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Abstract

MIMO technology has been subject of increasing interest in both academia
and industry for future wireless standards. However, its performance benefits
strongly depend on the accuracy of the channel at the base station. In a recent
work, a fourth-order channel tensor model was proposed for MIMO systems. In
this paper, we extend this model by exploiting additional spatial diversity at the
receiver, which induces a fifth order tensor model for the channel. For such high
orders, there is a crucial need to break the initial high-dimensional optimization
problem into a collection of smaller coupled optimization sub-problems. This
paper exploits new results on the equivalence between the canonical polyadic de-
composition (CPD) and the tensor train (TT) decomposition for the multi-path
scenario. Specifically, we propose a Joint dImensionality Reduction And Factor
rEtrieval (JIRAFE) method to find the transmit and receive spatial signatures
as well as the complex path gains (which also capture the polarization effects).
Monte Carlo simulations show that our proposed TT-based representation of
the channel is more robust to noise and computationally more attractive than
available competing tensor-based methods, for physical parameters estimation.

Keywords: MIMO systems, CPD, tensor train decomposition, dimensionality
reduction, factor retrieval.

1. Introduction

MIMO systems have been subject of intense research due to their great po-
tential to provide substantial energy efficiency and data rate gains [1]. Hence,
for MIMO channel modeling and estimation, it is important to accurately es-
timate path directions in azimuth and elevation, along with the polarization
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and amplitude parameters at both sides of the link. In multiuser MIMO sys-
tems, the knowledge of the channel parameters at the base station (angles of
arrival, angles of departure, path gains, and polarization parameters) can be
efficiently exploited to realize beamforming designs and deal with multiuser in-
terference. In this context, adopting a parametric approach to model/estimate
the MIMO channel enables the use of limited feedback in frequency division
duplexing (FDD) systems to provide the base station with the downlink chan-
nel parameters for subsequent transmit signal design. In a recent paper [2], a
tensor-based approach for dual-polarized MIMO channel estimation has been
proposed by recasting the MIMO channel as a fourth-order tensor. The authors
assumed a MIMO system with a uniform rectangular array (URA) at the trans-
mitter (e.g. base station) and a uniform linear array (ULA) at the receiver (e.g.
user equipment). The identifiability of the channel parameters is thoroughly
discussed and a channel estimation algorithm is proposed, the core of which
relies on the Alternating Least Squares (ALS) algorithm [3]. Despite being an
attractive solution, its computational complexity may still be high, especially
when downlink channel estimation is carried out at the user equipment with
limited processing capabilities. In this work, URA is considered also at the re-
ception. Note that this particular array geometry is highly relevant, not only for
wireless communications, but also for modern radio-interferometry-based tele-
scopes [4]. Exploiting azimuth and elevation diversities at both ends of the link
increases the tensor order to five [2]. Even if the ALS-based method proposed
in [2] remains a possible solution, our approach is inspired by the tensor net-
work theory [5], and more precisely some new results [6, 7, 9] on the equivalence
between the CPD and the TTD. Note that Theorem 2 in this work provides
a sensibly different result from [6, 7]. Indeed, the ALS algorithm turns out to
be often inefficient for high-order tensors. The main drawbacks as illustrated
in the simulation part of this work are ill-converging problems [10] and a high
computational complexity cost. To mitigate this dimensionality problem, the
decomposition of the channel tensor is carried out using a Joint dImensional-
ity Reduction And Factor rEtrieval (JIRAFE) principle [6, 7, 8]. The acronym
JIRAFE encompasses a flexible and generic family of algorithms which has al-
ready been successfully applied in the context of multidimensional harmonic
retrieval [11]. More precisely, the fifth-order channel tensor is first decomposed
as a graph-based connected lower-order tensors, called cores [12]. The coupled
structure of these cores is described in two scenarios of interest, i.e., when only
few (< 4) propagation paths are dominant and the case where the multi-path
propagation condition becomes more severe (≥ 4). While the first case is based
on some preliminary results given in [6], the core structure for the more chal-
lenging situations is described in this work. The second step of the JIRAFE
method is dedicated to the factor retrieval for which we exploit the Vander-
monde rectification strategy proposed in [13]. Our detailed contributions can
be summarized as follows:

1. From a fundamental perspective, the equivalence between CPD and TTD
has been presented in [6, 7] for full column rank factors. This equivalence
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is deeply reformulated in the sense that the structure of the TT-cores
changes if the full column rank factor assumption is violated. This is
precisely the case of the MIMO channel tensor considered in this work.

