Skip to Main content Skip to Navigation
Conference papers

Motifs locaux binaires pour la classification d'images de textures multispectrales

Abstract : To discriminate gray-level texture images, spatial texture descriptors can be extracted using the local binary pattern (LBP) operator. In this paper we design an LBP operator that jointly extracts the spatial and spectral texture information directly from a raw image provided by a camera equipped with a multispectral filter array. Extensive experiments on a large dataset show that the proposed descriptor has both low computation cost and high discriminative power with regard to classical LBP descriptors applied to multispectral images.
Document type :
Conference papers
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02436371
Contributor : Utilisateurgeneriquecristalhalimageriecouleur Cristal-Hal-Imagerie-Couleur Connect in order to contact the contributor
Submitted on : Thursday, February 20, 2020 - 2:53:47 PM
Last modification on : Tuesday, January 4, 2022 - 6:50:39 AM
Long-term archiving on: : Thursday, May 21, 2020 - 3:45:13 PM

File

Mihoubi_GRETSI2020.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02436371, version 1

Citation

Sofiane Mihoubi, Olivier Losson, Benjamin Mathon, Ludovic Macaire. Motifs locaux binaires pour la classification d'images de textures multispectrales. XXVIIème Colloque francophone de traitement du signal et des images, GRETSI 2019, Aug 2019, Lille, France. ⟨hal-02436371⟩

Share

Metrics

Les métriques sont temporairement indisponibles