Polyharmonic functions and random processes in cones
Francois Chapon, Eric Fusy, Kilian Raschel

To cite this version:
Francois Chapon, Eric Fusy, Kilian Raschel. Polyharmonic functions and random processes in cones. 2020. hal-02436386

HAL Id: hal-02436386
https://hal.archives-ouvertes.fr/hal-02436386
Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POLYHARMONIC FUNCTIONS AND RANDOM PROCESSES IN CONES

FRANÇOIS CHAPON, ÉRIC FUSY, AND KILIAN RASCHEL

Abstract. We investigate polyharmonic functions associated to Brownian motion and random walks in cones. These are functions which cancel some power of the usual Laplacian in the continuous setting and of the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk enumeration problems. We provide a method to construct general polyharmonic functions through Laplace transforms and generating functions in the continuous and discrete cases, respectively. This is done by using a functional equation approach.

1. Introduction and motivations

In the continuous setting, polyharmonic functions are functions which cancel some power of the usual Laplacian. More precisely, a function v on some domain K of \mathbb{R}^d satisfying

$$\Delta^p v = 0$$

for some $p \geq 1$, where Δ is the usual Laplacian in \mathbb{R}^d, is said to be polyharmonic of order p, or polyharmonic for short. So polyharmonic functions of order 1 are just harmonic functions. Obviously, a polyharmonic function v_p of order p satisfies $\Delta v_p = v_{p-1}$, where v_{p-1} is polyharmonic of order $p - 1$. Harmonic functions have been tremendously investigated and pioneer works on polyharmonic functions go back to the work of Almansi [1]. One can consult for instance the monograph [2] for an introduction to this topic.

In particular, Almansi [1] proved that if the domain K is star-like with respect to the origin, then every polyharmonic function of order p admits a unique decomposition

$$f(x) = \sum_{k=0}^{p-1} |x|^{2k} h_k(x),$$

where each h_k is harmonic on K and $|x|$ is the Euclidean length of x, hence completely characterising continuous polyharmonic functions on such domains.

In comparison with the continuous case, much less is known in the discrete setting, where the Laplacian has to be replaced by a discrete difference operator. Some progress in understanding discrete polyharmonic functions has been made in the last two decades. For instance, one may cite [12], where the authors investigated polyharmonic functions for the Laplacian on trees, and proved a similar result as Almansi’s theorem (1) for...
homogeneous trees. Recent works of Woess and co-authors [18, 21, 23] are generalising this previous work.

Our original motivation to study discrete polyharmonic functions comes from the following framework. Consider a random walk in \(\mathbb{Z}^d \) with step set \(S \) confined in some cone \(K \subset \mathbb{Z}^d \). Denote by \(q(x, y; n) \) the number of \(n \)-length excursions between \(x \) and \(y \) staying in the cone \(K \). To simplify, we only consider the case where \(y \) is the origin, but the considerations below can be generalised to \(y \neq 0 \). In various cases [15], the asymptotics of \(q(x, 0; n) \) as \(n \to \infty \) is known to admit the form

\[
q(x, 0; n) \sim v_0(x) \gamma^n n^{-\alpha_0},
\]

where \(v_0(x) > 0 \) is a function depending only on \(x \), \(\gamma \in (0, |S|) \) is the exponential growth, and \(\alpha_0 \) is the critical exponent. It is easy to see that the function \(v_0(x) \) in (2) defines a discrete harmonic function. Indeed, plugging (2) into the obvious recursive relation

\[
q(x, 0; n + 1) = \sum_{s \in S} q(x + s, 0; n) 1_{\{x + s \in K\}},
\]

dividing by \(\gamma^{n+1} n^{-\alpha_0} \) and letting \(n \to \infty \), we obtain

\[
v_0(x) = \frac{1}{\gamma} \sum_{s \in S} v_0(x + s) 1_{\{x + s \in K\}},
\]

which proves that, with the assumption that \(v_0(x) = 0 \) for \(x \notin K \), \(v_0(x) \) is discrete harmonic for the Laplacian operator

\[
L f(x) = \frac{1}{\gamma} \sum_{s \in S} f(x + s) - f(x),
\]

that is, \(L v_0 = 0 \). Denisov and Wachtel [15] go further and show that

- the exponential growth \(\gamma \) is \(\min_{R^d_+} \sum_{(s_1, \ldots, s_d) \in S} s_1 x_1 \cdots x_d \gamma \), it does not depend on \(K \);
- the critical exponent \(\alpha_0 \) equals \(1 + \sqrt{\lambda_1 + (d/2 - 1)^2} \), where \(d \) is the dimension and \(\lambda_1 \) is the principal Dirichlet eigenvalue on some spherical domain constructed from \(K \).

As a leading example, consider the simple random walk in the quarter plane, with step set \(\{\leftarrow, \uparrow, \rightarrow, \downarrow\} \). In this case, the number of excursions \(q((i, j), 0; n) \) is 0 if \(m = \frac{n-i-1}{2} \) is not a non-negative integer, and otherwise takes the value

\[
q((i, j), 0; n) = \frac{(i + 1)(j + 1)n!(n + 2)!}{m!(m + i + j + 2)!(m + i + 1)!(m + j + 1)!},
\]

see [9] and our Example 3.2. The equivalent (2) is then

\[
q((i, j), 0; n) \sim 4 \pi^2 \frac{v_0(i, j)}{n^3},
\]

where \(v_0(i, j) = (i + 1)(j + 1) \) is the well-known unique (up to multiplicative constants) harmonic function positive within the quarter plane with Dirichlet boundary conditions. Other examples of such asymptotics may be found for instance in [4, 10, 14].

Our aim in this discrete setting is to make the estimate (2) much more precise, and to consider complete asymptotic expansions of the following form

\[
q(x, 0; n) \sim \gamma^n \sum_{p \geq 0} \frac{v_p(x)}{n^{\alpha_p}}.
\]

From such an asymptotic expansion and using similar ideas as in (3), (4) and (5), it is rather easy to prove that the terms \(v_p \) are polyharmonic functions, in the sense that a power \(L^k v_p \) of the Laplacian operator vanishes. We will provide examples of such
asymptotic expansions (at least for the first terms) and of the set of exponents \(\{\alpha_p\}_{p \geq 0} \) appearing in (7).

On the other hand, the functional equation approach has proved to be fruitful when studying random walk problems. The reference book on this topic is the monograph [16] by Fayolle, Iasnogorodski and Malyshev. This method has been used in [20] to construct harmonic functions, both in the discrete and continuous settings. Basically, the method consists of drawing from the harmonicity condition a functional equation satisfied by the generating function (in the discrete setting) or by the Laplace transform (in the continuous setting) of a harmonic function. Resolving some boundary value problem for these quantities leads via Cauchy or Laplace inversion to the sought harmonic function. We will provide an implementation of this method to construct bi-harmonic functions, which can be generalised to polyharmonic functions.

