Exploring the early organization and maturation of linguistic pathways in the human infant brain
Jessica Dubois, Cyril Poupon, Bertrand Thirion, Hina Simonnet, Sofya Kulikova, François Leroy, Lucie Hertz-Pannier, Ghislaine Dehaene-Lambertz

To cite this version:
Jessica Dubois, Cyril Poupon, Bertrand Thirion, Hina Simonnet, Sofya Kulikova, et al.. Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, Oxford University Press (OUP), 2016, 26 (5), pp.2283-2298. 10.1093/cercor/bhv082. hal-02436257

HAL Id: hal-02436257
https://hal.archives-ouvertes.fr/hal-02436257
Submitted on 12 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exploring the early organization and maturation of linguistic pathways in the human infant brain

Jessica Dubois PhD ¹, Cyril Poupon PhD ², Bertrand Thirion PhD ³, Hina Simonnet MD ¹, Sofya Kulikova MSc ⁴, François Leroy PhD ¹, Lucie Hertz-Pannier MD-PhD ⁴, ⁵, Ghislaine Dehaene-Lambertz MD-PhD ¹

Affiliations:
1: INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
2: CEA, NeuroSpin Center, UNIRS, Gif-sur-Yvette, France
3: INRIA, Parietal, Gif-sur-Yvette, France; CEA, NeuroSpin Center, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
4: INSERM, U1129, Paris, France; CEA, SHFJ/NeuroSpin Centers, Gif-sur-Yvette, France; University Paris Descartes, Paris, France
5: CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France

Corresponding author:
Jessica Dubois, PhD
CEA/SAC/DSV/I2BM/NeuroSpin/Cognitive Neuroimaging Unit U992
Bât 145, point courrier 156
91191 Gif-sur-Yvette, France
Email: jessica.dubois@centraiens.net

Abstract
Linguistic processing is based on a close collaboration between temporal and frontal regions connected by two pathways: the “dorsal” and “ventral pathways” (assumed to support phonological and semantic processing respectively in adults). We investigated here the development of these pathways at the onset of language acquisition, during the first post-natal weeks, using cross-sectional diffusion imaging in 21 healthy infants (6 to 22 weeks of age) and 17 young adults. We compared the bundle organization and microstructure at these two ages using tractography and original clustering analyses of DTI parameters. We observed structural similarities between both groups, especially concerning the dorsal/ventral pathway segregation and the arcuate fasciculus asymmetry. We further highlighted the developmental tempos of the linguistic bundles: the ventral pathway maturation was more advanced than the dorsal pathway maturation, but the latter catches up during the first post-natal months. Its fast development during this period might relate to the learning of speech cross-modal representations and to the first combinatorial analyses of the speech input.

Keywords
Brain development, white matter maturation and myelination, language network, inter-hemispheric asymmetry, diffusion imaging
Introduction

During the first post-natal year, infants rapidly learn the distribution of sounds used in their native language and the rules that govern the combination of these sounds into words (Jusczyk PW, 1997). Although speech production lags behind perception, infants progressively improve their articulatory control to converge to a babbling that is specific to the native language between 6 months and 1 year of age (de Boysson-Bardies B and MM Vihman, 1991). They also rapidly integrate the auditory, visual and motor aspects of speech in their efforts to imitate adults’ utterances (Bristow D et al., 2009; Kuhl PK and AN Meltzoff, 1982; Kuhl PK and AN Meltzoff, 1996). The neural bases of this sophisticated learning remain poorly understood, but the development of non-invasive brain imaging techniques presents new opportunities to study early brain development in healthy human infants.

In adults, language perception and production rely on a large-scale network of cortical regions, generally lateralized toward the left hemisphere, and imply a close cooperation between the superior temporal, inferior parietal (angular and supra-marginal gyri), and inferior frontal regions (pars opercularis and triangularis) (Pallier C et al., 2011; Price CJ, 2010). The temporal regions have been classically considered to be involved in perception, while frontal regions are more concerned with the motor aspect of speech. This coarse distinction remains valid although new models of language computation are more spatially distributed (Petersson KM et al., 2012). Post-mortem descriptions, electro-stimulation studies of epilepsy and tumor patients, and in vivo mappings that utilize diffusion imaging have isolated several white matter bundles that connect these brain regions and support language processing (Dick AS and P Tremblay, 2012). These bundles are divided into two pathways that superiorly and inferiorly surround the sylvian fissure: the dorsal pathway (arcuate fasciculus AF and superior longitudinal fasciculus SLF) and the ventral pathway (uncinate fasciculus UF, inferior fronto-occipital fasciculus iFOF, and fibers passing through the extreme capsule EC, in between the claustrum and the external capsule), plus the inferior and middle longitudinal fascicles (ILF, MLF), which run within the temporal lobe. Although their respective contributions to different aspects of speech are still being discussed, the functions of these pathways are assumed to be markedly distinct: the “dorsal pathway” mainly contributes to phonological processing, whereas the “ventral pathway” supports semantic processing (Dick AS and P Tremblay, 2012; Rolheiser T et al., 2011; Vandermosten M et al., 2012).

The first functional MRI studies in infants listening to speech have reported activations that are very similar to those in adults. At 3 months of age, speech stimuli already activate temporal regions, more strongly in the left planum temporale than in its right counterpart (Dehaene-Lambertz G et al., 2002; Dehaene-Lambertz G et al., 2010). More surprisingly given the weak production capacities of infants and the commonly assumed delay in maturation of frontal regions, frontal activations have also been reported (Dehaene-Lambertz G, L Hertz-Pannier et al., 2006; Perani D et al., 2011). They are even observed before term, in 30-week gestational age preterm newborns who were studied in a syllable discrimination task using near infra-red spectroscopy (NIRS) (Mahmoudzadeh M et al., 2013). In three-month-old post-term infants, activations were enhanced in the left inferior frontal region when a short sentence was repeated, compared to trials when a new sentence was presented (Dehaene-Lambertz G, S Dehaene et al., 2006). Because the delay between sentences was around 12 s, well above the capacity of the auditory sensory buffer, this result might suggest an already functional short-term verbal memory, which relies in adults on the dorsal linguistic pathway. Activations in orbito-frontal regions have also been observed during the first post-natal months, with different responses to a familiar (i.e., the mother) and unfamiliar (i.e., another mother) voice (Dehaene-Lambertz G et al., 2010). These results challenge the classical assumptions that frontal regions and the connections to them are barely functional in the early post-natal months. However, these findings are congruent with a recent reappraisal of cortical maturation based on a structural
MRI analysis of healthy infants, which has revealed that the maturation stages of the inferior frontal and planum temporale are similar and more advanced than those of more ventral regions, such as the superior temporal sulcus (Leroy F et al., 2011). Thus the role of frontal regions in language learning should be reconsidered, and a better description of temporo-frontal connections might help to understand how the perisylvian network develops to efficiently process speech and adapts to the features of the native language.

In this cross-sectional study, diffusion imaging was used to explore the development of the main linguistic pathways in infants aged 6 to 22 weeks compared to adults. Our goal was twofold. First, we investigated whether refined in vivo imaging techniques can highlight structural similarities between the infants’ and adults’ connectivity. Although histological examinations reported that the long axonal fibers between distant associative regions mainly grow during the second part of pregnancy (Dubois J et al., 2015; Huang H et al., 2006; Takahashi E et al., 2012; Vasung L et al., 2010), two previous in vivo studies in healthy newborns have reported that the arcuate fasciculus ends in the premotor cortex and that the branch terminating in Broca’s area is not observed at this age (Brauer J et al., 2013; Perani D et al., 2011). However, in vivo fiber tractography in adults is subject to errors and approximations, and these errors may be even higher in infants due to the poor myelination and the small structure size, requiring anisotropy thresholds to be tuned for each group (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008; Dubois J et al., 2006). It is thus a challenge to judge the bundles functionality and similarity at different ages only based on tractography. We here proposed to complement this approach by a clustering analysis based on diffusion tensor imaging (DTI) parameters, and examine the similarities of these bundles between infants and adults in terms of terminations, asymmetry and microstructure. Diffusivities and anisotropy are differently sensitive to the organization of the tracts (coherence, compactness, density, etc.) (Dubois J, G Dehaene-Lambertz et al., 2014; Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008), and we expected these structural characteristics to be similar across ages, although possible differences in the tract terminations may be observed for the least mature regions. We further hypothesized equivalence among the two groups in terms of inter-hemispheric asymmetries, despite contradictory findings reported for the developing arcuate fasciculus (Dubois J et al., 2009; Song JW et al., 2014).

