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Abstract

We present in this paper an algorithmically efficient (linear in the size
of the formal context) method to solve the seriation problem for formal
contexts. We show that any maximal solution can be represented by a
PQ-Tree. Moreover, the set of PQ-Trees can be seen as a distributive lat-
tice. This lattice yields a consensus method which deals with the multiple
solutions.
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1 Introduction

The classical problem of seriation in Archeology [9] is the following: we are
given a set of objects (different kinds of necklace, bracelet, dishes...) and a set
of sites (tombs, houses,...). Each object has been used during an interval of
time, and each site contains objects. The problem is to order the sites along
time. Similar problems arise in genetics [2][6], hypertext browsing [3], philology
[4], data visualization [7][10], musicology[8], ...

Formally speaking, a seriation problem can be represented by a formal con-
text (G, M, I) where G is the set of objects, M the set of sites and I the relation
which states if an object g has been found in site m.

In ezact seriation, on each site, one finds all objects that were used when
the site was built/active. Equivalently, the formal context matrix M has the
Consecutive One’s Property (C1P), i.e. the lines of M can be reordered in such
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a way that on every column of M, the Is appear in consecutive order. An
optimal algorithm to find such a reordering was introduced in 1976 [5], based
on a special data structure: PQ-Trees. In approximate seriation, a site may not
contain an object that was used when it was built; and the problem of seriation
is no longer equivalent to C1P.

The aim of this paper is to present an efficient algorithm for approximate
seriation, also based on PQ-Trees. This paper is organized as follows: in Sec-
tion 2, we present the PQ-Tree structure and a first algorithm. In Section 3, we
show that the set of PQ-Trees can be organized as a lattice, which generalizes
the semilattice of hierarchies; and we give a second algorithm. In Section 4, we
present a possible workflow of our method on an archeological data set.

2 PQ-Trees

Given a finite set X, a PQ-tree T on X is a tree that represents a set of per-
mutations on X denoted by St. The leaves of T are the elements of X, and
the nodes of T are of two types : the P-nodes and the @Q-nodes. We represent
P-nodes by ellipses, and Q-nodes by rectangles.

On a P-node, one can apply any permutation of its children (equivalently, its
children are not ordered). The children of a Q-node are ordered, and the only
permutation we can apply on them is to reverse the order. For instance, the PQ-
Tree of Figure 1 represents the set of permutations {(0,1,2,3,4,5), (0,1,3,2,4,5),
(0,2,1,34,5), (0,2,3,1,4,5), (0,3,1,2,4,5), (0,3,2,1,4,5), (5,4,1,2,3,0), (5,4,1,3,2,0),
(5,4,2,1,3,0), (5,4,2,3,1,0), (5,4,3,1,2,0), (5,4,3,2,1)}.

S —
(0} 1 2 3 4 5

Figure 1: A PQ-Tree

Let M be a formal context matrix. An order o on the lines of M is com-
patible if, when the lines of M are sorted along o, on each column of M, the
1’s are consecutive. If M has the Consecutive One’s Property (i.e. if there
exist compatible orders), the set of compatible orders can be represented by a
(unique) PQ-Tree. For instance, the cross-table of Figure 2 has the C1P and
its compatible orders are represented by the PQ-Tree of Figure 1. Moreover the
the formal concepts are intervals of all the compatible orders.

Given a Formal Context M satisfying the C1P, the associated PQ-Tree is
a condensed representation of the associated concept lattice: if we add to M
columns which are nonempty intersections or non-disjoint unions of already ex-



0 1 2
0 X
1 X X
2 X X
3 X X
4 X X
5 X

Figure 2: Example of cross table (left) and its associated lattice (right).

isting columns, the associated PQ-Tree remains unchanged. This is why we will
use PQ-Trees as a representative of concept lattices to solve seriation problems.

Generally, a formal context does not have the C1P, as that associated with
the cross table of Figure 3. We can remark that, although this example was
built by adding columns to the example of Figure 2, it is not easy to construct
the concept lattice of Figure 2 directly from the one of this example.

0 1 2 3 4
0 X X
1 X X X
2 X X
3 X X X
4 X X X X
5 X

Figure 3: Extension of the Cross Table 2 (left) and its associated lattice (right).

A first way to solve the seriation problem consists in finding a maximal set
of columns M’ such that M|y has the C1P and exhibit the compatible orders.
This is made possible by the incremental nature of the Booth and Lueker al-
gorithm. In addition, starting with this maximal set M’, it is easy to find the
associated concepts: their extensions are the columns and the 2-intersections of
columns (the intersection of three intervals is the intersection of two of them).