The main features of our results are as follows:

- The powerful approach of Denisov and Wachtel [15] is restricted to the first term in the asymptotics (2). Indeed, one of the main tools in [15] is a coupling result of random walks by Brownian motion, which only provides an approximation of polynomial order, see [15, Lem. 17]. On the other hand, our approach allows to go further and to obtain, in principle, a full asymptotic expansion (7).
- We shine a light on a new link between discrete polyharmonic functions and complete asymptotic expansions in the enumeration of walks.
- We introduce a new class of functional equations (see (19) and (26)) for which the method of Tutte’s invariants introduced in [22, 5, 6] proves to be useful.
- In the unweighted planar case, it has been shown [8] that knowing the rationality of the exponent \(\alpha_0 \) in (7) was sufficient to decide the non-D-finiteness of the series of excursions. However, for walks with big steps in dimension two or walk models in dimension three, this information is not enough [7]. As a potential application of our results, we might use arithmetic information on the other exponents \(\alpha_p \) to study the algebraic nature, for example the transcendance, of the associated combinatorial series.

This paper is organised as follows. We choose to start with the continuous setting since computations are a bit less complicated. In Section 2, we prove that polyharmonic functions naturally arise when performing an asymptotic expansion of the Dirichlet heat kernel in a cone. We next present the functional equation method to construct polyharmonic functions. Our main result here is Theorem 2.4, where a class of solutions for the Laplace transform of a bi-harmonic function is provided. It shows that the Laplace transform of a bi-harmonic function can be expressed in terms of the Laplace transform of the related harmonic function plus some additional terms. This can be thought of as a Laplace transform version of Almansi’s theorem (1). In Section 3, we exhibit the same phenomenon in the random walk setting. Discrete polyharmonic functions appear when considering the asymptotic expansion of coefficients counting walks with fixed endpoints in a domain, and the functional equation approach may be used to construct discrete polyharmonic functions.

These notes are the starting point of a long-term research project on discrete polyharmonic functions in cones.

Acknowledgements. We would like to thank Cédric Lecouvey, Steve Melczer, Pierre Tarrago and Wolfgang Woess for very interesting discussions. This project has started in July 2019, when two authors were invited at the Institute of Mathematical Statistics of Münster University. The institute, and in particular Gerold Alsmeyer, is greatly acknowledged for hospitality. The first author also acknowledges the Institut Denis Poisson for
the warm hospitality during his stay at the Université de Tours, where part of this work has been pursued.

2. Classical polyharmonic functions and heat kernel expansions

We first prove an exact asymptotic expansion for the heat kernel in terms of polyharmonic functions and then implement the functional equation method to construct polyharmonic functions.

2.1. Exact asymptotic expansion for the Brownian semigroup in a cone. Let K be some cone in \mathbb{R}^d and consider the Brownian motion $(B_t)_{t \geq 0}$ killed at the boundary of K. Denote by $p(x,y;t)$ its transition density, that is the density probability function of the transition probability kernel

$$p_x(B_t \in dy, \tau > t),$$

where τ is the first exit time of K. Recall the well-known fact that $p(x,y;t)$ corresponds to the heat kernel (i.e., the fundamental solution) of the heat equation on K with Dirichlet boundary condition, see for instance [3]. Here, we prove that the heat kernel admits a complete asymptotic expansion in terms of polyharmonic functions for the Laplacian.

Denote by Δ the usual Laplacian on \mathbb{R}^d. In polar coordinates (r, θ), where r is the radial part and θ the angular part, it writes:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{d-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{S^{d-1}},$$

where $\Delta_{S^{d-1}}$ denotes the spherical Laplacian. Let respectively m_j and λ_j be the Dirichlet eigenfunctions and eigenvalues for the spherical Laplacian on the generating set $K \cap S^{d-1}$, that is,

$$\Delta_{S^{d-1}} m_j = -\lambda_j m_j \quad \text{in } K \cap S^{d-1},$$

$$m_j = 0 \quad \text{in } \partial(K \cap S^{d-1}).$$

The eigenvalues satisfy $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$ by [11, Chap. VII]. We introduce, for $j \geq 1$,

$$\beta_j = \sqrt{\lambda_j + (d/2 - 1)^2} \quad \text{and} \quad b_j = 1 - d/2 + \sqrt{\lambda_j + (d/2 - 1)^2}.$$

Lemma 1 in [3] gives an explicit expression for the transition density $p(x,y;t)$ of the Brownian motion in K. It states that, for $x, y \in \mathbb{R}^d$ and $t \in \mathbb{R}_+$,

$$p(x,y;t) = \frac{\exp \left(-\frac{\rho^2 + \eta^2}{2t} \right)}{t (pr)^{d-1}} \sum_{j=1}^{\infty} I_{\beta_j} \left(\frac{pr}{t} \right) m_j(\theta)m_j(\eta),$$

where in polar coordinates $x = (\rho, \theta)$ and $y = (r, \eta)$. Here, I_{β} is the modified Bessel function of the first kind of order β, satisfying the differential equation

$$I_{\beta}''(z) + \frac{1}{z} I_{\beta}'(z) = \left(1 + \frac{\beta^2}{z^2} \right) I_{\beta}(z)$$

and admitting the series expansion

$$I_{\beta}(z) = \sum_{m=0}^{\infty} \frac{1}{m! \Gamma(m + \beta + 1)} \left(\frac{z}{2} \right)^{2m+\beta}.$$

The following easy lemma will allow us to define certain polyharmonic functions.
Lemma 2.1. For any $\mu \geq 0$ and $j \geq 1$, let $f_{\mu,j}$ be defined in spherical coordinates by

$$f_{\mu,j}(r, \theta) = r^{\mu} m_j(\theta).$$

Then, $f_{\mu,j}$ satisfies

$$\Delta f_{\mu,j} = (\mu^2 + (d - 2)\mu - \lambda_j)f_{\mu-2,j}.$$

Proof. The proof is elementary using (8) and (9). □

Corollary 2.2. For any $k \in \mathbb{N}$, the function $f_{b_j+2k,j}$ defined in (13) is k-polyharmonic.

Proof. It is obvious that $\mu = b_j$ satisfies $\mu^2 + (d - 2)\mu - \lambda_j = 0$, so that $f_{b_j,j}$ is harmonic by (14). An induction based on (14) completes the proof. □

Doing an expansion of the heat kernel (11) as $t \to \infty$ and using series expansions of the exponential and of the Bessel function (12), one immediately obtains:

Theorem 2.3. The Dirichlet heat kernel $p(x, y; t)$ in K admits the following expansion:

$$p(x, y; t) \sim \sum_{k=1}^{\infty} \sum_{k,m \geq 0} \sum_{n=0}^{k} \frac{1}{t^{1+\beta_j+k+2m}} \frac{(-1)^k \binom{k}{n}}{2^{k+k} \Gamma(m + \beta_j + 1)} f_{b_j+2(m+n),j}(\rho, \theta) f_{b_j+2(m-k-n),j}(r, \eta),$$

where $f_{b_j+2k,j}$ is defined in (13) and b_j and β_j in (10).

As such, the above result shows that the transition density of the Brownian motion in K admits as $t \to \infty$ an asymptotic expansion in descending powers of t and in terms of polyharmonic functions for the Laplacian. Moreover, the set of these exponents is (with $\mathbb{N} = \{0, 1, 2, \ldots \}$)

$$\bigcup_{j=1}^{\infty} (\beta_j + 1 + \mathbb{N}).$$

Note that, depending on the cone, there might be an overlap between the sets $\beta_j + 1 + \mathbb{N}$. For instance, in the quadrant in dimension 2, one has $\beta_j = 2j$ and the set in (15) reduces to $\{3, 4, 5, \ldots \}$. On the other hand, in dimension 2 in a cone of opening α such that $\pi/\alpha \notin \mathbb{Q}$, there is no overlap between the points in (15).