2. Comparatively with the channel model considered in [2], the one proposed
in this work exploits an URA at the reception, inducing an increase of
spatial diversity. This case has been first mentioned in [2], but in this work
we detail the model when URAs are considered at both the transmitter
and the receiver.

3. The MIMO channel is represented under a TT format, instead of the
usual CPD representation, and the structure of the TT-cores is highlighted
separately under the assumptions of full column rank and full row rank
for the matrix factors.

4. The TT structure characterized by properties of coupling between two ad-
jacent cores containing the same latent matrices, is exploited for dimen-
sionality reduction and channel parameters estimation using the JIRAFE
(Joint dImensionality Reduction And Factor rEtrieval) scheme.

2. Tensor-based channel modeling

2.1. Canonical Polyadic Decomposition (CPD) of the channel tensor

2.1.1. Expression of the channel tensor

The steering vectors for the k-th path for an URA in transmission of size
MTx × MTy and in reception of size MRx × MRy are respectively, aT (k) =
aTx(k)⊗ aTy (k), aR(k) = aRx(k)⊗ aRy (k) where

aX(k) = [1, exp (jωX(k)), · · · , exp (jωX(k)(MX − 1))]T (1)

with X ∈ {Tx, Ty, Rx, Ry}. Note that ⊗ and � denote respectively Kronecker
and Khatri-Rao products. The steering matrices for K paths in transmission
and in reception are respectively, AT = ATx

�ATy
and AR = ARx

�ARy
in

which
AX =

[
aX(1) · · · aX(K)

]
.

Now, define β
(p,q)
k as the k-th entry of the vector β(p,q), with 1 ≤ k ≤ K,

where β
(p,q)
k is the generalized (complex) path-loss parameter for the k-th path

and for the (p, q)-th subchannel. Note that p ∈
{
Vr, Hr

}
refers to the vertical

(V) polarized and horizontal (H) polarized receive antennas, and q ∈
{
Vt, Ht

}
refers to the V-polarized and H-polarized transmit antennas. In the noise-free
scenario, the channel matrix is given by

H = (A∗Tx
�A∗Ty

�ARx
�ARy

)BT

with B = [β(Vr,Vt)β(Vr,Ht)β(Hr,Vt)β(Hr,Ht)]T ∈ C4×K . From this matrix un-
folding of the channel tensor H, we can conclude that it follows a fifth-order
CPD of canonical rank K, and size MTx

×MTy
×MRx

×MRy
× 4, given by

H = I5,K ×1 A
∗
Tx
×2 A

∗
Ty
×3 ARx

×4 ARy
×5 B + N . (2)
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The additive term N encompasses the background noise and the estimation
error due to the pre-estimation of the unstructured channel obtained by sending
known pilot sequences from the transmit antennas. In the massive MIMO case,
using orthogonal pilot sequences would lead to very long pilot sequences of the
order of the number of the transmit antennas. However, as shown recently
in [14], Kronecker-structured pilots can be used, which allows to significantly
reduce the length of the pilot sequences. The noise tensor N can then be
modeled as zero-mean circularly complex Gaussian random variables.

Note that the considered channel tensor model is an extension of the one
presented in [2] due to the URA assumption at both the transmitter and the
receiver. We draw attention to the fact that the focus of our work is on the
extraction of the MIMO channel parameters based on the unstructured noisy
channel tensor.

2.1.2. Model assumptions

For identifiability concerns, we assume the following constraints.

