vol.83, pp.1979-87, 2005.

W. H. Wei, T. M. Skinner, J. A. Anderson, O. I. Southwood, and G. Plastow, Mapping QTL in the porcine MHC region affecting fatness and growth traits in a Meishan/Large White composite population, Anim. Gene, vol.42, pp.83-85, 2011.

M. M. Swindle, A. Makin, A. J. Herron, F. J. Clubb, and K. S. Frazier, Swine as models in biomedical research and toxicology testing, Vet. Pathol, vol.49, pp.344-56, 2012.

D. H. Sachs, G. Leight, J. Cone, S. Schwarz, L. Stuart et al., Transplantation in miniature swine. I. Fixation of the major histocompatibility complex, Transplantation, vol.22, pp.559-67, 1976.

M. Sykes, IXA Honorary Member Lecture, 2017: the long and winding road to tolerance. Xenotransplantation 25:e12419, 2018.

J. H. Lee, D. Simond, W. J. Hawthorne, S. N. Walters, and A. T. Patel, Characterization of the swine major histocompatibility complex alleles at eight loci in Westran pigs, Xenotransplantation, vol.12, pp.303-310, 2005.

D. M. Smith, G. W. Martens, C. S. Ho, and J. M. Asbury, DNA sequence based typing of swine leukocyte antigens in Yucatan miniature pigs, Xenotransplantation, vol.12, pp.481-88, 2005.

K. Miura, H. Sahara, S. Waki, A. Kawai, and M. Sekijima, Development of the intestinal transplantation model with major histocompatibility complex inbred CLAWN miniature swine, Transpl. Proc, vol.48, pp.1315-1334, 2016.

C. Figueiredo, C. Oliveira, M. Chen-wacker, C. Jansson, K. Höffler et al., Immunoengineering of the vascular endothelium to silence MHC expression during normothermic ex vivo lung perfusion, Hum. Gene Ther, vol.30, pp.485-96, 2019.

N. Zinne, M. Krueger, D. Hoeltig, B. Tuemmler, and E. C. Boyle, Treatment of infected lungs by ex vivo perfusion with high dose antibiotics and autotransplantation: a pilot study in pigs, PLOS ONE, vol.13, 2018.

R. Lassiter, Y. Wang, X. Fang, M. Winn, and A. Ghaffari, A model of acute renal allograft rejection in outbred Yorkshire piglets, Transpl. Immunol, vol.42, pp.40-46, 2017.

Y. Wang, T. D. Merchen, X. Fang, R. Lassiter, and C. S. Ho, Regulation of indoleamine 2,3 dioxygenase and its role in a porcine model of acute kidney allograft rejection, J. Investig. Med, vol.66, pp.1109-1126, 2018.

A. A. Zachary and M. S. Leffell, HLA mismatching strategies for solid organ transplantation-a balancing act, Front. Immunol, vol.7, p.575, 2016.

M. P. Hernandez-fuentes, C. Franklin, I. Rebollo-mesa, J. Mollon, and F. Delaney, Long-and shortterm outcomes in renal allografts with deceased donors: a large recipient and donor genome-wide association study, Am. J. Transplant, vol.18, pp.1370-79, 2018.

, www.annualreviews.org ? SLA Complex in Swine Health and Biomedicine, vol.14, p.25

, AV08CH14_Lunney ARjats.cls November, vol.26, p.26, 2019.

R. L. Kirkman, R. B. Colvin, M. W. Flye, G. S. Leight, and S. A. Rosenberg, Transplantation in miniature swine. VI. Factors influencing survival of renal allografts, Transplantation, vol.28, pp.18-23, 1979.

J. R. Scalea, M. Okumi, V. Villani, A. Shimizu, and H. Nishimura, Abrogation of renal allograft tolerance in MGH miniature swine: the role of intra-graft and peripheral factors in long-term tolerance, Am. J. Transplant, vol.14, pp.2001-2011, 2014.

J. A. Fishman, D. H. Sachs, K. Yamada, and R. A. Wilkinson, Absence of interaction between porcine endogenous retrovirus and porcine cytomegalovirus in pig-to-baboon renal xenotransplantation in vivo, Xenotransplantation, vol.25, p.12395, 2018.

M. Schenk, A. J. Matar, I. Hanekamp, R. J. Hawley, C. A. Huang et al., Development of a transplantable GFP+ B-cell lymphoma tumor cell line from MHC-defined miniature swine: potential for a large animal tumor model, Front. Oncol, vol.9, p.209, 2019.

D. M. Smith, M. Newhouse, B. Naziruddin, and L. Kresie, Blood groups and transfusions in pigs, Xenotransplantation, vol.13, pp.186-94, 2006.