As a last remark, we note that the same phenomenon appears for the survival probability $P_x(\tau > t)$. Indeed, thanks to its explicit expression given by [3, Thm 1] (in terms of the confluent hypergeometric function), one can write down an asymptotic expansion of $P_x(\tau > t)$ in descending powers of t and in terms of polyharmonic functions for the Laplacian.

2.2. The functional equation approach. We apply here the functional equation approach in order to construct polyharmonic functions for the 2-dimensional killed Brownian motion in a convex cone. This approach has been previously introduced in [20] to compute harmonic functions, and is an adaptation of the functional equation method of the random walk case. Our main result is Theorem 2.4, which gives the general form of the Laplace transform of a bi-harmonic function.

Consider the Brownian motion B in the quarter plane \mathbb{R}^2_+ (compared to the last section we use (x, y) for the coordinates of a 2d point) with covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}.$$
with $\sigma_{11}, \sigma_{22} > 0$ and $\det \Sigma = \sigma_{11}\sigma_{22} - \sigma_{12}^2 \geq 0$. Its infinitesimal generator is the operator

$$Gf = \frac{1}{2} \left(\sigma_{11} \frac{\partial^2 f}{\partial x^2} + 2\sigma_{12} \frac{\partial^2 f}{\partial x \partial y} + \sigma_{22} \frac{\partial^2 f}{\partial y^2} \right).$$

Note that through some linear transformation ϕ (see [20, Eq. (5.1)]), one obtains the Brownian motion with covariance matrix equal to the identity in the cone $\phi(\mathbb{R}^2_+)$. The kernel associated to the Brownian motion is defined as the quantity

$$\gamma(x, y) = \frac{1}{2} \left(\sigma_{11} x^2 + 2\sigma_{12} xy + \sigma_{22} y^2 \right),$$

for $(x, y) \in \mathbb{C}^2$. The Laplace transform of a function f, which is the analogous quantity in the continuous case of the notion of generating function, is defined as

$$L(f)(x, y) = \int_0^\infty \int_0^\infty f(u, v) e^{-(xu+vy)} du dv,$$

for $(x, y) \in \mathbb{C}^2$ with positive real parts.

Now, let h be a harmonic function associated with the Brownian motion with covariance matrix Σ, that is h vanishes on the boundary axes of the quadrant and satisfies $Gh = 0$. The functional equation for h takes the following form (see [20, Eq. (A.1)]):

$$\gamma(x, y)L(h)(x, y) = \frac{1}{2} (\sigma_{11} L_1(h)(y) + \sigma_{22} L_2(h)(x)) + L(Gh)(x, y),$$

where we have denoted

$$\begin{cases}
L_1(h)(y) := L \left(\frac{\partial h}{\partial x}(0, \cdot) \right)(y) = \int_0^\infty \frac{\partial h}{\partial x}(0, v) e^{-yv} dv, \\
L_2(h)(x) := L \left(\frac{\partial h}{\partial y}(\cdot, 0) \right)(x) = \int_0^\infty \frac{\partial h}{\partial y}(u, 0) e^{-xu} du.
\end{cases}$$

Using the harmonicity condition $Gh = 0$, the functional equation for h rewrites as

$$\gamma(x, y)L(h)(x, y) = \frac{1}{2} (\sigma_{11} L_1(h)(y) + \sigma_{22} L_2(h)(x)).$$

We recall below the key argument of the method of [20] to solve the functional equation (16), which leads to harmonic functions for the Brownian motion via Laplace inversion. We will subsequently apply a related method to obtain polyharmonic functions.

Consider the two solutions of $\gamma(x, Y(x)) = 0$, which, since γ is a homogeneous polynomial of degree two, are explicitly given by $Y_{\pm}(x) = c_{\pm} x$, with

$$c_{\pm} = \frac{-\sigma_{12} \pm i \sqrt{\det \Sigma}}{\sigma_{22}},$$

so that $c_+ = \overline{c_-}$. We write $c_{\pm} = c e^{\pm i \theta}$, with $c = \sqrt{\frac{\sigma_{11}}{\sigma_{22}}}$, and θ is such that $\cos \theta = -\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}}$. Denote by G_Y the domain delimited by the curve $Y_+([0, \infty]) \cup Y_-([0, \infty]) = c_+[0, \infty] \cup c_-[0, \infty]$ and containing the positive axis $[0, \infty]$. Plugging each of the solutions $c_{\pm} x$ into the functional equation (16), one obtains a boundary value problem for $L_1(h)$, which states that:

(i) $L_1(h)$ is analytic on G_Y,
(ii) $L_1(h)$ is continuous on $\overline{G_Y} \setminus \{0\}$,
(iii) For all $x \in (0, \infty]$, $L_1(h)$ satisfies the boundary equation $L_1(h)(c_+ x) = L_1(h)(c_- x)$.
In order to solve this problem, one introduces the conformal mapping ω from \mathcal{G}_Y onto $\mathbb{C} \setminus \mathbb{R}_-$ defined by $\omega(x) = x^{-\pi/\theta}$. One eventually obtains that a class of solutions is obtained by letting $L_1(h)$ to be of the form

\begin{equation}
L_1(h)(y) = P\left(\frac{1}{y^{\pi/\theta}}\right),
\end{equation}

for some polynomial P. The same applies to $L_2(h)$ (by considering the solutions of $\gamma(X(y), y) = 0$), and using the functional equation (16) and the fact that $(c_{\pm})^{\pi/\theta} = -c^{\pi/\theta}$, one must have

\begin{equation}
L_2(h)(y) = -\frac{\sigma_{11}}{\sigma_{22}} P\left(-\frac{1}{c^{\pi/\theta} x^{\pi/\theta}}\right),
\end{equation}

with the same P as in (17). Hence, using again the functional equation (16), we deduce that the Laplace transform of h writes

\begin{equation}
L(h)(x, y) = \frac{1}{2} \sigma_{11} P\left(\frac{1}{y^{\pi/\theta}}\right) - P\left(-\frac{1}{c^{\pi/\theta} x^{\pi/\theta}}\right) \frac{\gamma(x, y)}{\gamma(x, y)}.
\end{equation}

In particular, taking P to be a polynomial of degree 1, one gets

\begin{equation}
L(h)(x, y) = \frac{\sigma_{22} \mu_2 + \sigma_{11} \mu_1}{\gamma(x, y)} + \sigma_{12} \frac{\mu_1}{\gamma(x, y)},
\end{equation}

where the constants are related by $\mu_2 = \mu_1 \left(\frac{\sigma_{11}}{\sigma_{22}}\right)^{1-\pi/2\theta}$. Taking the inverse Laplace transform, one recovers the unique positive harmonic function (written in polar coordinates)

\begin{equation}
h(x, y) = \rho^{\pi - x} \sin \left(\frac{\pi}{\theta} \eta\right).
\end{equation}

Suppose now that v is bi-harmonic and satisfies $G v = h$, where h is harmonic. The functional equation for v now reads

\begin{equation}
\gamma(x, y) L(v)(x, y) = \frac{1}{2} (\sigma_{11} L_1(v)(y) + \sigma_{22} L_2(v)(x)) + L(h)(x, y).
\end{equation}

By considering the roots of the kernel γ and using the same method as above, we obtain

\begin{equation}
\frac{1}{2} \sigma_{11} L_1(v)(c_+ x) - \frac{1}{2} \sigma_{11} L_1(v)(c_- x) = L(h)(x, c_- x) - L(h)(x, c_+ x).
\end{equation}