1. The steering matrices are all of full column rank, which implies K ≤
min{MTx

,MTy
,MRx

,MRy
}1.

2. Two scenarios in terms of the number of propagation paths are of interest:

(a) K < 4 (few dominant paths), then B is a full column rank matrix.
(b) K ≥ 4, then B is a full row rank factor matrix.

2.2. Tensor train decomposition (TTD) of the channel tensor

The idea of the TTD [12] is to break the dimensionality/order of H into
3-order TT-cores and two matrices according to

H TTD
= G1 ×1

2 G2 ×1
3 G3 ×1

4 G4 ×1
5 G5, (3)

where G1 ∈ CMTx×K , G2 ∈ CK×MTy×K , G3 ∈ CK×MRx×K , G4 ∈ CK×MRy×K ,
and G5 ∈ CK×4. The product ×q

p is defined as in [6]. As mentioned in the
previous section, H follows a 5-order CPD of canonical rank-K. In this context,
the TT-cores can be analytically relied to the desired factors of the CPD. This
is the subject of the next section.

3. Joint Dimensionality Reduction and Factor Retrieval (JIRAFE)

3.1. JIRAFE: dimensionality reduction

In the following, we present two theorems on the structure of the TT-cores
resulting from the TT-SVD [12] algorithm applied to eq. (2).

1The assumption of a small number K of paths compared to the number of transmit/receive
antennas is usually made in massive MIMO scenarios, especially in millimeter-wave systems
due to the poor scattering propagation and the high number of antennas [15, 16].
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1. Theorem 1 is a generalization of the result given in [6], i.e., when there
exists few (K < 4) dominant propagation paths. In this case, all the
factors are full-column rank.

2. Theorem 2 modifies Theorem 1 for the more challenging scenario where
there is four or more propagation paths. In this case, the last factor is
full-row rank.

Theorem 1. When all the factors are full-column rank (K < 4), the TT-cores
are given by

G1 = A∗Tx
M−11 , G2 = I3,K ×1 M1 ×2 A

∗
Ty
×3 M

−T
2 , (4)

G3 = I3,K ×1 M2 ×2 ARx
×3 M

−T
3 , (5)

G4 = I3,K ×1 M3 ×2 ARy
×3 M

−T
4 , and G5 = M4B

T (6)

where, for 1 ≤ k ≤ 4, Mk ∈ CK×K are nonsingular transformation matrices.
This means that the TT-ranks are all equal to the canonical rank K, where K
is the number of paths.

Theorem 2. If the last factor is full row rank, i.e., K ≥ 4, then the TT-cores
{G1,G2,G3} verify the same factorizations as in Theorem 1 but the two last
TT-cores are given by:

G4 = I3,K ×1 M3 ×2 ARy
×3 M

−TB, and G5 = M (7)

where M ∈ C4×4 is a nonsingular transformation matrix. This means that the
TT-ranks are equal to (K,K,K, 4).

Proof. Both theorems rely on constructive proofs based on the algebraic struc-
ture of the TT-SVD algorithm applied to a 5-order CPD tensor. Depending on
the rank of B, the reasoning in both cases will be the same for all but the two
last TT-cores. We recall that Mk are change-of-basis matrices that appear due
to the use of the SVD to extract dominant subspaces [6, 7].

Remark 1. The two above theorems show that the TT-core structure mixes
physical quantities, i.e., {A∗Tx

,A∗Ty
,ARx ,ARy ,B} and latent matrices, i.e.,

{M1,M2,M3,M4,M}, and that each TT-core is coupled with its two neighbor
TT-cores via the latent matrices.