Our second goal was to investigate the between-bundles differences in maturation. White matter gets intensely myelinated during infancy and childhood, but the tempo of this myelination differs by brain region (Brody BA et al., 1987; Flechsig P, 1920; Kinney HC et al., 1988; Yakovlev PI and AR Lecours, 1967). This asynchronous maturation can be indirectly followed in infants based on changes in DTI parameters (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008). For example, the acceleration of the visual P1 wave correlated with transverse diffusivity and anisotropy in the optic radiations (Dubois J, G Dehaene-Lambertz, C Soares et al., 2008), and several studies of older children and adults have highlighted correlations between performances in a cognitive task and the microstructural properties of tracts (e.g., reading capacities and DTI parameters in the arcuate fasciculus (Thiebaut de Schotten M et al., 2012)). These results provide direct evidence of the relationships between DTI parameters and the pathways functional efficiency through myelination. In this study, we investigated the specific maturational tempos of language network bundles in infants. First we analyzed differences in the bundles maturation over the whole group of babies, by considering DTI parameters normalized by the corresponding adult parameters to take into account intrinsic structural differences across bundles (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008). Then, we performed a cross-sectional analysis of age-related changes to examine whether specific trajectories were observed over this 16-week developmental period. We particularly focused on differences in the maturation of the dorsal and ventral pathways. To date, the role of the dorsal pathway in the first stages of language acquisition has been debated. Because of
differences between the infants’ and adults’ arcuate fasciculus tractography, some authors suggested that only the ventral pathway between Broca’s area and temporal regions is functional during the first years of life, and account for the infant functional activations in the inferior frontal region (Brauer J et al., 2013; Perani D et al., 2011). Furthermore, the main hypothesis in evolutionary developmental biology claims that structures that appeared first during evolution develop early on in contemporary organisms. Because the arcuate fasciculus has evolved more recently than the extreme capsule / inferior fronto-occipital fasciculus along the primate lineage (Petrides M and DN Pandya, 2009; Rilling JK et al., 2012; Rilling JK et al., 2008), the ventral pathway is expected to mature earlier than the dorsal pathway. However, we suspected the fronto-temporal dorsal pathway to be efficient early during development because of functional evidence for verbal short-term memory capacities in infants (Dehaene-Lambertz G, L Hertz-Pannier et al., 2006), and of correlations between indices of maturation in the arcuate fasciculus, in Broca’s region and in the posterior superior temporal sulcus (Leroy F et al., 2011) (i.e., in cortical regions that serve the phonological loop in adults). Furthermore during the first post-natal trimester, infants’ speech production increases qualitatively and quantitatively. When they imitate adults’ models, vowel categories become more and more distinguishable (Kuhl PK and AN Meltzoff, 1996). It suggests intense exchange (through connections of the dorsal pathway) between production centers in the inferior frontal region, and the phonological store in the posterior temporal region. Similarly, the first analyses of the speech distributional properties to discover reproducible relations between adjacent (Johnson EK and MD Tyler, 2010) and non-adjacent syllables (Friederici AD et al., 2011) may benefit from an efficient short-term verbal memory, and thus a functional dorsal pathway.

Material and methods

1. Subjects

We studied 21 healthy infants (9 girls, 12 boys) born at term and with a mean age at MRI comprised between 5.9 and 22.4 weeks (chronological age corrected for gestational age at birth between 3.4 and 21w). Seventeen young adults were also studied (7 women, 10 men; 20.8 to 27.4 years). The MRI protocol was approved by the regional ethical committee for biomedical research, and all parents and adult subjects gave written informed consents. Infants were spontaneously asleep during MR imaging. Particular precautions were taken to minimize noise exposure by using customized headphones and covering the magnet tunnel with a special noise protection foam.

2. Data acquisition

Acquisitions were performed on a 3T MRI system (Tim Trio, Siemens Healthcare, Erlangen, Germany), equipped with a whole body gradient (40mT/m, 200T/m/s) and a 32-channel head coil. To minimize specific absorption rate (SAR) and noise exposure, we used radio-frequency (RF) impulsions with “no SAR”, and “whisper” gradient mode.

A diffusion-weighted (DW) spin-echo single-shot EPI sequence was used, with parallel imaging (GRAPPA reduction factor 2), partial Fourier sampling (factor 6/8) and monopolar gradients to minimize mechanical and acoustic vibrations. After the acquisition of the b=0 volume, diffusion gradients were applied along 30 orientations with b=700s.mm⁻². Note that typically a b-value of 1000s.mm⁻² is acquired for the adult brain. Images were here acquired with a smaller b-value to achieve a better signal-to-noise ratio (SNR) while taking into account the higher diffusivity values related to the higher water content in the infant brain (Dubois J et al., 2006; Xing D et al., 1997). In infants, 50 interleaved axial slices covering the whole brain were acquired with a 1.8mm isotropic spatial resolution (field of view = 230x230mm², matrix = 128x128, slice thickness = 1.8mm, TE = 72ms, TR = 10s), leading to a total acquisition time...
of 5min40s which was reasonably short for unsedated infants. To enable quantitative comparisons of DTI parameters, the same protocol was used in adults, except that 70 slices were acquired to cover the whole brain (TR = 14s to maintain a 200ms acquisition time per slice).

For anatomical registration, T2-weighted (T2w) images were acquired in infants using a 2D turbo spin echo sequence (spatial resolution = 1x1x1.1mm³), and T1-weighted (T1w) images were acquired in adults using a 3D fast gradient inversion recovery sequence (MPRage, 1mm isotropic spatial resolution). In infants, T2 weighting actually provides a better grey / white matter contrast than T1 weighting (Dubois J, G Dehaene-Lambertz et al., 2014).

3. Data post-processing and bundles tractography

i. Data preparation and post-processing

All data were processed using PTK toolkit and Connectomist software both developed in-house at NeuroSpin (Duclap D et al., 2012). DW images were first corrected for motion artefacts using a dedicated strategy (Dubois J, S Kulikova et al., 2014), based on two successive steps: 1) automated detection and 2D resampling of slices corrupted by motion or technical problems (e.g. mechanical vibrations, spike noise); 2) 3D realignment of the 30-orientation volumes misregistered due to inter-volume motion and distortions stemming from eddy current. During this procedure, all images were resampled to ensure proper co-registration with anatomical images and to align the anterior and posterior commissures in an axial plane. DTI model was estimated in each voxel within a brain mask, and DTI maps (fractional anisotropy FA, mean <D>, longitudinal λ∥ and transverse λ⊥ diffusivities) were generated.