We now have an a priori non-homogeneous boundary value problem for v, that we can in fact transform into an homogeneous one, thanks to the already known explicit form of $L(h)$. The key remark to this task is that $(c_{\pm} x)^{\pi/\theta} = (c_{\pm} x)^{\pi/\theta} = -(cx)^{\pi/\theta}$. Rewriting (18) as

\begin{equation}
L(h)(x, y) = \frac{\sigma_{11}}{\sigma_{22}} \frac{P\left(\frac{1}{y^{\pi/\theta}}\right) - P\left(\frac{1}{(c_{\pm} x)^{\pi/\theta}}\right)}{(y - c_- x)(y - c_+ x)}
\end{equation}

and letting $y \to c_+ x$ and $y \to c_- x$, one finds

\begin{equation}
L(h)(x, c_{\pm} x) = \frac{\sigma_{11}}{\sigma_{22}} \pi \frac{1}{(c_{\pm} x - c_{\mp} x)} \frac{1}{\theta} \left(\frac{1}{(c_{\pm} x)^{\pi/\theta}}\right) P\left(\frac{1}{(c_{\pm} x)^{\pi/\theta}}\right) \frac{1}{(c_{\pm} x)^{\pi/\theta + 1}}.
\end{equation}
Eventually, we get
\[L(h)(x, c_x) - L(h)(x, c_x) \]
\[= \frac{\sigma_{11}}{\sigma_{22}} \frac{\pi}{\theta} \left(\frac{1}{c_x - c_-} \frac{P'(1/2)}{(c_x)^{\pi/\theta + 1}} - \frac{1}{c_- - c_x} \frac{P'(1/2)}{(c_-)^{\pi/\theta + 1}} \right) \]
\[= \frac{\sigma_{11}}{\sigma_{22}} \frac{\pi}{\theta} \left(\frac{c_+}{c_+ - c_-} \frac{P'(1/2)}{(c_+)^{\pi/\theta + 2}} - \frac{c_-}{c_- - c_+} \frac{P'(1/2)}{(c_-)^{\pi/\theta + 2}} \right) \]
where the last equality follows from \((c_+)^{\pi/\theta} = (c_-)^{\pi/\theta}\). Therefore, the boundary value equation (20) is now homogeneous, and of the form
\[\frac{1}{2} \sigma_{11} L_1(v)(c_+) - F(c_+) = \frac{1}{2} \sigma_{11} L_1(v)(c_-) - F(c_-), \]
where \(F\) is equal on \(Y_+([0, \infty]) \cup Y_-([0, \infty])\) to
\[(21) \quad F(y) = -\frac{\sigma_{11}}{\sigma_{22}} \frac{\pi}{\theta} \frac{c_+ c_-}{(c_+ - c_-)^2} \frac{P'}{y^{\pi/\theta}} \frac{1}{y^{\pi/\theta + 2}}. \]
We note that the simpler case when \(F(c_+) = F(c_-)\) occurs exactly when \(c_+^2 = c_-^2\), i.e., \(\theta = 0\) or \(\pi/2\). We obtain in this way a boundary value problem analogous to the harmonic case, which leads on the boundary of \(G_v\) except at 0 to
\[\frac{1}{2} \sigma_{11} L_1(v)(y) - F(y) = Q \left(\frac{1}{y^{\pi/\theta}} \right), \]
for some polynomial \(Q\). The same computation applies to \(L_2(v)\). As such, using the equation (19), the Laplace transform of the bi-harmonic function \(v\) admits the following form:

Theorem 2.4. For any polynomials \(P, Q\), the formula:
\[L(v)(x, y) = \frac{1}{\gamma(x, y)} \left[Q \left(\frac{1}{y^{\pi/\theta}} \right) - Q \left(\frac{1}{(c_x)^{\pi/\theta}} \right) + G(x, y) + L(h)(x, y) \right], \]
is the Laplace transform \(L(v)\) of a bi-harmonic function \(v\) satisfying \(Gv = h\), where \(h\) is a harmonic function with Dirichlet boundary conditions, and where the Laplace transform \(L(h)\) of \(h\) has the form (18) and
\[G(x, y) = F(y) - F(c_+) - L(h)(x, c_+), \]
where \(F\) is defined in Eq. (21).

The above theorem can be understood as a Laplace transform counterpart of Almansi’s theorem [1].

Recursively, if \(v_n\) is polyharmonic of order \(n\), with \(Gv_n = v_{n-1}\) where \(v_{n-1}\) is polyharmonic of order \(n - 1\), the above method permits to express the Laplace transform of \(v_n\) through the one of \(v_{n-1}\), allowing to construct polyharmonic functions via Laplace inversion.

Further computations for the Brownian motion with identity covariance matrix are proposed in Appendix A.
3. Discrete polyharmonic functions

As in the continuous setting, we first investigate the appearance of polyharmonic functions in asymptotic expansions of coefficients counting walks with fixed endpoints in the quarter plane. Several techniques may apply to obtain asymptotic expansions starting from exact expression for enumeration of lattice paths, e.g., Laplace’s method and saddle point method [17] or analytic combinatorics in several variables [19]. We will present such an asymptotic expansion in the simplest case of the diagonal walk via Laplace’s method. We then implement the functional equation approach to construct polyharmonic functions.

Our framework is thus the following. We consider random walks in the quarter plane \(\mathbb{Z}_2^+ \) with the following assumptions:

1. The walk is homogeneous with transition probabilities \(\{p_{i,j}\}_{1 \leq i,j \leq 1} \) to the eight nearest neighbours and \(p_{0,0} = 0 \) (so we are only considering walks with small steps),
2. In the list \(p_{1,1}, p_{1,0}, p_{1,-1}, p_{0,1}, p_{0,-1}, p_{-1,1}, p_{-1,0}, p_{-1,-1} \), there are no three consecutive zeros (to avoid degenerate cases),
3. The drifts are zero.

The Markov operator \(P \) of the walk is defined on discrete functions by

\[
P f(x, y) = \sum_{-1 \leq i,j \leq 1} p_{i,j} f(x + i, y + j),
\]

and the Laplacian operator is \(L = P - I \). A function \(f \) is said to be harmonic if \(Lf = 0 \) and polyharmonic of order \(p \) if \(L^p f = 0 \).

3.1. Examples of asymptotic expansion in walks enumeration problems. We start by recalling a few exact expressions for the number of quarter plane walks of length \(n \) with prescribed endpoints.

Example 3.1 (The diagonal walk). The step set is \(\{\uparrow, \downarrow, \swarrow, \searrow\} \) with uniform transition probabilities equal to \(\frac{1}{4} \). It is well known (see for instance [9]) that

\[
q((i, j), (0, 0); n) = \frac{(i+1)(j+1)}{n^{i+j+2} \left(\frac{n+1}{2} \right)^2 \left(\frac{n+1}{2} \right)^2},
\]

with \(i \) and \(j \) having the same parity as \(n \). Starting from (22), one can prove that

\[
q((i, j), (0, 0); n) \sim \frac{8}{\pi^4} \sum_{p \geq 0} \frac{v_p(i, j)}{n^{i+j+9}},
\]

where the first few terms in the above asymptotic expansion are given by

\[
\begin{align*}
v_0(i, j) &= (i+1)(j+1), \\
v_1(i, j) &= -\frac{1}{2}(i+1)(j+1)(i^2 + j^2 + 2i + 2j + 9).
\end{align*}
\]

The first term \(v_0 \) is the well-known unique (up to multiplicative constants) positive harmonic function, with Dirichlet conditions. The next term satisfies \(Lv_1 = -3v_0 \), and therefore is bi-harmonic. Note that in fact, using the explicit expression of the Laplacian \(L \), it is obvious that any polynomial of degree at most \(2p - 1 \) is polyharmonic of order \(p \), since for any polynomial \(f \) of degree \(k \), \(Lf \) has degree at most \(k - 2 \) (it is a discrete equivalent of Lemma 2.1).