The algorithm of Booth and Lueker [5] relies on a function UPDATE_TREE(T), A),
where T is a PQ-Tree on X and A a subset of X. UPDATE_TREE returns a PQ-
Tree T' where St/ is the set of all permutations o of St such that, when X is
sorted along o, A is an interval of X (if there is no such permutations, T is
None); for instance, with the PQ-Tree of Figure 1 and the set {1,3,4} (column
4 of Figure 3), UPDATE_TREE returns the PQ-Tree of Figure 4. UPDATE_TREE
runs in O(n), where n is the size of the column (i.e. the number of lines of the



matrix). Given an n x m {0, 1}-matrix M, the algorithm of Booth and Lueker

S
(0] 2 1 3 4 5

Figure 4: PQ-Tree built from columns 0, 1, 2 and 4 of Cross-Table of Figure 3

starts with the PQ-Tree U,, which represents all permutations on {1,...n} (U,
has n leaves and one internal node (its root) which is a P-node) and apply Up-
DATE_TREE for all columns of M. By this way, it determines if M has the C1P
in O(nm). More generally, given a subset S of 2%, we can apply the algorithm
of Booth and Lueker on S and obtain a PQ-Tree T' = BL(S) such that, for any
permutation o represented by T (and only for them), when X is sorted along
o, all the elements of S are intervals.

So, given an order ¢ on the columns, Algorithm MAXIMAL-C1P-CONSTRUCTION
gives a solution to the approximate seriation problem in linear time. For the
formal context of Figure 3, if we consider the columns in increasing order, this
algorithm returns the PQ-Tree of Figure 4 and rejects the column 3, which is
not compatible with the 3 first columns.

Algorithm MAXIMAL-C1P-CONSTRUCTION(M, ()
Input A n x m {0, 1}-matrix M.
A permutation ¢ on the columns of M.
Output A Maximal set C of columns of M such that M|c has C1P;
A PQ-Tree T representing the compatible permutations.
begin
T+U,;
C+0;
ForAll columns ¢ of M taken along ¢ Do
T’ + UPDATE_TREE(T, ¢)
If T' # None Then
T+ T ;
C+ CU{c};
return T, C ;

end

If the matrix has not the C1P, there are many solutions depending on the
order (. For instance, if we consider the columns of the formal context of
Figure 3 in reverse order, we keep the columns 4, 3, 1 and obtain the PQ-Tree
of Figure 5.

We can see that the maximal sets of compatible columns do not have all
the same number of elements. Since MAXIMAL-C1P-CONSTRUCTION is very
efficient, it is possible to try many orders on the columns and then take the
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Figure 5: PQ-Tree built from columns 1, 3 and 4 of Cross-Table of Figure 3

greatest obtained set. We will now see that it is possible to go over that by
using the lattice structure of PQ-Trees.

3 The Lattice Structure of PQ-Trees

We denote by Tx the set of all PQ-Trees on a finite set X. Given two elements
Ty and Ty of Tx, we say that 71 < Ty if S7, C St,. We will show that (Tx, <)
is a distributive lattice, which generalizes the semilattice of hierarchies (a hier-
archy can be seen as a PQ-Tree with only P-Nodes). This will allow us to define
a consensus between the different solutions of MAXIMAL-C1P-CONSTRUCTION.

Given a PQ-Tree T on X, the Interval Set of T' (denoted by Int(T)) is the set
of all nonempty subsets S of X such that, for every permutation o compatible
with 7', when X is sorted along o, S is an interval, i.e. Int(T') is the greatest
subset P of 2% \ {0} such that BL(P) = T. Equivalently, S € Int(T) <+
UPDATE_TREE(T,S) =T.

Let o be a node, we denote by X («) the set of the leaves under a. If «

is a Q-node with sons (in this order) f,...08,, we denote by )?(E) the set

—

{Ui:iX(ﬁk), 1 <i<j<p} (remark that X(«) is a set of sets). We have:

Property 1. Int(T) = {X(a), @ node of T} U U )?(E).
a @Q-node
of T

Proof. Let I(T) = {X(«a),a node of T} U U )?(E). Clearly, for ev-
a Q-node
of T
ery permutation represented by T, all subsets of X in I(T) are intervals. So
I(T) CIny(T).
Conversely, let S be a subset of X not in I(T"). We are in one of the following
cases:

1. 3node ast. X(a)NS#0, X(a) ¢ S, S ¢ X(a).