To resolve the problem of crossing fibers, the bundles reconstruction was based on an analytical Q-ball model (Descoteaux M et al., 2007) and on a tractography algorithm with regularization (Perrin M et al., 2005). Using 30 diffusion orientations and a 700 s.mm⁻² b-value, a 4-order analytical Q-ball model was computed. Whole brain 3D tractography was performed using regularized particle trajectories (Perrin M et al., 2005) with an aperture angle of 45°. Each particle follows locally the direction of the strongest diffusion, except in voxels with low anisotropy due to fiber crossing, where the particle inertia favors a low curvature of the trajectory. Similarly to diffusion tensor deflection (Lazar M et al., 2003), this strategy resolves simple crossing configurations (Perrin M et al., 2005), and is particularly adapted to reconstruct the infants’ immature bundles despite their low myelination and anisotropy (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008). The seed mask within the white matter excluded voxels with either low FA (<0.15 for infants, <0.20 for adults) or high <D> (>2.10⁻³mm².s⁻¹) (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008; Dubois J et al., 2006), which may correspond to grey matter and CSF. To get the cortical terminations of fibers, the tractography propagation was loosened to voxels with lower FA (FA>0.10 for infants, >0.15 for adults).

ii. Identification of the bundles of interest

For all subjects, we identified the main bundles of the language network reported in adults (Catani M and M Thiebaut de Schotten, 2008; Thiebaut de Schotten M, DH Ffytche et al., 2011). In the dorsal pathway, we dissected the arcuate and superior longitudinal fascicles (AF and SLF), and in the ventral pathway the middle longitudinal fasciculus (MLF), the inferior longitudinal fasciculus and its lateral branches (ILF and ILFFlat), the uncinate and inferior fronto-occipital fascicles (UF and iFOF), and the extreme capsule (EC).

To retrieve these fascicles from the whole brain tractography, we defined regions of interest (ROIs) that the tracts should cross (Catani M et al., 2002; Huang H et al., 2004) and regions of exclusion (ROEs), i.e. “forbidden passages”, where fibers should not pass (ROEs were necessary to avoid errors in regions of crossing bundles). ROIs and ROEs were delineated
in the native space of each participant, using reproducible landmarks across subjects (see Figure 1 and Table 1 for the description of ROIs and ROEs). This was done on 2D slices from both the color-encoded directionality DTI map and the co-registered anatomical images, perpendicularly to the expected fibers using Anatomist software (Riviere D et al., 2000; http://brainvisa.info).

The extreme capsule fasciculus is a narrow tract, separated from the external capsule by the claustrum. Because its role in the developing language network has been emphasized in neonates (Perani D et al., 2011), we tried to reconstruct it and to distinguish it from the inferior fronto-occipital fasciculus (Forkel SJ et al., 2014; Turken AU and NF Dronkers, 2011). However, the claustrum separation was not visible on DWI images because it was smaller than the voxel size. Because this bundle is supposed to connect the superior temporal gyrus and the inferior frontal lobe at the level of the pars triangularis (Brodmann area 45), we drew coronal ROIs at the level of extreme/external capsules and of Heschl’s gyrus, and a large 3D ROI including the pars triangularis and opercularis (Figure 1) to select this bundle.

iii. Individual measures of DTI parameters

For each bundle, DTI parameters were quantified over the entire tract while taking the fiber density into account: line integration was used for each fiber of the tract by interpolating the DTI maps in 3D, and a mean value over the tract was computed by averaging the measurements from all points of all fibers (Dubois J et al., 2006). We took advantage of the different sensitivities of DTI parameters (fractional anisotropy FA, longitudinal λ_\parallel and transverse λ_\perp diffusivities) in relation with the tracts macro- and microstructural properties (Dubois J, G Dehaene-Lambertz et al., 2014; Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008), to study them alone and in combination.

Even in the absence of myelin, the tight organization of fibers inside a bundle (with high coherence, compactness and density) creates intrinsic anisotropy due to high longitudinal diffusivity and low transverse diffusivity (Beaulieu C, 2002), whereas regions of crossing fibers display low anisotropy. Even if myelination has a strong impact on DTI parameters, each bundle may present a specific profile of parameters that remains constant across life, according to its geometry, compactness, composition in fibers, and its relations to neighboring structures (crossings, etc.). Maturation also strongly impacts DTI parameters. During the “pre-myelination” stage, decreases in both diffusivities are observed as the brain water content decreases and the density of hindering membranes increases (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008), and this process should already be anisotropic in favor of the axonal direction (Nossin-Manor R et al., 2013; Zanin E et al., 2011). Second, the “true” myelination stage (which consists of the ensheathment of axons by oligodendroglial processes) is accompanied by an increase in anisotropy and a decrease in transverse diffusivity (but no change in longitudinal diffusivity) as well as a decrease in membrane permeability and extracellular distance.

In regions of crossing fibers, the profile of DTI parameters may appear more complex, particularly when crossing bundles are maturing over different time periods (Dubois J, G Dehaene-Lambertz et al., 2014). Let’s compare a voxel 1 containing only bundle A, and a neighbor voxel 2 including bundle A (same density) and a crossing bundle B. These additional fibers in voxel 2 increases the global density, and thus mean and longitudinal diffusivities are lower in 2 than 1 ($<D>_2 < <D>_1$; $\lambda_\parallel 2 < \lambda_\parallel 1$), and transverse diffusivity is higher ($\lambda_\perp 2 > \lambda_\perp 1$). Nevertheless simulations show that the relative difference between voxels 1 and 2 is lower for λ_\parallel than for λ_\perp: $|\lambda_\perp 2 - \lambda_\perp 1| / \lambda_\perp 1 < |\lambda_\parallel 2 - \lambda_\parallel 1| / \lambda_\parallel 1$. If myelination starts earlier in bundle A than in bundle B, anisotropy increases in voxel 1 as soon as A gets myelinated, whereas transverse diffusivity (and longitudinal diffusivity but to a lower extent) decreases (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008). In voxel 2, anisotropy first increases when A gets myelinated,
then decreases when B starts myelinating, whereas transverse diffusivity keeps decreasing, as well as longitudinal diffusivity (but again to a lower extent). Thus FA changes may be ambiguous and not related to similar phenomena in voxels 1 and 2, whereas myelination only decreases λ_{\perp} values (and $\lambda_{/\!\!/}$ values to a lesser extent) in both voxels.

In summary, transverse diffusivity strongly decreases with all processes of white matter maturation, and thus this parameter is likely the best DTI marker of myelination (Dubois J, G Dehaene-Lambertz, C Soares et al., 2008; Song SK et al., 2002; Song SK et al., 2005). On the contrary, fractional anisotropy and longitudinal diffusivity are good markers of tissue macrostructure and organization that finely characterize the bundle’s coherence and compactness, but their changes with varying maturation may be more difficult to interpret particularly in regions of crossing fibers where tracts at different maturational stages may intermingle. Thus, we quantified and jointly analyzed the three parameters FA, $\lambda_{/\!\!/}$ and λ_{\perp} to characterize the bundles macro- and microstructure, but focused on λ_{\perp} evolution to highlight maturational patterns across bundles.

4. **Statistical analyses**

All analyses were first performed on DTI parameters (FA, $\lambda_{/\!\!/}$, λ_{\perp}) to compare infants with adults and identify similarities and differences in the microstructure and organization of the language networks in both groups. In particular, we studied whether the same relationships across the bundle parameters remained at both ages, emphasizing their structural similarities.

Second, we investigated the asynchrony of maturation across bundles in the infant brain, by eliminating differences in geometry, compactness, macro- and microscopic organization (Dubois J, G Dehaene-Lambertz et al., 2014; Kulikova S et al., 2014): infants’ parameters were then normalized by the adult reference, i.e., divided by the corresponding median over the adult group (Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008; Dubois J, G Dehaene-Lambertz, C Soares et al., 2008). These normalized parameters were noted as nFA, n$\lambda_{/\!\!/}$, nλ_{\perp}.

i. **Bundles clustering**

Because previous studies insisted on the role of the extreme capsule during the first postnatal months (Brauer J et al., 2013; Perani D et al., 2011), we first investigated whether this bundle was distinguishable from the inferior fronto-occipital fasciculus, independently in the infant and adult groups. Analyses of variance (ANOVA) were performed to highlight the effects of bundles on each DTI parameter (FA, $\lambda_{/\!\!/}$ and λ_{\perp}), and Tukey analyses were used to evaluate differences between pairs of bundles while taking into account multiple comparisons.