We shall use Laplace’s method to derive a full asymptotic expansion of (22). We choose to postpone it to Appendix B, since the computations are a bit long but straightforward.
Example 3.2 (The simple random walk). The step set is \{\(\leftarrow, \uparrow, \downarrow\}\} with uniform transition probabilities equal to \(\frac{1}{3}\). We have (6) by [9]. Again, starting from (6), one can prove that

\[
q((i, j), (0, 0); n) \sim \frac{4}{\pi} 4^n \sum_{p \geq 0} \frac{v_p(i, j)}{n^{i+p}},
\]

where the first few terms in the asymptotic expansion are given by

\[
\begin{aligned}
&v_0(i, j) = (i + 1)(j + 1), \\
v_1(i, j) = \frac{1}{4} (i + 1)(j + 1)(2i^2 + 2j^2 + 4i + 4j + 15).
\end{aligned}
\]

Again, \(v_0\) is harmonic, and since \(Lv_1 = -\frac{3}{2}v_0\), \(v_0\) is bi-harmonic.

Example 3.3 (The tandem walk). The step set is \{\(\leftarrow\), \(\uparrow\), \(\downarrow\)\} with uniform probabilities \(\frac{1}{3}\). From [10, Prop. 9], we know that:

\[
q((i, j), (0, 0); n) = \frac{(i + 1)(j + 1)(i + j + 2)(3m + 2i + j)!}{m!(m + i + 1)!(m + i + j + 2)!},
\]

with \(n = 3m + 2i + j\). In this case, writing the asymptotic expansion

\[
q((i, j), (0, 0); n) \sim \frac{\sqrt{3}}{2\pi} 3^n \sum_{p \geq 0} \frac{v_p(i, j)}{n^{i+p}},
\]

one has for the harmonic function \(v_0\) and the bi-harmonic function \(v_1\),

\[
\begin{aligned}
v_0(i, j) &= (i + 1)(j + 1)(i + j + 2), \\
v_1(i, j) &= -\frac{1}{3} (i + 1)(j + 1)(i + j + 2)(3i^2 + 3j^2 + 3ij + 9i + 9j + 38).
\end{aligned}
\]

3.2. Functional equation approach in the discrete case. We implement here the functional equation method to construct polyharmonic functions. We start by recalling the key arguments for the harmonic case; details may be found in [20].

For a harmonic function \(h\), we denote by \(H\) its generating function, namely,

\[
H(x, y) = \sum_{i,j \geq 0} h(i, j)x^iy^j.
\]

The kernel of the random walk is defined as the polynomial

\[
K(x, y) = xy \left(\sum_{-1 \leq k, \ell \leq 1} p_{k, \ell} x^{-k} y^{-\ell} - 1 \right).
\]

The harmonic equation \(Lh = 0\) yields the following functional equation

\[
K(x, y)H(x, y) = K(x, 0)H(x, 0) + K(0, y)H(0, y) - K(0, 0)H(0, 0).
\]

To solve (25), one first proves that the function \(H(x, 0)\) (and similarly \(H(0, y)\)) satisfies a boundary value problem (see [20]):

(i) \(H(x, 0)\) is analytic in \(G_Y\),

(ii) \(H(x, 0)\) is continuous on \(\overline{G_Y} \setminus \{1\}\),

(iii) For all \(x\) in the boundary of \(G_X\) except at 1, \(H(x, 0)\) satisfies the boundary equation:

\[
K(x, 0)H(x, 0) - K(\overline{x}, 0)H(\overline{x}, 0) = 0.
\]

Here, \(G_X\) is a certain domain bounded by the curve \(X_+([y_1, 1]) \cup X_-([y_1, 1])\), where \(X_\pm(y)\) are the algebraic functions defined by \(K(X(y), y) = 0\). Indeed, writing \(K\) as

\[
K(x, y) = \tilde{\alpha}(y)x^2 + \tilde{\beta}(y)x + \tilde{\gamma}(y),
\]
where $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ are polynomials of degree 2 whose coefficients depend on the model of the walk, we have

$$X_\pm(y) = -\tilde{\beta}(y) \pm \sqrt{\tilde{\delta}(y)},$$

where $\tilde{\delta}(y) = \tilde{\beta}(y)^2 - 4\tilde{\alpha}(y)\tilde{\gamma}(y)$. The functions X_\pm are thus meromorphic on $\mathbb{C} \setminus [y_1, y_4]$, where $\{y_i\}_{1 \leq 4}$ are the four roots of $\tilde{\delta}$.

It follows by [20] that $K(x, 0)H(x, 0)$ may be written as a function of a certain conformal mapping ω (see [20, Eq. (3.1)] for its explicit expression):

$$K(x, 0)H(x, 0) = P(\omega(x)),$$

which represents the analogous statement as (17) in the continuous setting. By the functional equation (25), one eventually finds that

$$H(x, y) = \frac{P(\omega(x)) - P(\omega(X_+(x)))}{K(x, y)},$$

which again should be compared with (18) in the continuous case.

For a bi-harmonic function v, satisfying $Lv = h$ with h a harmonic function, the functional equation now writes

$$(26) \quad K(x, y)V(x, y) = K(x, 0)V(x, 0) + K(0, y)P(0, y) - K(0, 0)P(0, 0) - xyH(x, y),$$

where V is the generating function of v, i.e., $V(x, y) = \sum_{i,j \geq 0} v(i, j)x^iy^j$; compare with (19).

Plugging the roots of the kernel into (26), one has

$$K(X_\pm(y), 0)V(X_\pm(y), 0) + K(0, y)V(0, y) - K(0, 0)V(0, 0) - X_\pm(y)\gamma H(X_\pm(y), y) = 0,$$

which leads to the boundary equation

$$(27) \quad K(x, 0)V(x, 0) - K(\tau, 0)V(\tau, 0) = y(xH(x, y) - \tau H(\tau, y)),$$

for x on the boundary of \mathcal{G}_X (except at 1).

Note that a general method to solve this kind of boundary value problem (27) exists [16], for any quantity in the right-hand side, ending up in some contour integral expression for the unknown function $K(x, 0)V(x, 0)$. We choose to provide below examples with simpler, integral-free expressions. Indeed, the resolution of (27) is made easier in some peculiar cases, for instance when the right hand side of (27) is zero (which occurs for the simple random walk, see Example 3.4 below), or when it can be decoupled in the terminology of [6] (which is analogous to the continuous setting and holds for the tandem walk, see Appendix C).