H. H. Kwak, K. M. Park, P. K. Teotia, G. S. Lee, and E. S. Lee, Acute rejection after swine leukocyte antigen-matched kidney allo-transplantation in cloned miniature pigs with different mitochondrial DNA-encoded minor histocompatibility antigen, Transplant. Proc, vol.45, pp.1754-60, 2013.

J. M. Tiercy, How to select the best available related or unrelated donor of hematopoietic stem cells, Haematologica, vol.101, pp.680-87, 2016.

A. Bertaina and M. Andreani, Major histocompatibility complex and hematopoietic stem cell transplantation: beyond the classical HLA polymorphism, Int. J. Mol. Sci, vol.19, issue.2, p.621, 2018.

L. R. Pennington, K. Sakamoto, F. A. Popitz-bergez, M. D. Pescovitz, and M. A. Mcdonough, Bone marrow transplantation in miniature swine. I. Development of the model, Transplantation, vol.45, pp.21-26, 1988.

R. Duran-struuck, C. A. Huang, K. Orf, R. T. Bronson, D. H. Sachs et al., Miniature swine as a clinically relevant model of graft-versus-host disease, Comp. Med, vol.65, pp.429-472, 2015.

E. J. Powell, J. Graham, N. M. Ellinwood, J. Hostetter, and M. Yaeger, T cell lymphoma and leukemia in severe combined immunodeficiency pigs following bone marrow transplantation: a case report, Front. Immunol, vol.8, p.813, 2017.

M. Kueckelhaus, S. Fischer, M. Seyda, E. M. Bueno, and M. A. Aycart, Vascularized composite allotransplantation: current standards and novel approaches to prevent acute rejection and chronic allograft deterioration, Transpl. Int, vol.29, pp.655-62, 2016.

Z. Y. Ng, A. G. Lellouch, I. A. Rosales, L. Geoghegan, and A. R. Gama, Graft vasculopathy of vascularized composite allografts in humans: a literature review and retrospective study, Transpl. Int, vol.32, pp.831-869, 2019.

C. L. Cetrulo, R. Torabi, J. R. Scalea, A. Shimizu, L. Barone et al., Vascularized composite allograft transplant survival in miniature swine: Is MHC tolerance sufficient for acceptance of epidermis, Transplantation, vol.96, pp.966-74, 2013.

Z. Ibrahim, D. S. Cooney, J. T. Shores, J. M. Sacks, and E. G. Wimmers, A modified heterotopic swine hind limb transplant model for translational vascularized composite allotransplantation (VCA) research, J. Vis. Exp, vol.2013, issue.80, p.50475, 2013.

D. A. Leonard, J. M. Kurtz, C. Mallard, A. Albritton, and R. Duran-struuck, Vascularized composite allograft tolerance across MHC barriers in a large animal model, Am. J. Transplant, vol.14, pp.343-55, 2014.

K. Shanmugarajah, H. Powell, D. A. Leonard, C. Mallard, and A. Albritton, The effect of MHC antigen matching between donors and recipients on skin tolerance of vascularized composite allografts, Am. J. Transplant, vol.17, pp.1729-1770, 2017.

C. A. Fries, S. D. Lawson, L. C. Wang, J. R. Spencer, and M. Roth, composite graft pretreatment with hydrogen sulfide delays the onset of acute rejection, Ann. Plast. Surg, vol.82, pp.452-58, 2019.

D. Kotsougiani, C. A. Hundepool, J. I. Willems, P. Friedrich, A. Y. Shin et al., Surgical angiogenesis in porcine tibial allotransplantation: a new large animal bone vascularized composite allotransplantation model, J. Vis. Exp, vol.126, p.55238, 2017.

. Arjats and . Cls, , vol.14, p.26, 2019.

D. Kotsougiani, J. I. Willems, A. Y. Shin, P. F. Friedrich, C. A. Hundepool et al., A new porcine vascularized tibial bone allotransplantation model. Anatomy and surgical technique, Microsurgery, vol.38, pp.195-202, 2018.

C. A. Fries, S. D. Lawson, L. C. Wang, K. V. Slaughter, and P. K. Vemula, Graft-implanted, enzyme responsive, tacrolimus-eluting hydrogel enables long-term survival of orthotopic porcine limb vascularized composite allografts: a proof of concept study, PLOS ONE, vol.14, p.210914, 2019.

K. Malliaras, R. R. Smith, H. Kanazawa, K. Yee, and J. Seinfeld, Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction, Circulation, vol.128, pp.2764-75, 2013.