Second, we performed hierarchical clustering of the bundles to explore whether pathways of the language network may be grouped into classes according to common microstructural properties. Clustering was based on the three DTI parameters, using Euclidian distances and an average linkage approach implemented in Python with NumPy (www.numpy.org) and StatsModels (Seabold JS and J Perktold, 2010). The basic concept of this approach was to build a hierarchy of classes based on a measure of dissimilarity between bundles. For each pair of bundles, the Euclidian distance was computed from DTI parameters quantified in the two bundles, and a matrix of all pairwise distances was generated. The hierarchical clustering was initialized by grouping the bundles with minimal distance, and the procedure was repeated iteratively. To compare groups of bundles to each other, the average linkage criterion was used. The resulting tree diagram (“dendrogram”) illustrated the arrangement of bundles in classes, and the heights of its branches were proportional to the dissimilarities between the bundles. This approach of hierarchical clustering was undertaken on two distinct datasets: 1) on DTI parameters in the adult group (jointly for FA, $\lambda_{/\!\!/}$ and λ_{\perp}) to examine bundles similarities in microstructural properties; 2) on normalized DTI parameters in the infant group (first jointly for nFA, n$\lambda_{/\!\!/}$ and nλ_{\perp}; second only for nλ_{\perp} which appeared the
most pertinent parameter of maturation) to consider bundles similarities in maturational properties. For each DTI parameter and subject, the classes identified by the hierarchical clustering were characterized by the averages computed over corresponding bundles. To determine which parameter mostly influenced the classes discrimination from these two exploratory analyses, paired Student t-tests were then performed between classes over the group of interest (t-values are reported, but not p-values to avoid circular argument among inference, where the classes identification with hierarchical clustering and the classes comparison were performed on the same data). Besides, classes identified through the clustering in the adult group were compared in the infant group for each DTI parameter using ANOVA with Tukey analyses.

ii. Bundles asymmetries

Because of the known left-right asymmetries in the organization and maturation of the language network (Dubois J, M Benders et al., 2008; Dubois J et al., 2010; Dubois J et al., 2009; Glasel H et al., 2011; Leroy F et al., 2011), we computed an asymmetry index (AI) for each DTI parameter, P (normalized or not), in each bundle: $AI = \frac{P(L) - P(R)}{P(L) + P(R)}$, where L and R denote the left and right sides. The significance of non-zero asymmetry indices was independently tested over the infant and adult groups using one-sample Student t-tests (two-tailed) with a significance level of $p_{adj} < 0.05$ after correction for multiple comparisons with a false discovery rate (FDR) approach (additionally trends up to $p_{adj} < 0.10$ were reported if $p < 0.05$).

iii. Maturational changes

Because transverse diffusivity λ_{\perp} is thought to be the best DTI marker of myelination, we focused on its normalized value to further investigate maturational relationships across the bundles. We assessed whether dorsal and ventral bundles displayed different patterns of maturation over this short developmental period. Conversely, the age-related variation of $n\lambda_{\perp}$ was evaluated in each bundle via linear regressions, and the slopes were correlated across all bundles with the parameter medians over the infant group (significant results: $p_{adj} < 0.05$, trends: $p_{adj} < 0.10$). We also evaluated the age-related changes in the classes resulting from hierarchical clustering by computing the $n\lambda_{\perp}$ averages over the bundles within each of the classes; we further investigated whether these classes displayed converging, diverging or parallel patterns of maturation compared with the average over all bundles.

Results

1. Common organization of the language pathways in infant and adult brains

i. Visual inspection of the tractography

Despite their weak maturation, all bundles were reconstructed in each infant and showed trajectories similar to those of adults (Figure 2). The arcuate fasciculus was the most variable bundle; specifically, the infants’ fronto-parietal segment was either limited to the pre-central region, terminated more posteriorly in the parietal lobe (behind the central sulcus) or extended to the frontal lobe. In the temporal lobe, the fiber projections of the arcuate fasciculus wrapped up the superior temporal sulcus (STS) to terminate in the superior and middle temporal gyri. This sulcus was also surrounded by, above, short fibers from the middle longitudinal fasciculus and below, the lateral branches of the inferior longitudinal fasciculus. Regarding the ventral fronto-temporal connections, the extreme capsule was difficult to distinguish from the inferior
fronto-occipital fasciculus in infants and adults, particularly at the level of the extreme/external capsules and in the temporal lobe. The EC frontal projections were more lateral than the iFOF, including in the pars opercularis and triangularis, because of the ROIs definition.

ii. Analyses of DTI parameters

The average DTI parameters were quantified over the whole tracts to minimize the potential inter-individual variability in tract reconstruction. Although the DTI parameters significantly differed between infants and adults (with, as expected, lower anisotropy and higher diffusivities in infants than in adults), the median values of both groups strongly correlated across bundles for FA (correlation coefficient r=0.93 p<0.001, Figure 3a) and \(\lambda_{//}\) (r=0.87 p=0.005, Figure 3b), while the trend for \(\lambda_{\perp}\) was not significant (r=0.49 p<0.001, Figure 3c). All DTI parameters depend both on the arrangement of fibers within the bundle and on myelination. Nevertheless \(\lambda_{\perp}\) is more strongly affected by all stages of maturation than FA and \(\lambda_{//}\), and is weakly affected by crossing fibers (see the method section), making it a better marker of myelination. We thus interpreted this lower correlation for \(\lambda_{\perp}\) as the result of its best sensitivity to different maturation stages across bundles, which may have masked the structural similarities between infants and adults.

The ANOVAs confirmed a strong bundle effect for each DTI parameter and both ages (infants / adults: FA F= 70.4 / 56.7; \(\lambda_{//}\) F= 22.2 / 81.7; \(\lambda_{\perp}\) F= 9.1 / 21.1; p<0.001), but Tukey tests did not distinguish the inferior fronto-occipital fasciculus and the extreme capsule for any parameter and any group except for the longitudinal diffusivity in the adult group (p<0.001). This finding suggests that, in addition to their close trajectories, the microstructures of these two bundles were similar (thus, the iFOF and EC were considered together in all analyses except in the hierarchical clustering over adults).

In the adult group, the hierarchical clustering of the bundles based on FA, \(\lambda_{//}\) and \(\lambda_{\perp}\) (Figure 3d) demonstrated three classes with a strong segregation between 1) short-distance fibers (middle longitudinal fasciculus and ILF lateral branches), 2) dorsal pathways (arcuate and superior longitudinal fascicles), and 3) ventral pathways (uncinate fasciculus, extreme capsule, inferior fronto-occipital and longitudinal fascicles). The averages over all bundles of each class were also considered for each DTI parameter, and paired Student t-tests between classes (Figure 3e) highlighted that all three parameters provided relevant information for the classes discrimination (Figure 3a-c, e: the ventral class displayed mainly higher \(\lambda_{//}\) than the two other classes, the dorsal class displayed mainly higher FA and lower \(\lambda_{\perp}\) than the short fibers class).

We secondly tested whether the same three classes of bundles were pertinent for infants. Pairs Student t-tests for each DTI parameter (Figure 3e) highlighted that these classes strongly differed in terms of FA (Figure 3a-c, e), as confirmed by ANOVAs for effects of classes (FA F= 108.5 p<0.001; \(\lambda_{//}\) F= 17.5 p<0.001; \(\lambda_{\perp}\) F= 7.7; p=0.001). According to Tukey tests (Figure 3e), the short fibers and ventral pathways significantly differed, but the distinction between the dorsal pathways and the two other classes was not significant in terms of \(\lambda_{\perp}\).