Example 3.4. We consider here the case of the simple random walk with step set $\{\leftarrow, \uparrow, -\rightarrow, \downarrow\}$ and uniform transition probabilities equal to $\frac{1}{4}$. In this case, the kernel of the walk is

$$K(x, y) = xy \left(\frac{1}{4} \left(x + \frac{1}{x} + y + \frac{1}{y}\right) - 1\right).$$

The domain \mathcal{G}_X is the open unit disk, and the conformal mapping ω admits the expression (see [20]), $\omega(x) = \frac{x}{1-x}$. A computation shows that $\omega(X_+(y)) = -\omega(y)$, thus one gets that the generating function of a harmonic function h is written as

$$H(x, y) = \frac{P(\omega(x)) - P(-\omega(y))}{K(x, y)}.$$
Choosing \(P(x) = \frac{x}{4} \) leads to
\[
H(x, y) = \frac{\frac{1}{4}x^2 + \frac{1}{4}y^2}{xy \left(\frac{1}{2}(x + \frac{1}{x} + y + \frac{1}{y}) - 1 \right)} = \frac{1}{(1 - x)^2(1 - y)^2} = \sum_{i,j \geq 0} (i + 1)(j + 1)x^iy^j,
\]
that is, \(H \) is the generating function of the unique positive harmonic function.

We consider now bi-harmonic functions. Using the explicit form of \(H \), one sees that the right hand side of Eq. (27) vanishes. Indeed, we have
\[
X_+(y)H(X_+(y), y) - X_-(y)H(X_-(y), y)
= X_+(y) \frac{P'(\omega(X_+(y)))\omega'(X_+(y))}{\alpha(y)(X_+(y) - X_-(y))} - X_-(y) \frac{P'(\omega(X_-(y)))\omega'(X_-(y))}{\alpha(y)(X_-(y) - X_+(y))},
\]
which is equal to zero since \(\omega(X_+(y)) = \omega(X_-(y)) \) and
\[
X_+(y) \frac{\omega'(X_+(y))}{X_+(y) - X_-(y)} - X_-(y) \frac{\omega'(X_-(y))}{X_-(y) - X_+(y)} = 0
\]
by straightforward computations. The boundary equation has thus exactly the same form as the one in the harmonic case, so we get that on the boundary of \(G_X \),
\[
K(x, 0)V(x, 0) = Q(\omega(x)),
\]
for some polynomial \(Q \). Using (twice) the functional equation (26), the general form for the generating function of a bi-harmonic \(\nu \) satisfying \(L\nu = h \) with \(h \) harmonic, is thus
\[
V(x, y) = \frac{Q(\omega(x)) - Q(-\omega(y)) + X_+(y)yH(X_+(y), y) - xyH(x, y)}{K(x, y)},
\]
with
\[
H(x, y) = \frac{P(\omega(x)) - P(-\omega(y))}{K(x, y)},
\]
and
\[
H(X_+(y), y) = \frac{P'(\omega(X_+(y)))\omega'(X_+(y))}{\alpha(y)(X_+(y) - X_-(y))}.
\]
For instance, taking \(P(x) = x \) and \(Q \) the zero polynomial leads to the bi-harmonic function
\[
v(i, j) = (i + 1)(j + 1)j(j + 2).
\]
Note that the above function is not symmetrical in \(i \) and \(j \). Indeed, one has
\[
X_+(y)H(X_+(y), y) = -\frac{y}{(1 - y)^4},
\]
so the generating function \(V \) writes
\[
V(x, y) = \frac{-4y}{(1 - x)^2(1 - y)^4},
\]
which is easily inverted. On the other hand, taking \(P(x) = x \), and \(Q(x) = -2x^2 - \frac{5}{2}x \), one obtains the bi-harmonic function
\[
v(i, j) = (i + 1)(j + 1)(2i^2 + 2j^2 + 4i + 4j + 15),
\]
which is (up to a multiplicative constant) the bi-harmonic function \(v_1 \) appearing in Eq. (23).

Another example will be treated in Appendix C.
POLYHARMONIC FUNCTIONS IN CONES

References

Appendix A. Detailed Computations for the Standard Brownian Motion in the Quadrant

Here we apply the functional equation approach to the case of the Brownian motion in the quarter-plane with identity covariance matrix. The kernel \(\gamma \) is equal to \(\gamma(x, y) = \frac{1}{2}(x^2 + y^2) \), so \(c_\pm = \pm i \) and \(\theta = \frac{\pi}{2} \). The functional equation (16) for \(h \) harmonic is then

\[
(x^2 + y^2)L(h)(x, y) = L_1(h)(y) + L_2(h)(x),
\]

which leads to

\[
L(h)(x, y) = \frac{P\left(\frac{1}{y^2}\right) - P\left(-\frac{1}{x^2}\right)}{x^2 + y^2}.
\]

In case when \(P \) is the polynomial of degree 1, \(P(x) = x \), one gets \(L(h)(x, y) = \frac{1}{x^2+y^2} \) which is the Laplace transform of the well-known unique positive harmonic function within the quarter-plane \(h(x, y) = xy \).

More generally, choosing \(P(x) = -(2j)!(-x)^j \) leads to the Laplace transform (in Cartesian coordinates) of the harmonic function \(f_{2j, j} \) defined in (13). Indeed, recall that \(f_{2j, j}(\rho, \theta) = \rho^{2j} \sin(2j\theta) \), which is written in Cartesian coordinates as follows. Recall that the Chebyshev polynomial \(U_j \) of the second kind is defined as \(U_j(\cos \theta) \sin \theta = \sin(j\theta) \), \(j \geq 0 \), and admits the expression

\[
U_j(z) = z^j \sum_{k=0}^{\lfloor j/2 \rfloor} \binom{j + 1}{2k + 1} (1 - z^{-2})^k.
\]

Hence, the harmonic function \(f_{2j, j} \) can be written in Cartesian coordinates \((x, y) = (\rho \cos \theta, \rho \sin \theta) \), thanks to the explicit expression of \(U_{2j-1} \),

\[
f_{2j, j}(x, y) = \sum_{k=0}^{j-1} (-1)^k \binom{2j}{2k+1} y^{2k+1} x^{2j-2k}.
\]

The Laplace transform of \(f_{2j, j} \) is now computed using \(L(x^ny^k) = \frac{n!k!}{2^{n+k+1}} \), and one obtains

\[
L(f_{2j, j})(x, y) = (2j)! \sum_{k=0}^{j-1} (-1)^k \frac{1}{y^{2k+2}x^{2j-2k}} = (2j)! \frac{(\frac{1}{x^2})^j - (\frac{1}{y^2})^j}{x^2 + y^2}.
\]