K. Yee, K. Malliaras, H. Kanazawa, E. Tseliou, and K. Cheng, Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy, PLOS ONE, vol.9, p.113805, 2014.

H. Kanazawa, E. Tseliou, J. F. Dawkins, D. Couto, G. Gallet et al., Durable benefits of cellular postconditioning: long-term effects of allogeneic cardiosphere-derived cells infused after reperfusion in pigs with acute myocardial infarction, J. Am. Heart Assoc, vol.5, issue.2, p.2796, 2016.

R. D. Hickey, S. A. Mao, J. Glorioso, F. Elgilani, and B. Amiot, Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1, Sci. Transl. Med, vol.8, pp.349-99, 2016.

J. Strnadel, C. Carromeu, C. Bardy, M. Navarro, and O. Platoshyn, Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs, Sci. Transl. Med, vol.10, issue.440, p.6651, 2018.

A. R. Tambur, P. Campbell, F. H. Claas, S. Feng, and H. M. Gebel, Sensitization in transplantation: assessment of risk (STAR) 2017 working group meeting report, Am. J. Transplant, vol.18, issue.7, pp.1604-1618, 2018.

K. J. Tinckam and A. Chandraker, Mechanisms and role of HLA and non-HLA alloantibodies, Clin. J. Am. Soc. Nephrol, vol.1, pp.404-418, 2006.

K. Fischer, A. Kind, and A. Schnieke, Assembling multiple xenoprotective transgenes in pigs. Xenotransplantation 25:e12431, 2018.

L. M. Reyes, J. L. Estrada, Z. Y. Wang, R. J. Blosser, and R. F. Smith, Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease, J. Immunol, vol.193, pp.5751-57, 2014.

G. R. Martens, L. M. Reyes, P. Li, J. R. Butler, and J. M. Ladowski, Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs, Transplantation, vol.101, pp.86-92, 2017.

J. M. Abicht, R. Sfriso, B. Reichart, M. Längin, and K. Gahle, Multiple genetically modified GTKO/hCD46/HLA-E/h?2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood, Xenotransplantation, vol.25, p.12390, 2018.

J. L. Estrada, G. Martens, P. Li, A. Adams, and K. A. Newell, Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/?4GalNT2 genes, Xenotransplantation, vol.22, pp.194-202, 2015.

N. Issa, F. G. Cosio, J. M. Gloor, S. Sethi, and P. G. Dean, Transplant glomerulopathy: risk and prognosis related to anti-human leukocyte antigen class II antibody levels, Transplantation, vol.86, pp.681-85, 2008.

A. R. Tambur, J. Rosati, S. Roitberg, D. Glotz, J. J. Friedewald et al., Epitope analysis of HLA-DQ antigens: What does the antibody see, Transplantation, vol.98, pp.157-66, 2014.

A. R. Tambur, HLA-DQ antibodies: Are they real? Are they relevant? Why so many?, Curr. Opin. Organ. Transplant, vol.21, pp.441-487, 2016.

D. Varela, I. , S. Mozo, P. , C. Cortés et al., Crossreactivity between swine leukocyte antigen and human anti-HLA-specific antibodies in sensitized patients awaiting renal transplantation, J. Am. Soc. Nephrol, vol.14, pp.2677-83, 2003.

J. M. Ladowski, G. R. Martens, L. M. Reyes, Z. Y. Wang, and D. E. Eckhoff, Examining the biosynthesis and xenoantigenicity of class II swine leukocyte antigen proteins, J. Immunol, vol.200, pp.2957-64, 2018.

J. M. Ladowski, L. M. Reyes, G. R. Martens, J. R. Butler, and Z. Y. Wang, Swine leukocyte antigen class II is a xenoantigen, Transplantation, vol.102, pp.249-54, 2018.

E. Ahanda, M. Fritz, E. R. Estellé, J. Hu, Z. Madsen et al., Prediction of altered 3 -UTR miRNA-binding sites from RNA-seq data: the swine leukocyte antigen complex (SLA) as a model region, PLOS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019035

J. Herrera-uribe, S. Zaldívar-lópez, C. Aguilar, C. Luque, and R. Bautista, Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection, Vet. Res, vol.49, p.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01699016

K. Zhang, L. Ge, S. Dong, Y. Liu, and D. Wang, Global miRNA, lncRNA, and mRNA transcriptome profiling of endometrial epithelial cells reveals genes related to porcine reproductive failure caused by porcine reproductive and respiratory syndrome virus, Front. Immunol, vol.10, p.1221, 2019.

, Based on the International Society for Animal Genetics guidelines, all swine gene locus symbols are based on the Human Genome Organization Gene Nomenclature Committee

. Hammer, Advance first posted on December, vol.17, 2019.