These results suggested commonalities in the microstructures of infant and adult bundles that are concurrent with maturational differences, which primarily impact the transverse diffusivity (\(\lambda_{\perp}\)).

iii. Asymmetries in microstructure and organization

Anisotropy in the arcuate fasciculus was strongly asymmetric toward the left side in infants (t=5.1 p_adj=0.001) and adults (t=4 p_adj=0.017), which agrees with previous studies (Buchel C et al., 2004; Dubois J et al., 2009; Liu Y et al., 2010). In the adult group, the transverse diffusivity of this fasciculus also tended to be asymmetric (t= -2.8 p_adj=0.094). The number of
reconstructed fibers was asymmetric toward the left side in the adult arcuate fasciculus (t=4.1 p\text{adj}=0.017) and toward the right side in the iFOF-EC bundle (t=-3.8 p\text{adj}=0.017), which agrees with a previous atlas-based study (Thiebaut de Schotten M, DH Ffytche et al., 2011). Asymmetry was not observed for any other infant bundle, while leftward asymmetries were detected for the longitudinal diffusivity in the adult uncinate fasciculus (t=3.3 p\text{adj}=0.043) with a trend in the inferior longitudinal fasciculus (t=2.7 p\text{adj}=0.094).

In summary, these analyses based on tractography and DTI parameters demonstrated several similarities between infants and adults: 1) the overall architecture and trajectory of pathways, 2) the microstructural segregation between short fibers, ventral and dorsal pathways (except in terms of λ_\perp because this parameter crucially reflects the bundle maturation), and 3) the strong asymmetry in the anisotropy of the arcuate fasciculus, which indicates a higher fiber density and greater bundle compactness and/or fewer crossing fibers in the left hemisphere.

2. **Asynchronous maturation of dorsal and ventral pathways**

In addition to the intrinsic bundle properties that strongly affect DTI parameters, differences detected among bundles in the infant group might relate to distinct maturational tempos. Thus, we also studied the data from infants normalized by the data from adults in order to disentangle between maturational differences across bundles and differences in the tracts geometrical characteristics (e.g., shape and compactness).

i. **Asymmetries in maturation**

The analysis of normalized DTI parameters highlighted several differences between the left and right hemispheres in the infant group (Figure 4). In the arcuate fasciculus, a trend towards a higher left nFA (t=2.5 p\text{adj}=0.057) associated with a higher n$\lambda_{//}$ (t=2.6 p\text{adj}=0.052) suggested maturational asymmetries in the fiber coherence, bundle compactness or amount of crossing fibers. Similarly, the superior longitudinal fasciculus was asymmetric toward the left side in infants, with a higher fiber coherence reflected by a higher n$\lambda_{//}$ (t=3.4 p\text{adj}=0.015) combined with a higher nFA (t=2.4 p\text{adj}=0.058) and lower nλ_{\perp} (t=-2.6 p\text{adj}=0.052). Like in the middle longitudinal fasciculus, the nFA was higher in the left hemisphere (t=3.2 p\text{adj}=0.019) in relation with lower nλ_{\perp} (t=-3.9 p\text{adj}=0.015), suggesting either again a higher fiber coherence or higher myelination. Other maturational asymmetries were detected in the ventral bundles (in the uncinate fasciculus nλ_{\perp} t=-3.4 p\text{adj}=0.015; in iFOF-EC nλ_{\perp} t=-3.4 p\text{adj}=0.015; in ILF nλ_{\perp} t=2.4 p\text{adj}=0.06), but the underlying mechanisms could not be assessed because of the lack of conjunctions between the parameters. Despite these asymmetries were statistically significant, their amplitude was rather small: for all infants and bundles, asymmetry indices were lower than 10% for nFA and lower than 5% for n$\lambda_{//}$ and nλ_{\perp} (Figure 4). Because of these maturational differences between hemispheres, the left and right bundles were independently considered in the following analyses.

ii. **Different stages of maturation**

According to the clustering analysis of normalized DTI parameters (Figure 5a–c), three maturation classes were identified in the bundles of the infant language network (Figure 5d). The first class grouped all dorsal pathways (left and right arcuate and superior longitudinal fascicules), while the second and third classes included all ventral bundles (left and right iFOF-EC bundles, inferior longitudinal fascicles and lateral branches on the one hand; left and right middle longitudinal and uncinate fascicles on the other hand). For all bundles, left and right tracts were clustered in the same classes, highlighting that differences in maturation between hemispheres (Figure 4) were smaller than differences across bundles (Figure 5a-c). Note that inter-individual variability further differed across bundles and hemispheres, probably because of different patterns of age-related changes.
The clustering computed only based on the normalized transverse diffusivity was very similar, and even better distinguished between classes (Figure 5e). Based on the averages over each class for each normalized DTI parameter, paired Student t-tests confirmed that \(n\lambda_{\perp} \) was more pertinent than nFA and \(n\lambda_{\parallel} \) for the class discrimination (Figure 5f). Because this parameter is thought to be the best DTI marker of white matter maturation and should negatively correlate with age during the “pre-myelination” and “true myelination” of bundles (Dubois J, G Dehaene-Lambertz et al., 2014; Dubois J, G Dehaene-Lambertz, C Soares et al., 2008), these results highlighted that the maturation of dorsal and ventral pathways strongly differed during this period of development: the \(n\lambda_{\perp} \) values of dorsal bundles were the highest (higher than the average over all bundles, Figure 5c), suggesting that dorsal bundles are less mature than ventral bundles during the first post-natal weeks.

iii. Different patterns of maturation

We further analyzed the patterns of maturation to investigate whether dorsal bundles continued to lag behind ventral bundles or eliminated their delay during this developmental period. In the infant group, age-related decreases in \(n\lambda_{\perp} \) were observed in all left and right bundles \((r< -0.7 \, p_{\text{adj}}<0.001)\) and in the three classes of bundles (Figure 5g; \(r< -0.8 \, p_{\text{adj}}<0.001 \)). The \(n\lambda_{\perp} \) slopes differed among bundles (e.g., near -0.021/ week of age in the arcuate fascicles, near -0.015/ week of age in iFOF-EC bundles), and the \(n\lambda_{\perp} \) slopes and \(n\lambda_{\perp} \) medians tended to correlate across all bundles \((r=0.44 \, p=0.094)\), which suggested that the lower the maturation of a bundle was, the higher its maturational changes were. Specifically, the \(n\lambda_{\perp} \) average over each class approached the \(n\lambda_{\perp} \) average over all bundles as the age increased (Figure 5h: dorsal class \(r= -0.6 \, p_{\text{adj}}=0.011; \) first ventral class: \(r= 0.45 \, p_{\text{adj}}=0.057; \) second ventral class: \(r= 0.12 \) not significant), suggesting that the maturation of all bundles homogenized over the 16-week period. The difference in maturation between the dorsal and ventral pathways significantly decreased with age (dorsal class vs. the first ventral class: \(r= -0.61 \, p=0.003; \) dorsal class vs. the second ventral class: \(r= -0.44 \, p=0.048)\). Thus, the maturation of dorsal pathways caught up the maturation of ventral pathways during the first post-natal weeks.

Discussion

In this cross-sectional diffusion study of infants aged 6 to 22 weeks, we focused on the fronto-parieto-temporal connections within the language network at the very early period of language acquisition, when infants begin to vocalize. We reported three main results. First, we demonstrated that the linguistic pathways were similarly organized in infants and adults in terms of the macroscopic trajectory, asymmetry and microstructure. In particular, we observed a segregation between the dorsal and ventral pathways at both ages, which has never been described so far. Second, we highlighted for the first time the different maturational calendars of these two systems of bundles: the dorsal bundles were less mature than the ventral bundles during infancy, but this gap closes over the first weeks of post-term life. Finally at the methodological level, we proposed refined in vivo imaging approaches to reliably study the bundles microstructure and maturation, notably describing an original technique to cluster fascicles based on all three DTI parameters which takes benefit of their complementarity.