For \(v \) bi-harmonic, the functional equation (19) is

\[
(x^2 + y^2)L(v)(x, y) = L_1(v)(y) + L_2(v)(x) + 2L(h)(x, y),
\]

and the general form of the Laplace transform of \(v \) writes

\[
L(v)(x, y) = \frac{Q\left(\frac{1}{y^2}\right) - Q\left(-\frac{1}{x^2}\right) + \frac{4}{x^4}P'\left(-\frac{1}{x^2}\right) + 2P\left(\frac{1}{x^2}\right)}{x^2 + y^2},
\]

for some polynomials \(P \) and \(Q \). Choosing \(P(x) \) equal to \(x \), and \(Q \) of degree 2, equal to \(x^2 \), gives that

\[
L(v)(x, y) = \frac{x^2 + y^2}{x^4y^4} = \frac{1}{x^2y^4} + \frac{1}{x^4y^2},
\]

which is the Laplace transform of the function \(v(x, y) = (x^2 + y^2)xy \), which corresponds in polar coordinate \((\rho, \theta) \) to the bi-harmonic function \(f_{4, 2}(\rho, \theta) = \rho^4 \sin 2\theta \) defined in (13). More generally, choosing \(P(x) = -(1)^{j+1} (2j)! 2(2j + 1) x^j \) and \(Q(x) = -(1)^{j+1} (2j)! 2(2j + 1) j x^{j+1} \) leads to the bi-harmonic function \(f_{2j+2, j} \). Indeed, since \(f_{2j+2, j}(x, y) = (x^2 + y^2)f_{2j, j}(x, y) \), one has, from the usual properties of the Laplace transform, that

\[
L(f_{2j+2, j}) = \Delta L(f_{2j, j}).
\]
As such, by applying the Laplacian to the Laplace transform of \(f_{2j,j} \) given in (28), one obtains that

\[
L(f_{2j+2,j})(x, y) = \frac{(2j)!2(2j + 1)}{x^2y^2(x^2 + y^2)^2} \left\{ (j + 2)x^2y^2 \left(\left(\frac{1}{x^2} \right)^j - \left(\frac{-1}{y^2} \right)^j \right) + j \left(y^4 \left(\frac{1}{x^2} \right)^j - x^4 \left(\frac{-1}{y^2} \right)^j \right) \right\}.
\]

Now, plugging the above choice of \(P \) and \(Q \) in Eq. (29) gives easily the formula.

Appendix B. Complete asymptotic expansion for the diagonal walk

As a simple explicit example, we provide for the diagonal walk with steps from \(\{↑, ↓, ←, →, \} \), a complete asymptotic expansion for the number of \(n \)-excursions from the origin to \((i, j) \) given by (22). Projecting the walk onto the coordinate axes, one gets two decoupled prefixes of Dyck paths. Hence (22) is obtained by a simple application of the reflection principle in the one-dimensional case, which gives that the number of non-negative paths from 0 to \(\lambda \) with \(n \) steps is given by

\[
m(\lambda, n) := \binom{n}{\frac{n + \lambda}{2}} - \binom{n}{\frac{n + \lambda + 1}{2}} = \frac{\lambda + 1}{n + \lambda + 2} \binom{n}{\frac{n}{2}},
\]

with \(\lambda \equiv n \mod 2 \). Using the simple integral representation of the binomial coefficient

\[
\binom{n}{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt}(1 + e^{it})^n dt,
\]

one readily obtains the following integral representation for \(m(\lambda, n) \),

\[
m(\lambda, n) = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} 2^n (\cos y)^n \sin((\lambda + 1)y) \sin(y) dy.
\]

A straightforward way to obtain an asymptotic expansion of the counting of \(n \)-excursions is to apply Laplace’s method to the above integral. Let us first introduce some notations. Define the sequence \((\alpha(m))_{m \geq 1}\) as

\[
\alpha(m) = \frac{(4^m - 1)|B_{2m}|2^{2m}}{2m(2m)!},
\]

where the \(B_{2m} \)’s are the Bernoulli numbers, which can be defined through the Riemann zeta function at even integers:

\[
\zeta(2m) = \frac{|B_{2m}|(2\pi)^{2m}}{2(2m)!}.
\]

Define, for \(s \geq k \geq 0 \),

\[
B_{s,k}^n := B_{s,k}(\alpha(2), \ldots, \alpha(s - k + 2)),
\]

the rational numbers obtained by evaluating the partial ordinary Bell polynomial in the variables \(\alpha(m + 1) \)'s. Recall that by definition, see for instance [13], the partial ordinary Bell polynomials in the variables \((x_k)_{k \geq 1}\) are the polynomials obtained by performing the formal double series expansion:

\[
\exp \left(u \sum_{m \geq 1} x_m t^m \right) = \sum_{n \geq k \geq 0} B_{n,k}(x_1, \ldots, x_{n-k+1}) t^n \frac{u^k}{k!}.
\]
Note that the polynomial $B_{n,k}$ contains $p(n,k)$ monomials, where $p(n,k)$ stands for the number of partitions of n into k parts, see [13] for details and for an explicit expression of these polynomials. Finally, define for $p \geq k \geq 0$,

$$C_{k,p}^a = \frac{1}{k!} \sum_{j=k}^{p} \frac{(-1)^j}{(2p - 2j + 1)!} B_{j,k}^a.$$

We first give a complete asymptotic expansion for prefixes of Dyck paths.

Theorem B.1. Let $m(\lambda, n)$ be the number of non-negative paths from 0 to $\lambda \in \mathbb{Z}_+$ given by (30). The following asymptotic expansion holds:

$$m(\lambda, n) \sim 2^{\sqrt{2}} \frac{2^n}{\sqrt{\pi n^{3/2}}} \sum_{j \geq 0} \frac{(-1)^j}{n^j} h_j(\lambda),$$

where for $j \geq 0$,

$$h_j(\lambda) = \sum_{k=0}^{j} \sum_{p=0}^{j} \frac{(-1)^k}{(2(j-p)+1)!} C_{k,p}^a m_{2(k+j+1)}(\lambda + 1)^{2(j-p)+1},$$

where $m_{2k} = (\frac{2k}{2^k})!$ is the $2k$-th Gaussian moment and $C_{k,p}^a$ is defined in (33).

Hence, the above theorem gives in the one-dimensional case, an asymptotic expansion in terms of polyharmonic functions of the number of non-negative paths. Indeed, it is easily seen that the polynomial h_j has degree $2j+1$, so is polyharmonic of order $j+1$ for the one-dimensional Laplacian $L f(x) = \frac{1}{2} (f(x+1) + f(x-1)) - f(x)$.

Since the number of n-excursions for the diagonal walk is the product of counting of two decoupled Dyck paths, one readily obtains the following corollary.

Corollary B.2. Let $q(0, (i, j); n)$ be the number of diagonal paths with n steps from the origin to (i, j) and confined in the quadrant, given by (22). Then

$$q(0, (i, j); n) \sim \frac{8}{\pi} \frac{1}{n^3} 4^n \sum_{p \geq 0} \frac{(-1)^p}{n^p} v_p(i, j),$$

where, with h_k defined in (34),

$$v_p(i, j) = \sum_{k=0}^{p} h_k(i) h_{p-k}(j).$$

Clearly, the polynomial function v_p has degree $2p+1$ and thus is polyharmonic of order $p+1$ for the Laplacian associated to the diagonal walk. The set of exponents appearing in the asymptotic expansion is here $3 + \mathbb{N}$.

Proof of Theorem B.1. To obtain the claimed asymptotic expansion, we apply Laplace’s method as in [17, p. 755] to the integral representation

$$m(\lambda, n) = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} 2^n (\cos y)^n \sin((\lambda + 1)y) \sin(y) dy.$$

Indeed, the cosine function admits only one maximum in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$, at $y = 0$, and the contribution to the integral outside any fixed segment containing 0 is exponentially small and as such can be discarded for an asymptotic consideration.