3.2. JIRAFE: CPD factors retrieval

When the TT-cores have been estimated thanks to the TT-SVD algorithm
for instance, the aim of the second step of JIRAFE is to propose an estimation
strategy exploiting the TT-core structures given in Theorems 1 and 2. The use
of the TTD representation and the JIRAFE approach is mainly motivated by
three reasons: (i) it allows to break the dimensionality of the original 5-order
tensor to smaller 3-order tensors using closed-form solutions, (ii) the parameters
estimation can be done using the smaller 3-order tensors when their structure
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is derived with a lower computational cost, and (iii) we will show in the next
section that the JIRAFE approach will have a better robustness compared to
other state-of-art algorithms. We refer to [7] for more details about the TTD
and the JIRAFE approach.

3.2.1. Few dominant paths scenario (K < 4)

When K < 4, we have to minimize the following criterion with respect
to the physical quantities {A∗Tx

,A∗Ty
,ARx ,ARy ,B} and the latent quantities

{M1,M2,M3,M4}:

C1 = ||Ĝ1 −A∗Tx
M−11 ||2F + ||Ĝ5 −M4B

T ||2F (8)

+ ||Ĝ2 − I3,K ×1 M1 ×2 A
∗
Ty
×3 M

−T
2 ||2F (9)

+ ||Ĝ3 − I3,K ×1 M2 ×2 ARx ×3 M
−T
3 ||2F (10)

+ ||Ĝ4 − I3,K ×1 M3 ×2 ARy
×3 M

−T
4 ||2F . (11)

This criterion is the sum of coupled LS criteria. At this point, we choose
deliberately to promote a local/sequential (but fast) optimization method (see
Algorithm 1) instead of a global/optimal optimization strategy based for in-
stance on the Lagrangian minimization [17]. In Algorithm 1, we denote by
Tri-ALS, the ALS algorithm applied to a 3-order tensor, the acronym TR1A
stands Toeplitz Rank-1 Approximation and is dedicated to a Vandermonde rec-
tification strategy presented in [13], while KRF denotes a non-iterative method
called Khatri-Rao Factorization proposed in [18]. KRF algorithm recovers 3-
order CPD factors assuming that one factor is known and full column rank.
It computes K SVDs of rank-one matrices to recover the remaining two other
factors. Since the focus of this work is on the new TT representation for the
channel tensor H, we could adopt any state-of-art method for estimating the
channel, such as least squares or matched filtering techniques.

Algorithm 1 JIRAFE for few dominant propagation paths

Input: 5-order rank-K tensor H, TT-ranks: (K,K,K,K).
Output: Estimated CPD factors: Â∗Tx

, Â∗Ty
, ÂRx

, ÂRy
, B̂.

1: Dimensionality reduction: [Ĝ1, Ĝ2, Ĝ3, Ĝ4, Ĝ5]←↩ TT-SVD(H, R),

2: CPD factors retrieval: [M̂1, Â
∗
Ty
, M̂−T2 ]←↩ Tri-ALS(Ĝ2,K),

3: [ÂRx , M̂
−T
3 ]←↩ KRF(Ĝ3, M̂2,K),

4: [ÂRY
, M̂−T4 ]←↩ KRF(Ĝ4, M̂3,K),

5: Â∗Tx
= Ĝ1M̂1, and B̂ = ĜT

5 M̂
−T
4 ;

6: Rectification: [Â∗Tx
, Â∗Ty

, ÂRx , ÂRy ]←↩ TR1A(Â∗Tx
, Â∗Ty

, ÂRx , ÂRy ).

Remark 2. Note that the steering factors have a Vandermonde structure. It
then makes sense to use a Tri-ALS algorithm that takes into account the struc-
ture of these factors. In the simulations, we will use a class of ALS-based
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methods that is called RecALS, for Rectified ALS [13]. Note that other meth-
ods for angle estimation could also be applied. The chosen RecALS method is a
3-order ALS that integrates a rectification strategy of the Vandermonde struc-
ture of the factor matrices. This strategy is also applied on the Vandermonde
factors resulting from the KRF algorithm. In the simulations, and considering
the use of TR1A to rectify the Vandermonde structure, we will call the proposed
method JIRAFE.

