R. Badeau and R. Boyer, Fast multilinear singular value decomposition for structured tensors, SIAM J. Matrix Anal. Appl, p.30, 2008.

J. Ballani and L. Grasedyck, Hierarchical tensor approximation of output quantities of parameter-dependent pdes, SIAM Journal on uncertainty quantification, vol.3, pp.852-872, 2015.

J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in hierarchical Tucker format, Linear algebra and its Applications, vol.438, pp.639-657, 2013.

G. Bergqvist and E. G. Larsson, The higher-order singular value decomposition: Theory and an application [lecture notes, IEEE Signal Processing Magazine, vol.27, pp.151-154, 2010.

M. Boussé, O. Debals, and L. D. Lathauwer, A tensor-based method for large-scale blind source separation using segmentation, IEEE Transactions on Signal Processing, vol.65, pp.346-358, 2016.

R. Boyer, R. Badeau, and G. Favier, Fast orthogonal decomposition of Volterra cubic kernels using oblique unfolding, 36th IEEE International Conference on Acoustics, Speech and Signal Processing, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00576019

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra and its Applications, vol.433, pp.1851-1872, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00355713

G. Camba-mendez and G. Kapetanios, Statistical tests and estimators of the rank of a matrix and their applications in econometric modelling, Econometric Reviews, vol.28, pp.581-611, 2009.

J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition, Psychometrika, vol.35, pp.283-319, 1970.

T. F. Chan, Rank revealing QR factorizations, Linear algebra and its applications, vol.88, pp.67-82, 1987.

A. Cichocki, Era of big data processing: A new approach via tensor networks and tensor decompositions, 2014.

A. Cichocki, Tensor networks for big data analytics and large-scale optimization problems, 2014.

A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao et al., Low-rank tensor networks for dimensionality reduction and large-scale optimization problems: Perspectives and challenges part 1, CoRR, 2016.

A. L. De-almeida, G. Favier, and J. Mota, A constrained factor decomposition with application to MIMO antenna systems, IEEE Transactions on Signal Processing, vol.56, pp.2429-2442, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00417627

A. L. De-almeida and A. Y. Kibangou, Distributed computation of tensor decompositions in collaborative networks, 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp.232-235, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912384

A. L. De-almeida and A. Y. Kibangou, Distributed large-scale tensor decomposition, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.26-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00958642

V. , D. Silva, and L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl, vol.30, pp.1084-1127, 2008.

C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, pp.211-218, 1936.

S. Etter, Parallel als algorithm for solving linear systems in the hierarchical tucker representation, SIAM J. Scientific Computing, vol.38, pp.2585-2609, 2016.

G. Favier and A. L. De-almeida, Tensor space-time-frequency coding with semi-blind receivers for MIMO wireless communication systems, IEEE Transactions on Signal Processing, vol.62, pp.5987-6002, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01246038

G. H. Golub and C. F. Van-loan, Matrix Computations, 2013.

A. Gorodetsky, S. Karaman, and Y. Marzouk, A continuous analogue of the tensor-train decomposition, Computer Methods in Applied Mechanics and Engineering, vol.347, pp.59-84, 2019.

J. H. Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, Tensor CP Decomposition with structured factor matrices: Algorithms and performance, IEEE Journal of Selected Topics in Signal Processing, vol.10, pp.757-769, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01246855

L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl, vol.31, pp.2029-2054, 2010.

L. Grasedyck and W. Hackbusch, An introduction to hierarchical (h-) rank and TT-rank of tensors with examples, Comput. Meth. in Appl. Math, vol.11, pp.291-304, 2011.

L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation techniques, CGAMM-Mitteilungen, vol.36, pp.53-78, 2013.

W. Hackbusch and S. Kühn, A new scheme for the tensor representation, Journal of Fourier Analysis and Applications, vol.15, pp.706-722, 2009.

R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, vol.16, pp.1-84, 1970.

C. J. Hillar and L. Lim, Most tensor problems are NP-hard, Journal of the ACM, vol.60, pp.1-39, 2013.

F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor, J. of Mathematics and Physics, vol.7, pp.39-79, 1927.

M. Jacquelin, L. Marchal, and Y. Robert, Complexity analysis and performance evaluation of matrix product on multicore architectures, International Conference on Parallel Processing, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01063319

V. Kazeev, O. Reichmann, and C. Schwab, Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, Linear Algebra and its Applications, vol.438, pp.4204-4221, 2013.

B. Khoromskij, O(d logN)-quantics approximation of n-d tensors in high-dimensional numerical modeling, Constructive Approximation, vol.34, pp.257-280, 2011.

B. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey on recent advances, vol.110, pp.1-19, 2011.

T. G. Kolda, A counterexample to the possibility of an extension of the eckart-young lowrank approximation theorem for the orthogonal rank tensor decomposition, SIAM J. Matrix Anal. Appl, vol.24, pp.762-767, 2003.