2. 3 P-node «, with sons 51, f2,.... Bp, p > 2 s.t. X(B1) C S, X(B2) C S,
X(Bp) ¢ S (actually, if not in case 1, X(3,) NS = 0).



3. 3 Q-node «, with sons f1, B2, ..., Bp, p > 2 s.t. Ji < j < k with X(8;) C S,
X(Br) C Sand X(B;) € S.

In each case, there exists a permutation ¢ in St such that, when X is sorted
along o, S is not an interval. O

Clearly:
Property 2. ' <Ty) <— [nt(Tg) - [nt(Tl)
Theorem 1. (Tx, <) is a distributive lattice.

Proof. By Property 2: Ty ATy = BL(Int(Ty)UInt(Tz)) and Ty VTy = BL(Int(Ty)N
Int(T5)). O

In addition, by Property 1, 71 V Ty and Ty A Ty can be computed in O(n?).
Remark that, to compute T A Ts, we can use the sets {X(5;) U X(Bi41),1 <
i < p} instead of )?(E) for all Q-nodes o with sons f1,...3,. Thus T7 A T3 can
be computed in O(n?).

The largest element of (7x, <) is the universal tree U x| which represents
all the permutations on X and the smallest one is None which represents no
permutation.

The join of the PQ-Trees of Figure 4 and 5 is represented on Figure 6.
The PQ-Trees of Figure 4 and 5 represent respectively 4 and 8 permutations.
Their join represents 16 permutations, which is very close to the theoretical
minimum of 12, especially when compared to the 720 possible permutations on
{0,...,5}. In addition, we can see that, for all the permutations represented by
this PQ-Tree, the set {1,2,3,4} is ordered in (2,1, 3,4),(2,3,1,4), (4,1,3,2) or
(4,3,1,2), as for the two PQ-Trees of Figure 4 and 5.

—

2 1 3 4 0] 5

Figure 6: The join of the PQ-Trees of Figure 4 and 5

Conversely, the meet of the two PQ-Trees of Figure 4 and 5 is None, since
these two PQ-Trees are compatible with maximal sets of columns. This situation
will occur with any two PQ-Trees obtained with MAXIMAL-C1P-CONSTRUCTION:
they are built from maximal sets of columns of M and thus the permutation
sets that they represent are already minimal.



We can now improve our algorithm by taking, from the best solutions ob-
tained by MAXIMAL-C1P-CONSTRUCTION a consensus. More precisely:

Algorithm APPROXIMATE_SERIATION(M, k)
Input A n x m {0, 1}-matrix M.
A positive integer K < m
A positive integer Nb_Trials
Output A PQ-Tree T representing the compatible permutations.
begin
E+0(;
For ¢ +— 1 To Nb_Trials Do
¢ + random permutation on {1,...,m ;
(T, C) + MaAXIMAL-C1P-CONSTRUCTION(M, () ;
If Card(C) > £ Then
| E< EU{T} ;
//E = {Tilvﬂzv"'aﬂp}
return T;, VT, V... VT

p
end

The result is a consensus of all “good” PQ-Trees, where “good” means that
the PQ-Tree is built on at least k columns of the matrix. The value of x must be
determined by the user and depends on the data. Our algorithm must be used
in an interactive way. This is made possible by the efficiency of the algorithms.
We will see that in the next section where we treat real archeological data.

4 Experimentations

We have experimented our method on a recent archeological data set which is
shown in Table 1. The first step is to find maximal sets M’ of columns such that
the table induced by M’ has the C1P. To do that, we have made 200 millions
trials of MAXIMAL-C1P-CONSTRUCTION with random order of the columns.
We found 1563 maximal sets, of size going from 5 to 11. Their distribution is
shown in Table 2.

At this step, we made a consensus between all the solutions with maximum
number of columns. We obtained the PQ-Tree of Figure 7.

12 14 16 0 1 2 3 4 5 6 7 8 9 10 11 13 15 17 18

Figure 7: Consensus PQ-Tree between the twelve maximal PQ-Trees built on
11 columns.