So, first, we perform the change of variable $\theta = \frac{y}{\sqrt{n}}$ to get

$$m(\lambda, n) = 2^n \frac{2}{\pi} \frac{1}{n^{1/2}} \int_{-\frac{\pi \sqrt{n}}{2}}^{\frac{\pi \sqrt{n}}{2}} \cos \left(\frac{y}{\sqrt{n}}\right)^n \sin \left(\frac{y}{\sqrt{n}}\right) \sin \left((\lambda + 1)\frac{y}{\sqrt{n}}\right) dy.$$
The next step is to consider an asymptotic expansion of the integrand as \(n \to \infty \). Using the Weierstrass product formula for the cosine function,
\[
\cos y = \prod_{k=1}^{\infty} \left(1 - \frac{4y^2}{\pi^2(2k - 1)^2} \right)
\]
and the Taylor series of the logarithm function, one has
\[
\log \cos (y) = -\sum_{m \geq 1} \alpha(m) y^{2m},
\]
where the sequence \(\alpha(m) \) is defined in (31). Note that an interpretation of the sequence \(\alpha(m) \) is that they correspond to the cumulant sequence of the Bernoulli distribution \(\frac{1}{2} \delta_{x+1} + \frac{1}{2} \delta_{x-1} \). Now one has, using \(\alpha(1) = \frac{1}{2} \) and the Taylor series of the exponential function,
\[
\cos \left(\frac{y}{\sqrt{n}} \right)^n = \exp \left(n \log \cos \left(\frac{y}{\sqrt{n}} \right) \right) = e^{-y^2/2} \sum_{s \geq 0} \frac{1}{n^s} \sum_{k=0}^{s} \frac{(-1)^k}{k!} B_{s,k}^\alpha \ y^{2(k+s)},
\]
where \(B_{s,k}^\alpha \) is the partial ordinary Bell polynomial defined in (32). Now, using the Taylor series of the sine function, and after some elementary manipulations, one gets
\[
\cos \left(\frac{y}{\sqrt{n}} \right)^n \sin \left(\frac{y}{\sqrt{n}} \right) \sin \left((\lambda + 1) \frac{y}{\sqrt{n}} \right) = e^{-y^2/2} \sum_{j \geq 0} \frac{1}{n^j} \sum_{p=0}^{j} \sum_{k=0}^{p} (-1)^k \frac{C_{k,p}^\alpha}{(2(j-p)+1)!} y^{2(k+j)+2(\lambda+1)^2(j-p)+1},
\]
where \(C_{k,p}^\alpha \) is defined in (33).

The next step in Laplace’s method is to neglect the tails. Hence, we write
\[
m(\lambda, n) \sim 2 \frac{2^n}{\pi n^{3/2}} \sum_{j \geq 0} \frac{(-1)^j}{n^j} \sum_{p=0}^{j} \sum_{k=0}^{p} \frac{(-1)^k C_{k,p}^\alpha}{(2(j-p)+1)!} \int_{-\kappa_n}^{\kappa_n} e^{-y^2/2} y^{2(k+j)+2(\lambda+1)^2(j-p)+1} \, dy,
\]
where \(\kappa_n \) is chosen so that the error bounds are exponentially small (for instance one can choose arbitrarily \(\kappa_n = n^{1/10} \)). Completing the tails of the Gaussian integral, that is
\[
\int_{-\kappa_n}^{\kappa_n} e^{-y^2/2} y^{2(k+j)+2(\lambda+1)^2(j-p)+1} \, dy \sim \int_{\mathbb{R}} e^{-y^2/2} y^{2(k+j)+2} \, dy = \sqrt{2\pi} \frac{(2(k+j+1)!}{2^{k+j+1}(k+j+1)!} = \sqrt{2\pi} m_{2(k+j+1)},
\]
where \(m_{2k} = \frac{(2k)!}{2^{k} k!} \) is the 2\(k \)-th Gaussian moment, one finally obtains, with \(h_j \) defined in (34), that
\[
m(\lambda, n) \sim 2\sqrt{2} \frac{2^n}{\pi n^{3/2}} \sum_{j \geq 0} \frac{(-1)^j}{n^j} h_j(\lambda). \quad \Box
\]

APPENDIX C. THE EXAMPLE OF TANDEM WALKS

In this subsequent example, we consider the tandem walk with steps from \(\{\downarrow, \rightarrow, \downarrow\} \). In this case, the functional equation approach admits a nicer form because the right hand side of Eq. (27) can be decoupled, that is, can be written as \(G(X_+(y)) - G(X_-(y)) \), for some function \(G \). The computations are close to the continuous case but are quite tedious. First, from [20], we know that the generating function \(H \) of a harmonic function \(h \) is of the form
\[
H(x, y) = \frac{P(\omega(x)) - P(\omega(X_+(y)))}{K(x, y)},
\]
where
where the conformal mapping \(\omega \) is given by \(\omega(y) = \frac{y^3}{(y-1)^3} \). The unique positive harmonic function \(v_0(i, j) = (i + 1)(j + 1)(i + j + 2) \) of (24) is obtained choosing \(P(x) = -\frac{y}{3}x \).

Using the general form of \(H \), one has

\[
yX_+(y)H(X_+(y), y) - yX_-H(X_-(y), y) = 3\frac{yX_+(y)\omega'(X_+(y))}{X_+(y) - X_-(y)} P'(\omega(X_+(y))) - 3\frac{yX_-(y)\omega'(X_-(y))}{X_-(y) - X_+(y)} P'(\omega(X_-(y))).
\]

Define now the decoupling function on \(\mathcal{G}_X \):

\[
(36) \quad F(y) = \frac{(\omega(y))^2}{y} = \frac{y^3}{(1 - y)^6}.
\]

Some computations show that

\[
\frac{yX_+(y)\omega'(X_+(y))}{X_+(y) - X_-(y)} - \frac{yX_-(y)\omega'(X_-(y))}{X_-(y) - X_+(y)} = F(X_+(y)) - F(X_-(y)).
\]

Minding the fundamental fact that \(\omega(X_+(y)) = \omega(X_-(y)) \), it follows that

\[
yX_+(y)H(X_+(y), y) - yX_-H(X_-(y), y) = G(X_+(y)) - G(X_-(y)),
\]

where \(G(y) = 3F(y)P'(\omega(y)) \). One deduces that the generating function \(V(x, y) \) for a bi-harmonic function \(v \) satisfying \(Lv = h \) admits the form

\[
\frac{1}{K(x, y)} \left(Q(\omega(x)) - Q(\omega(X_+(y))) + G(x) - G(X_+(y)) + X_+(y) yH(X_+(y), y) - xyH(x, y) \right),
\]

where \(H \) has the general form given by Eq. (35) and \(G(y) = 3F(y)P'(\omega(y)) \) with the decoupling function \(F \) defined in Eq. (36). Note that this has to be compared with Theorem 2.4.

Choosing \(P(x) = x \) and \(Q \equiv 0 \) leads to the bi-harmonic function

\[
(37) \quad v(i, j) = (j + 1)(i + 1)(i + j + 2)(2i^3 + 3i^2j + 14i^2 + 5ij + 24i - 3j^2 - 2j^3 - 4j^2 + 6j).
\]

To obtain bi-harmonic function \(v_1 \) of (24), one chooses \(P(x) = -\frac{8}{3}x \) and \(Q(x) = \frac{8}{3}x^2 + \frac{26}{27}x \). This is obtained by noticing that an appropriate linear combination of the bi-harmonic function (37) and of \(v_1 \) is harmonic and its generating function corresponds to the term

\[
\frac{Q(\omega(x)) - Q(\omega(X_+(y)))}{K(x, y)}.
\]

As such, computing its generating function leads to the polynomial \(Q \).