3.2.2. More general multi-path scenario (K ≥ 4)

Based on Theorem 2, we propose a second algorithm which minimizes the
following criterion over the physical quantities {A∗Tx

,A∗Ty
,ARx ,ARy ,B} and

over the latent quantities {M1,M2,M3,Q}:

C2 = ||Ĝ1 −A∗Tx
M−11 ||2F + ||Ĝ5 −Q†TBT ||2F (12)

+ ||Ĝ2 − I3,K ×1 M1 ×2 A
∗
Ty
×3 M

−T
2 ||2F (13)

+ ||Ĝ3 − I3,K ×1 M2 ×2 ARx
×3 M

−T
3 ||2F (14)

+ ||Ĝ4 − I3,K ×1 M3 ×2 ARy
×3 Q||2F (15)

where Q = M−TB and Ĝ5 = M.
Note that the Algorithm 2 is deduced from Algorithm 1 by replacing the

TT-ranks by (K,K,K, 4) in the dimensionality reduction. In addition, lines 4
and 5 become [ÂRY

, Q̂]←↩ KRF(Ĝ4, M̂3, 4) and Â∗Tx
= Ĝ1M̂1, and B̂ = ĜT

5 Q̂,
respectively.

It is worth noting that it has been proven in [6, 7] that the JIRAFE method
estimates the CPD factors up to the same trivial ambiguities as for the ALS
algorithm. In contrast to the scheme presented in [6], the proposed JIRAFE
algorithm replaces the Bi-ALS algorithm by the non-iterative KRF estimator,
which allows to mitigate potential ill-convergence problems.

4. Simulation Results

In this section, we show the interest of using the TTD of Section 2.2 over
the CPD through the JIRAFE-based proposed algorithms. The Vandermonde
factors ATx

,ATy
,ARx

, and ARy
are generated, respectively, based on single ran-

dom realizations of the angular frequencies ωTx
(k), ωTy

(k), ωRx
(k) and ωRy

(k)
following a uniform distribution in ]0, π]. The factor B is drawn from a complex
Gaussian distribution with zero mean and unit variance. The scenario for the
simulations consists of a receiver and a transmitter both with 10× 8 URAs, im-
plying that H satisfies a 5-order rank-K CPD, of dimensions 10×8×10×8×4.
For the simulations, we consider the noisy channel tensor H in eq. (2). This
tensor can be given using a pre-estimation step based on a supervised approach
such as the one proposed in [14]. The considered MSE concerns the estimation
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Fig. 1: MSE vs SNR in dB with Alg. 1 for K = 3.

error over the angular frequencies, i.e.,

MSE =

K∑
k=1

((
ωTx

(k)− ω̂Tx
(k)
)2

+
(
ωTy

(k)− ω̂Ty
(k)
)2

(16)

+
(
ωRx(k)− ω̂Rx(k)

)2
+
(
ωRy (k)− ω̂Ry (k)

)2)
, (17)

the signal to noise ratio (SNR) is defined as

SNR [dB] = 10 log
||H||2F
||N ||2F

.

The depicted MSE is calculated by averaging the results over 1000 independent
Monte Carlo runs, truncated from 5% worst and 5% best MSEs to eliminate
the influence of ill-convergence experiments and outliers. At each Monte Carlo
run, the noise tensor N changes. For the CPD computation, we consider the
TensorLab toolbox functions [19]. In this work, we assume both, random and
eigendecomposition-based initializations in the ALS. The proposed method is
compared to three state-of-art algorithms, the ALS-based solution proposed in
[2], called PARAFAC, which uses an ALS algorithm, with both random and
eigendecomposition-based initializations, followed by closed-form solutions to
estimate the parameters from the factors, the generalized eigenvalue decompo-
sition (GEVD) [20] followed by a rectification step to retrieve the Vandermonde
structure as in PARAFAC, and the so-called CP-VDM, for CPD with Vander-
monde factor matrix, proposed in [21]. All algorithms are applied to the more
general model in eq. (2). In Fig. 1, we fix K = 3, i.e., the last factor has a
full column rank. One may remark that JIRAFE and PARAFAC have same
robustness to noise for a wide range of positive SNR. For negative SNRs, JI-
RAFE is the most robust estimator, for both initialization cases. This can be
justified by the noise reduction property of the truncated SVD when the TT-
SVD is applied. The same remark can be made for Fig. 2 where K = 4. In this
figure, we can see that both, JIRAFE and PARAFAC, are competing for high
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Fig. 2: MSE vs SNR in dB with Alg. 2 for K = 4.
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Fig. 3: MSE vs SNR in dB with Alg. 2 for K = 5.