Table 1: Cross table from Alberti[l]. The columns are indexed by object types
and the lines by the huts of the Punta Milazzese (Aeolian Archipelago, Italy)
settlement. We have indicated the presence/absence of objects in the different
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2 X X X X X X X X X X X X X X X X X X X
3 X X X X X X X X X X X X X
4 X X X X X X X X X X X X
5 X X X X X X X X
6 X X X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X X X X X X X
8 X X X X X X X X X X X X X X X X X X X X X
9 X X X X X X X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X
X X X X X X X X X X X
X X X
X X X X X X X
X X X
X X X X X X X X
X X X X X X X X X X X X

Table 2: Size and number of maximal sets of columns from Table 1 having the
C1P.

Number of columns 5| 6 7 8 9 10 | 11
Number of maximal sets | 1 | 28 | 294 | 505 | 514 | 209 | 12

This PQ-Tree takes into account 22 columns, but it represents too many
permutations (informally speaking, the corresponding consensus is too “soft”).
In addition, since it corresponds to a consensus, we cannot build the associated
lattice, but all the possible concepts are intervals of the PQ-Tree.

We can remark that all the lines/huts are grouped together except lines 12,
14 and 16. So we put these lines appart from the others (technically, we filled
them with 0) and we apply the procedure on the transformed table. We get the
results of Table 3.

Table 3: Size and number of maximal sets of columns from Table 1 without
columns 12, 14 and 16 having the C1P.

Number of columns 7 8 9 10 11 | 12 | Total
Number of maximal sets | 3 | 142 | 480 | 579 | 144 | 1 1349

The PQ-Tree built on 12 columns (the columns 2, 3, 4, 8, 10, 11, 14, 21,
22, 27, 28 and 30), and all lines except the lines 12, 14 and 16, is shown on
Figure 8. Since it is unique, it corresponds to a maximal sub-context (having
C1P) of Table 1, whose concept lattice is shown on Figure 9.

It is possible to go further that solution and reiterate the processus. Since



_— —

\ ]
S— S— S—

12 14 16 15 18 9 10 3 2 7 4 8 0o 1 1 6 5 13 17

Figure 8: The PQ-Tree built on 12 lines by putting appart columns 12, 14 and
16

Figure 9: Concept lattice from the PQ-Tree of Figure 8

their is only one maximal column set of size 12 having C1P, we take the join
of all PQ-Trees built on column sets of size > 11. This PQ-tree is similar to
the one of Figure 7. After putting appart lines 15 and 17, we get the results of
Table 4. The consensus of the PQ-Trees corresponding with sets of size 13 is
the one of Figure 10. This PQ-Tree takes into account 22 columns (the columns
0,1,2 3,6, 78,9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 25, 26, 27, 28 and 29)
and represents 2,985,984,000 permutations, which is 167,000 times less that the
PQ-Tree of Figure 7.

We have seen that one can associate, with each formal context, maximal



Table 4: Size and number of maximal sets of columns from Table 1 without
columns 12, 14, 15, 16 and 17 having the C1P.

Number of columns 819 10 11 | 12 | 13 | Total
Number of maximal sets | 1 | 68 | 405 | 377 | 90 | 10 951

—

12 14 15 16 17 © 4 5 10 18 3 9 13 2 7 8 11 1 6

Figure 10: PQ-Tree obtained by putting appart Lines 12, 14, 15, 16 and 17.

(in lines and columns) sub-contexts satisfying the C1P, that we could name
Seriation Formal Concepts. The intersection of two seriation formal concepts
C1 and C, is a seriation formal concept (its PQ-Tree is the meet of the two PQ-
Trees associated with C; and Cs). So, with any formal context, we can associate
the semi-lattice of its seriation formal concepts. At the present time, we are able
to determine all the seriation formal concepts containing a given set of lines. We
are working on an algorithm which computes all the seriation formal concepts
and generates the seriation formal lattice.

5 Conclusion

We have presented in this paper an interactive framework to solve the approx-
imate seriation problem for formal contexts. It is algorithmically efficient and
uses the underlying lattice structure of PQ-Trees.

As usual in approximation problems, we are dealing with several criteria
which are important to determine the quality of the resulting PQ-Tree:

e The number of columns taken into account (the largest possible).
e The number of removed lines (the smallest possible).
e The number of represented permutations (the smallest possible)

If a formal context admits an exact solution to the seriation problem, then its
underlying structure can be represented by a PQ-Tree. If it is not the case, we
can build a consensus PQ-Tree which is a solution to the approximate seriation
problem but at the present time, we are not able to build an associated concept

10



lattice. Moreover, from this work appears the new notion of seriation formal
concepts and semilattices.
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