1. Early organization of the language network

i. Dissecting linguistic bundles in the infant brain

In the developing brain as in the adult brain, a large-scale network of perisylvian regions, including the superior temporal, inferior parietal and inferior frontal regions, is involved during speech processing (Dehaene-Lambertz G et al., 2002; Dehaene-Lambertz G, L Hertz-Pannier et al., 2006; Dehaene-Lambertz G et al., 2010; Mahmoudzadeh M et al., 2013; Pallier C et al.,
The early combined activity of these remote cortical regions requires the long-distance fibers that connect the temporal, parietal and frontal lobes to be minimally efficient starting during the last trimester of human pregnancy (Mahmoudzadeh M et al., 2013). Two pathways circle the perisylvian regions and connect the inferior frontal and superior temporal regions. In the macaque brain, auditory information mainly flows ventrally and anteriorly, projecting toward the ventrolateral prefrontal cortex via the extreme capsule and participating in object identification and conspecific recognition (Petrides M and DN Pandya, 2009; Rauschecker JP and SK Scott, 2009). In humans, the dorsal pathway is enlarged even when compared with that of chimpanzees, and this increase is due to the development of the arcuate fasciculus (Rilling JK et al., 2012; Rilling JK et al., 2008).

In this study, we observed similar trajectories for all linguistic bundles across infants and adults, which agrees with the early growth of long associative connections during the preterm period (Huang H et al., 2006; Takahashi E et al., 2012; Vasung L et al., 2010). Nevertheless, fiber pruning occurs throughout the first post-natal year (Kostovic I et al., 2014; Kostovic I and P Rakic, 1990; LaMantia AS and P Rakic, 1990, 1994; Petanjek Z et al., 2011; Rakic P and KP Riley, 1983), and one may have expected supplementary perisylvian connections to be observed in the infant brain relative to the adult brain. It was not the case in the present MRI study, suggesting that pruning is mostly completed during the first post-natal weeks, or that technical issues prevented their detection in vivo. In particular, due to the low myelination of the infant’s tracts, the choice of ROIs was crucial to help the reconstruction algorithm. Because ROIs cannot be determined for unexpected connections, they cannot be actively looked for and only an improvement in data acquisition and analyses procedure will resolve this question. Here, to keep acquisition time short, the DWI protocol only included a limited number of diffusion orientations (30) with a relatively low b-value (b=700s.mm⁻²). This limitation in the number of diffusion orientations was similar to other studies at this age (Song JW et al., 2014). Relative to Song et al, we preferred a higher spatial resolution (1.8 mm isotropic resolution, i.e., 5.8 mm³ volume, vs. 2 mm isotropic resolution, i.e., 8 mm³ volume) to a higher diffusion weighting (b=700s.mm⁻² vs. b=1000s.mm⁻²). Although in adults, a b-value of 1000s.mm⁻² is typically acquired, the water content and thus the mean diffusivity values are higher in the infant brain. Thus a smaller b-value in infants is reasonable according to the optimization method described by Xing et al (1997) (Dubois J et al., 2006; Xing D et al., 1997). Whereas high-angular-resolution diffusion imaging (HARDI) in adults is generally based on a 6-order analytical Q-ball model (requiring the estimation of 28 coefficients) (Descoteaux M et al., 2007), we were able with our protocol to compute only a 4-order model (requiring the estimation of 15 harmonic coefficients). Nevertheless, this simpler Q-ball model combined with a regularization-based tractography algorithm (Perrin M et al., 2005) allowed a stable reconstruction of the bundles across subjects, except in the regions of major crossroads.

The most important variability in bundles trajectory across subjects was the frontal ending of the arcuate fasciculus. Its crossings with the corpus callosum and the cortico-spinal tract fanning along the central sulcus prevented the perfect delineation of its terminations. Because the cortico-spinal tract matures before associative bundles (Brody BA et al., 1987; Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008; Flechsig P, 1920; Kinney HC et al., 1988; Kulikova S et al., 2014), transient local changes in anisotropy may arise during infancy in the low corona radiata that crosses the arcuate fasciculus (Dubois J, G Dehaene-Lambertz et al., 2014). As previously reported in newborns (Brauer J et al., 2013; Perani D et al., 2011), the arcuate fasciculus often ended in infants in the premotor cortex rather than in the inferior frontal gyrus, like in adults. Contrarily to previous studies, we interpret this finding as a technical artifact and not as a pathway difference: the arcuate fasciculus is bidirectional (with temporofrontal and fronto-temporal fibers (David O et al., 2013; Matsumoto R et al., 2004)); thus, fibers initiating from the inferior frontal region should have started to grow during the last weeks of
pregnancy and should be observed in infants, if not during pregnancy. We suspect that the rapid maturation of the cortico-spinal tract prevents the accurate observation of the arcuate fasciculus through crossings in the corona radiata. This problem may be more pronounced in DTI-based tractography (Brauer J et al., 2013; Perani D et al., 2011) compared to our approach, which is based on a Q-ball model and tractography with regularization. In the future, this crossing-fiber issue should be investigated using HARDI imaging, as facilitated by the advent of the multiband multi-slice EPI technique (Feinberg DA et al., 2010; Moeller S et al., 2010), which drastically decreases the acquisition time and thus enables to increase the number of diffusion orientations and thus the b-value in spontaneously asleep healthy infants.

In recent years, studies have suggested that the extreme capsule is a major linguistic pathway in adults (Frey S et al., 2008; Makris N and DN Pandya, 2009; Saur D et al., 2008; Wong FC et al., 2011), children (Brauer J et al., 2011) and neonates (Perani D et al., 2011). Given the small size of this structure, our study lacked the spatial resolution to avoid partial volume effects with the external capsule, a problem also present in previous studies in newborns (Brauer J et al., 2013) and adults (Catani M and M Mesulam, 2008; Forkel SJ et al., 2014; Martino J et al., 2010; Turken AU and NF Dronkers, 2011). The two walls of grey matter that delimit the extreme capsule (insula and claustrum) were less distant than the voxel size, making the trajectory and microstructure of iFOF and EC very similar in both the infant and adult groups. We thus considered these two bundles together as a ventral pathway in the maturational analyses. To date, only post-mortem studies that use high spatial resolution tools can separate these bundles in humans. Indeed, analysis of an adult brain with polarized light imaging recently highlighted that fibers from the inferior fronto-occipital fasciculus were visible in the ventral part of both the external and extreme capsules (Axer H et al., 2012).

ii. Early differences in the microstructure of dorsal and ventral pathways

We also investigated whether linguistic bundles may be grouped in distinct classes with a hierarchical clustering based on DTI parameters independent of the infant and adult groups. Fractional anisotropy as well as longitudinal and transverse diffusivities were jointly used because these quantitative parameters provide complementary information on bundle microstructure (Dubois J, G Dehaene-Lambertz et al., 2014). As in adults, a clear distinction was observed between the dorsal pathway (arcuate and superior longitudinal fascicles) and the ventral pathway (extreme capsule, inferior fronto-occipital and uncinate fascicles) in infants, suggesting a stable and consistent organization of the language network in terms of connectivity and microstructure (e.g., coherence, compactness, and density). Beyond the maturational processes that occur in these pathways (see discussion below), their early organization in the infant brain may be the anatomical substrate that enables temporal and frontal regions to efficiently communicate and process speech.

iii. Language lateralization and inter-hemispheric asymmetries

Inter-hemispheric asymmetries were observed in both infants and adults. The main asymmetry concerned the arcuate fasciculus, which displayed a higher left than right anisotropy. This increase agrees with several previous studies (Buchel C et al., 2004; Dubois J et al., 2009; Liu Y et al., 2010; Parker GJ et al., 2005). The left fasciculus was also larger than the right in adults, which is consistent with the findings of a previous study (Thiebaut de Schotten M, DH Ffytche et al., 2011). Nevertheless, the asymmetries in microstructure (FA) and macrostructure (number of fibers) did not correlate with each other. As suggested in children aged 7 to 11 years (Yeatman JD et al., 2011), the reconstruction of fewer fibers on the right side may be the result of a technical limitation in tracking a small fasciculus in a region with many crossing fibers rather than an extreme hemispheric dimorphism. Asymmetry in anisotropy might be a stronger marker of lateralization, although this relationship was not
identified in a recent study (Song JW et al., 2014). This lack of asymmetry may have been due to the small sample size (n=12) that covered a large age range (0-3 years), or the rougher spatial resolution in this study than the one utilized here (8 mm³ vs. 5.8 mm³) that may have merged in the same voxels the arcuate and the superior longitudinal fasciculus which shows a reverse asymmetry in the adult brain (Thiebaut de Schotten M, F Dell’Acqua et al., 2011). We observed other asymmetries that affected the ventral pathways (iFOF-EC, uncinate and inferior longitudinal fascicles) in the adult brain, and these findings partly replicated a previous study (Thiebaut de Schotten M, DH Ffytche et al., 2011).