SNRs. Meanwhile, JIRAFE is more robust than the other estimators for low
SNRs. It is worth noting that for JIRAFE, both initializations give the same
robustness to noise, which is not the case for PARAFAC where we can remark
that the initialization has an influence on the robustness for low SNRs. Another
important remark is that the optimization-based solutions, i.e., ALS-based so-
lutions in our case, namely PARAFAC and JIRAFE, have a better robustness
compared to algebraic solutions such as GEVD or CP-VDM which seem not to
be optimal but have a very low computational cost as we will see in the next
experiments. In Fig. 3, the number of paths is fixed at K = 5, which means
that the last factor is full row rank. We have a similar behavior for JIRAFE
and PARAFAC as in the last experiment. On the other hand, CP-VDM and
GEVD have difficulties when the rank increases. It is worth noting that break-
ing the dimensionality of tensor H helps to improve the convergence of the ALS
algorithm, since with JIRAFE, the ALS is applied to 3-order tensors instead of
the original fifth-order tensor. In Fig. 4, we plot the mean number of iterations
for JIRAFE and PARAFAC using a GEVD initialization, which was the most
robust solution for PARAFAC. The bars represent the standard deviation for
each SNR. We notice that 3-order ALS for JIRAFE needs only 1 iteration to
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Fig. 4: Mean number of iteration for K = 2.

Table 1: Comparison of the computation time with SNR= 15dB.

Canonical rank K 2 3 4 5
PARAFAC (GEVD init.) 0, 09 (s) 0, 11 (s) 0, 13 (s) 0, 16 (s)
PARAFAC (random init.) 0, 13 (s) 0, 14 (s) 0, 16 (s) 0, 20 (s)

GEVD 0, 02 (s) 0, 03 (s) 0, 03 (s) 0, 03 (s)
JIRAFE (GEVD init.) 0, 04 (s) 0, 05 (s) 0, 06 (s) 0, 07 (s)
JIRAFE (random init.) 0, 04 (s) 0, 06 (s) 0, 07 (s) 0, 09 (s)

CP-VDM 0, 01 (s) 0, 02 (s) 0, 02 (s) 0, 02 (s)

converge after applying a GEVD, compared to PARAFAC which needs several
iterations after the same GEVD initialization especially for low SNRs, while
keeping in mind that the computational cost of a 3-order ALS iteration, that
needs O(3K2M2) flops, is very low compared to that of a 5-order ALS with
O(5K2M4) flops, where M = max(MTx

,MTy
,MRx

,MRy
) = 10. This shows

that breaking the dimensionality improves indeed the convergence of the ALS.
Tab. 1 gives the average computation time for each method. The proposed
JIRAFE with GEVD initialization provides the best tradeoff between noise ro-
bustness and computational complexity.

5. Conclusion

In this paper, an extension of a MIMO channel is considered using URAs
both at the transmitter and the receiver, which leads to a fifth-order channel
tensor. A TT-based representation has been derived for this tensor, highlighting
the coupling between two adjacent core tensors via the latent matrices. For
a multi-path scenario, a new JIRAFE-based method has been proposed for
channel parameters estimation. This method allows to break the dimensionality
of the original fifth-order CPD into a train of third-order tensors. Simulation
results show the effectiveness of the proposed TT-based channel representation
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in terms of noise robustness and computation time for retrieving the physical
channel parameters.
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