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev, vol.51, pp.455-500, 2009.

T. G. Kolda and J. Sun, Scalable tensor decompositions for multi-aspect data mining, Eighth IEEE International Conference on Data Mining, 2008.

D. Kressner, M. Steinlechner, and B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT Numerical Mathematics, vol.54, pp.447-468, 2014.

D. Kressner and C. Tobler, Algorithm 941: h-Tucker -a matlab toolbox for tensors in hierarchical Tucker format, Math. Softw, vol.40, p.22, 2014.

S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory, IEEE Transactions on Signal Processing, vol.57, pp.3930-3941, 2009.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl, vol.21, pp.1253-1278, 2000.

S. L. Lauritzen, Graphical models, vol.17, 1996.

N. Lee and A. Cichocki, Very large-scale Singular Value Decomposition using Tensor Train networks, 2014.

A. P. Liavas and N. D. Sidiropoulos, Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers, IEEE Transactions on Signal Processing, vol.63, pp.5450-5463, 2015.

V. Nguyen, K. Abed-meraim, and N. Linh-trung, Fast tensor decompositions for big data processing, International Conference on Advanced Technologies for Communications (ATC), 2016.
URL : https://hal.archives-ouvertes.fr/hal-02144889

R. Orus, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics, vol.349, pp.117-158, 2014.

I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra and its Applications, vol.432, pp.70-88, 2010.

I. V. Oseledets, Tensor-train decomposition, SIAM J. Scientific Computing, vol.33, pp.2295-2317, 2011.

I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Scientific Computing, pp.3744-3759, 2009.

E. E. Papalexakis, C. Faloutsos, and N. Sidiropoulos, ParCube: Sparse parallelizable tensor decompositions, Proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases, vol.7523, pp.521-536, 2012.

A. H. Phan and A. Cichocki, Parafac algorithms for large-scale problems, Neurocomputing, vol.74, pp.1970-1984, 2011.

L. Qi, Q. Wang, and Y. Chen, Three dimensional strongly symmetric circulant tensors, Linear Algebra and its Applications, vol.482, pp.207-220, 2015.

G. Quintana-orti and E. S. Quintana-orti, Linear algebra and its applications, vol.275, pp.451-470, 1998.

S. Ragnarsson and C. F. Loan, Block tensors and symmetric embeddings, Linear Algebra and its Applications, vol.438, pp.853-874, 2013.

T. Rohwedder and A. Uschmajew, On local convergence of alternating schemes for optimization of convex problems in the tensor train format, SIAM Journal on Numerical Analysis, vol.51, pp.1134-1162, 2013.

A. Sandryhaila and J. Moura, Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure, IEEE Signal Processing Magazine, vol.31, pp.80-90, 2014.

D. V. Savostyanov, Quasioptimality of maximum-volume cross interpolation of tensors, Linear Algebra and its Applications, vol.458, pp.217-244, 2014.

N. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. Papalexakis et al., Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, vol.65, pp.3551-3582, 2017.

N. Sidiropoulos, E. Papalexakis, and C. Faloutsos, A parallel algorithm for big tensor decomposition using randomly compressed cubes (PARACOMP), IEEE International Conference on Acoustics, Speech and Signal Processing, 2014.

C. D. Silva and F. J. Herrmann, Optimization on the hierarchical tucker manifold applications to tensor completion, Linear Algebra and its Applications, vol.481, pp.131-173, 2015.

E. M. Stoudenmire and S. R. White, Real-space parallel density matrix renormalization group, Physical review B, vol.87, 2013.

P. Strobach, Bi-iteration svd subspace tracking algorithms, IEEE Transactions on signal processing, vol.45, pp.1222-1240, 1997.

L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, pp.279-311, 1966.

S. Ubaru and Y. Saad, Fast methods for estimating the numerical rank of large matrices, International Conference on Machine Learning, pp.468-477, 2016.

A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra and its Applications, vol.439, pp.133-166, 2013.

L. Ximenes, G. Favier, A. L. De-almeida, and Y. Silva, PARAFAC-PARATUCK semiblind receivers for two-hop cooperative MIMO relay systems, IEEE Transactions on Signal Processing, vol.62, pp.3604-3615, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01246041

C. Xu, Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra and its Applications, vol.491, pp.56-72, 2016.

Y. Zniyed, R. Boyer, A. L. De-almeida, and G. Favier, High-order cpd estimation with dimensionality reduction using a tensor train model, 26th European Signal Processing Conference (EUSIPCO), 2018.

Y. Zniyed, R. Boyer, A. L. De-almeida, and G. Favier, Multidimensional harmonic retrieval based on vandermonde tensor train, vol.163, pp.75-86, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02123112