The inter-hemispheric asymmetries within the language network found here are in agreement with the general assumption that the dorsal pathway is largely left-hemisphere dominant, while the ventral pathway is more bilaterally organized (Hickok G and D Poeppel, 2007). This intrinsic asymmetry of the arcuate fasciculus might be the white matter analog of the strong morphological asymmetries detected early on in perisylvian areas: Heschl’s gyrus, planum temporale and the anterior region of the Sylvian fissure (close to Broca’s area) are commonly larger in the left hemisphere of the fetus and infant brain, whereas the superior temporal sulcus folds first and remains deeper in the right hemisphere (Chi JG et al., 1977; Dubois J, M Benders et al., 2008; Dubois J et al., 2010; Glasel H et al., 2011; Habas PA et al., 2012; Hill J et al., 2010; Kasprian G et al., 2011; Li G et al., 2014; Witelson SF and W Pallie, 1973). Because the arcuate fasciculus is more tightly organized on the left side, it may represent an early anatomical substrate for the leftward lateralization of the language network observed in the infant planum temporale during speech listening (Dehaene-Lambertz G et al., 2002; Dehaene-Lambertz G et al., 2010).

2. Asynchrony of maturation within the language network during infancy

To detect differences in the maturational properties of bundles beyond their specific structural properties, the DTI parameters of infants were normalized to their adult reference (Dubois J, G Dehaene-Lambertz et al., 2014; Dubois J, G Dehaene-Lambertz, M Perrin et al., 2008; Dubois J, G Dehaene-Lambertz, C Soares et al., 2008; Kulikova S et al., 2014). In all analyses, transverse diffusivity was the most pertinent parameter to quantify the bundle myelination, which agrees with previous observations in infants (Dubois J, G Dehaene-Lambertz, C Soares et al., 2008) and animals (Song SK et al., 2002; Song SK et al., 2005).

i. Asymmetries in the bundles maturation

The main differences in maturation between the left and right tracts were observed in the arcuate, superior and middle longitudinal fascicles, showing leftward asymmetries for normalized anisotropy (nFA) and one of the two normalized diffusivities (nλ// or nλ⊥). According to the hypotheses on the relationships between microstructural mechanisms and DTI parameters (see method section 3.iii.), this finding suggests that these asymmetries were related to differences in fiber coherence, bundle compactness or amount of crossing fibers. Nevertheless, we could not exclude a difference in myelination for the middle longitudinal fasciculus because of the lack of nλ// asymmetry. These bundles may be more tightly organized in the left hemisphere than in the right at this age specifically, since these maturational asymmetries remained even after normalizing for microstructural asymmetries in the adult group. Because the arcuate and middle longitudinal fascicles project mostly above and to a lesser extent beyond the superior temporal sulcus, these bundle asymmetries may be related to maturational asymmetries in the cortex of the superior temporal sulcus and gyrus. Nevertheless, because a more mature cortex was detected in the right STS than in the left STS in infants (Leroy F et al., 2011), further correlation studies between grey and white matter development in the same infants are needed to better understand the complementarity of these asymmetries within the language network. Other maturational asymmetries were detected in ventral bundles,
but their meaning could not be clearly interpreted because of the lack of conjunctions between the different normalized DTI parameters.

ii. Maturation of the language pathways

Finally, three classes of bundles with different patterns of maturation were distinguished in our study based on the three normalized DTI parameters and on only: 1. The arcuate and superior longitudinal fascicles were the least mature bundles; 2. the iFOF-EC fasciculus, the inferior longitudinal fasciculus and its lateral branches showed intermediate maturation; 3. the middle longitudinal and uncinate fascicles were the most mature bundles. The analyses of normalized transverse diffusivity further detailed the maturational differences between the dorsal and ventral pathways: although the dorsal pathway was less mature than the ventral pathway, the dorsal progression was faster over this short developmental period. While Pujol and colleagues (Pujol J et al., 2006) described a similar pattern of myelination in both the comprehension and production regions during the first three post-natal years, our results agree with two DTI studies which reported a delayed maturation of the dorsal bundles (Brauer J et al., 2013; Zhang J et al., 2007). Unlike some other bundles, the superior longitudinal fasciculus matures slowly during childhood (Zhang J et al., 2007). Although a recent study also argued that the extreme capsule and inferior fronto-occipital fasciculus were more mature than the arcuate fasciculus in newborns (Brauer J et al., 2013; Perani D et al., 2011), the results that supported this conclusion were equivocal because structural differences between adult tracts were not taken into account. This asynchronous maturation between the dorsal and ventral pathways in infants also agrees with the phylogenetic development of bundles across species: the delayed maturation of the arcuate and superior longitudinal fascicles in infants may be related to their more recent evolution along the primate lineage (Petrides M and DN Pandya, 2009; Rilling JK et al., 2012; Rilling JK et al., 2008).

The maturation asynchrony in the bundles of the language network should be compared to the maturation asynchrony across cortical regions connected by these pathways. Indeed, myelination significantly increases the conduction speed of the nerve impulse (Baumann N and D Pham-Dinh, 2001) and is assumed to improve the functional efficiency of brain networks (van der Knaap MS et al., 1991). Conversely, neuronal activity induced by stimulation influences the degree of white matter myelination (Barres BA and MC Raff, 1993; Demerens C et al., 1996; Gyllensten L and T Malmfors, 1963; Tauber H et al., 1980). Recently, we detailed the maturation asynchrony of the infant linguistic network by distinguishing three classes of perisylvian cortical regions (Leroy F et al., 2011): as expected, the most mature region was the primary auditory cortex (Heschl’s gyrus), but the most immature class consisted of the superior temporal sulcus and the supramarginal gyrus, whereas the planum temporale and all inferior frontal sulci showed intermediate maturation. Here, we observed that the lag in maturation of the dorsal pathway was ultimately eliminated, which may be analogous to the convergence in maturity of the left superior temporal gyrus and supramarginal gyrus during the first post-natal weeks (Leroy F et al., 2011). The correlation of maturation between the frontal region, the posterior STS and the arcuate fasciculus suggested a synchronized maturation within the dorsal pathway (Leroy F et al., 2011). Future studies that include all linguistic bundles and grey matter parcels will help to delineate the respective roles of the dorsal and ventral pathways during language development. A potential perspective would be to detail the sequential dynamics of maturation across temporal and frontal regions by analyzing the direction of myelination along the arcuate and iFOF-EC fascicles, which both gather temporo-frontal and fronto-temporal fibers. Assuming that myelination proceeds from the neuron body to the periphery (McCart RJ and GH Henry, 1994), the fronts of maturation can be investigated based on the variations of DTI parameters along bundles, as proposed along the infant optic radiations (Dubois J, G
Dehaene-Lambertz, C Soares et al., 2008) and along the arcuate fasciculus in children learning to read (Yeatman JD et al., 2011).

