M. Z. Alaya, T. Allart, A. Guilloux, and S. Lemler, Time-varying highdimensional aalen and cox models with change-points, 2016.

R. Bartle, Hearts, clubs, diamonds, spades: Players who suit muds, Journal of MUD research, vol.1, issue.1, p.19, 1996.

C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen et al., How players lose interest in playing a game: An empirical study based on distributions of total playing times, Computational Intelligence and Games (CIG), 2012 IEEE conference on, pp.139-146, 2012.

B. Bowman, N. Elmqvist, and T. , Toward visualization for games: Theory, design space, and patterns, IEEE transactions on visualization and computer graphics, vol.18, issue.11, pp.1956-1968, 2012.

P. Kuan-ta-chen, C. Huang, and . Lei, Effect of network quality on player departure behavior in online games. Parallel and Distributed Systems, IEEE Transactions on, vol.20, issue.5, pp.593-606, 2009.

D. R. Cox, Regression models and life-tables, Journal of the Royal Statistical Society. Series B (Methodological), vol.34, issue.2, pp.187-220, 1972.

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res, vol.12, pp.2121-2159, 2011.

D. Eddelbuettel and R. François, Rcpp: Seamless R and C++ integration, Journal of Statistical Software, vol.40, issue.8, pp.1-18, 2011.

S. Galyonkin and . Steamspy, , 2016.

B. E. , H. , and D. Roberts, Analytics-driven dynamic game adaption for player retention in a 2-dimensional adventure game, Tenth Artificial Intelligence and Interactive Digital Entertainment Conference, 2014.

G. Levieux, Mesure de la difficulte des jeux video, Conservatoire national des arts et metiers-CNAM, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00612657

T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. Yannakakis, Predicting player behavior in tomb raider: Underworld, Computational Intelligence and Games (CIG), 2010 IEEE Symposium on, pp.178-185, 2010.

W. Thomas and . Malone, Toward a theory of intrinsically motivating instruction*, Cognitive science, vol.5, issue.4, pp.333-369, 1981.

T. Martinussen, T. H. Scheike, M. Ib, T. Skovgaard, and . Matinerssen, Efficient estimation of fixed and time-varying covariate effects in multiplicative intensity models, Scandinavian Journal of Statistics, vol.29, issue.1, pp.57-74, 2002.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2016.

M. Richard, E. L. Ryan, and . Deci, Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being, American psychologist, vol.55, issue.1, p.68, 2000.

K. Salen and E. Zimmerman, Rules of Play : Game Design Fundamentals, 2003.

G. Wallner and . Kriglstein, Visualization-based analysis of gameplay data-a review of literature, Entertainment Computing, vol.4, issue.3, pp.143-155, 2013.

G. Ben, M. Weber, M. John, A. Mateas, and . Jhala, Modeling player retention in madden nfl 11, IAAI, 2011.

H. Xie, S. Devlin, D. Kudenko, and P. Cowling, Predicting player disengagement and first purchase with event-frequency based data representation, Computational Intelligence and Games (CIG), 2015 IEEE Conference on, pp.230-237, 2015.

N. Yee, Motivations for play in online games, CyberPsychology & behavior, vol.9, issue.6, pp.772-775, 2006.

M. D. Zeiler, Adadelta: An adaptive learning rate method. CoRR, abs/1212, vol.5701, 2012.