Conclusion

Along with the structural development of brain networks, the infant’s linguistic capacities dramatically increase during the first two years. Notably, infants progressively enhance their mainly auditory initial representations with new visual and motor inputs during the first months. This enhancement suggests an increase in information exchange across the auditory, visual and motor regions, and the maturational convergence of the dorsal pathway may sustain this phenomenon because it is involved in sensory-motor integration. Future structural analyses that utilize correlations with functional imaging are expected to shed light on the crucial circuits that are required to develop a language system in humans.

Acknowledgements

The authors thank the UNIACT clinical team for precious help in scanning the infants, and especially Gaëlle Mediouni. This work was supported by the Fyssen Foundation, the “Fondation de France”, the “Ecole des Neurosciences de Paris”, the “Fondation Motrice”, the McDonnell Foundation, and the French National Agency for Research (ANR). The finalization of this work received support from the European Union Seventh Framework Program (FP7/2007-2013, grant agreement n°604102).
References

Flechsig P (1920) Anatomie des Menschlichen Gehirn und Rückenmarks, auf myelogenetischer grundlage G. Thieme.

Table 1

Localization of ROIs and ROEs used for bundles dissection

To extract each bundle of the language network from the whole-brain tractography, we defined 2 or 3 regions of interest (ROIs) and 0 or 1 region of exclusion (ROE) for each infant and adult, according to reproducible anatomical landmarks. Abbreviations: see Figure 1.

<table>
<thead>
<tr>
<th>Bundle</th>
<th>ROIs</th>
<th>ROEs</th>
</tr>
</thead>
</table>
| AF | 1) a parietal ROI: in the bundle upper parietal part, at the level of the posterior commissure on a coronal plane
2) a ROI at the parieto-temporal junction: at the level of the arcuate loop on an axial plane | 3) a core ROE including the internal and external capsules |
| SLOF | 1) the AF parietal ROI
2) a parietal ROI more anteriorly: at the level of the splenium of corpus callosum on a coronal plane | 3) the AF loop ROI |
| UF | 1) a frontal ROI: at the level of the genu of corpus callosum on a coronal plane
2) a temporal ROI: at the level of the optic chiasm on a coronal plane
3) an intermediate ROI at the fronto-temporal junction: at the level of the bundle loop on an axial plane | |
| FOF | 1) the UF frontal ROI
2) a temporal ROI: at the level of the posterior commissure on a coronal plane
3) an occipital ROI at one third of the distance between the lateral geniculate nucleus and the occipital pole on a coronal plane | |
| ILF | 1) the UF temporal ROI
2) the FOF temporal ROI
3) the FOF occipital ROI | |
| MLF | 1) a large medial ROI: close to the AF and ILF trajectories on a sagittal plane
2) a lateral region: above the superior temporal sulcus on a sagittal plane | |
| ILFlat | 1) the MLF medial ROI
2) a lateral region: below the superior temporal sulcus on a sagittal plane | |
| EC | 1) a ROI including the pars opercularis and pars triangularis: using as borders the inferior pre-central sulcus, the inferior frontal sulcus, the infero-anterior frontal sulcus and the insula based on the 3D reconstruction of the inner cortical surface
2) a ROI including the extreme and external capsules: at the level of the anterior commissure on a coronal plane
3) a temporal ROI: at the level of Heschl gyrus on a coronal plane | 4) a parietal ROE: above the temporal ROI on a coronal plane |

Abbreviations: see Figure 1.
Figure 1: Selection of the bundles

ROIs used to select the bundles (Catani M *et al.*, 2002; Huang H *et al.*, 2004) are projected on the color-encoded directionality map for an infant (female, age 10w-old). The ROIs numbering corresponds to Table 1.

Abbreviations: AF arcuate fasciculus; EC extreme capsule; iFOF inferior fronto-occipital fasciculus; ILF inferior longitudinal fasciculus; ILFlat lateral branches of the inferior longitudinal fasciculus; MLF middle longitudinal fasciculus; SLF superior longitudinal fasciculus; UF uncinate fasciculus.
Figure 2: Individual trajectories of linguistic bundles

The reconstructions by tractography of the white matter bundles involved in the language network are presented for a single infant (a: male, age 7w-old) and a single adult (b: male, age 22.5y-old). On the upper row, tracts of the left hemisphere are superimposed on the 3D reconstruction of the inner cortical surface, and particular sulci are highlighted in gray (the superior temporal sulcus, the central sulcus and sulci bordering Broca’s region on the left side: the pre-central sulcus and the inferior frontal sulcus). On the three lower rows, tracts are superimposed on anatomical images (a: T2w for the infant, b: T1w for the adult, which provide the best contrast between grey and white matter respectively) presented on axial, sagittal (left side) and coronal views at equivalent positions for the two subjects.

Abbreviations: see Figure 1; CS central sulcus; InfFS inferior frontal sulcus; PreCS pre-central sulcus; STS superior temporal sulcus.

![Diagram of brain structures with labels and reconstructions for infant and adult](https://via.placeholder.com/150)
Figure 3: Comparing the microstructure of linguistic bundles in infants and adults

a,b,c: DTI parameters (a: anisotropy; b: longitudinal diffusivity; c: transverse diffusivity) were quantified in the bundles over the groups of infants and adults (median values are presented; error bars show standard deviations over each group, computed after removing age effects in infants; colors correspond to the clustering presented in d). They demonstrated large differences across bundles and across groups (with smaller anisotropy and higher diffusivities in infants), together with correlations between infants and adults (correlation coefficients r were calculated over all bundles).

d: The hierarchical clustering was computed from FA, λ_{eff} and λ_{trans} in the adult group: short fibers (in blue), dorsal pathways (in green) and ventral pathways (in red) were distinguished on the dendrogram, which was computed from Euclidian distances (coded in blue scale on the matrix of pairwise distances across bundles) and average linkage criterion.

e: Differences between pairs of classes in each DTI parameter were further investigated using paired Student t-tests in both the adult and infant groups (t-values are reported) and Tukey analyses associated with ANOVAs in the infant group (adjusted p-values are reported; italic grey font corresponds to $p_{adj}>0.05$). Abbreviations: see Figure 1.
Figure 4: Asymmetries in maturation of linguistic bundles

Asymmetry indices between the left and right hemispheres $AI = \frac{P(L) - P(R)}{P(L) + P(R)}$ are presented for normalized fractional anisotropy (a), longitudinal (b) and transverse (c) diffusivities for all infants of the group. Statistically significant asymmetries are outlined (one-Student t-test with p-threshold adjusted for multiple comparisons (FDR): ** $p_{cor}<0.05$; * $p_{cor}<0.06$). Abbreviations: see Figure 1.
Figure 5: Distinct maturation of the dorsal and ventral pathways

a, b, c: Normalized DTI parameters (a: anisotropy; b: longitudinal diffusivity; c: transverse diffusivity) were quantified over the infant group (colors correspond to the clustering in d).

d, e: Hierarchical clustering separated the bundles into three main classes, whether the three parameters were considered (d) or only n_{\perp} (e), the most pertinent DTI parameter to study maturational differences. The three classes segregated: 1) dorsal pathways (in green: left and right AF and SLF), 2) part of the ventral pathways (in red: left and right iFOF-EC, ILF and ILFlat), and 3) the other ventral pathways (in blue: left and right MLF and UF). Boxplots in n_{\perp} (c) demonstrated that bundles of these classes showed distinct maturational stages (the line indicates the average over all bundles): bundles with the highest n_{\perp} were the least mature, while bundles with the lowest n_{\perp} were the most mature.

f: Paired Student t-tests, performed for each DTI parameter over the infant group, highlighted that differences between classes were important mainly in terms of n_{\perp} (t-values are reported).

g, h: The averages in n_{\perp} over each class strongly decreased with the increasing infants’ age (g), and got closer to the average over all bundles (h: differences to the average got closer to 0).

Abbreviations: L left; R right; see Figure 1.