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Abstract. We propose a new video inpainting model for movies restora-
tion application. Our model combines structural reconstruction with a
diffusion-based method and textural reconstruction with a patch-based
method. Both proposed energies (one for each method) are alternatively
minimized in order to preserve the overall structure while adding textural
refinement. While the structural reconstruction is obtained jointly with
optical flow computation with several proximal approaches, the textural
reconstruction is processed by a variational non-local approach. Prelim-
inary results on different Middlebury frames show quality improvement
in the reconstruction.

1 Introduction

Video inpainting is a key issue for the movie industry, as it could help to au-
tomate the restoration of films that have suffered significant degradation (see
Fig. 1), or the use of certain special effects that require the removal of elements
for action scenes. Video inpainting, as every video processing, is increasingly
being studied thanks to the power of processors and GPUs to perform large-
scale calculations. Until now, video inpainting techniques have used separately
diffusion-based methods with motion estimation, or patch-based methods with
3D patches to take into account temporal redundancy (similarity between con-
secutive frames), but without any explicit motion estimation this time. This
motion can give a lot of information to recover data so it is a really good help
for inpainting. However, in order to estimate motion, full data is needed and this
is why this estimation must be processed at the same time as inpainting, which
represents the main challenge.

In this paper, we aim to restore spot defects on previously digitized films. Each
of these defects appears only in one frame and not in those located just before
or just after. To eliminate them, our approach consists in combining a diffusion-
based video inpainting model which jointly computes optical flow, with a patch-
based model with 2D patches and shift maps to the temporally neighbouring
images. With this approach, our model only needs the two adjacent frames to
reconstruct the damaged area. While each model taken separately has drawbacks
in terms of reconstruction quality, combining them both gives better results.



Fig. 1: Example of digitized frames from an old movie of the Cinémathèque de Toulouse
with a defect in the central frame.

After reviewing related approaches in Section 2, we present our combined model
in Section 3. Our numerical strategy for solving this variational problem, which
is presented in Section 4, is based on alternating optimization of the diffusion-
based and patch-based models. Preliminary experiments on Middlebury frames
with added defects are conducted in Section 5, which confirm the interest of
using both models together.

2 Related work

Inpainting is the name given to the technique of filling damaged or missing areas
in an image. The term “inpainting” is only used from 2000 in [4], by analogy
with the restoration process used in the field of art, after that of “disocclusion”
in [21] in 1998. The first inpainting applications came from diffusion models for
denoising, which date back to the early 1990s. This field of research has been
very active in recent years, stimulated by many applications: removal of scratches
or of text superimposed on an image, restoration of an altered image following
a transmission, elimination of objects in an editing context for diminished reality.

Filling the area to be restored is an ill-posed inverse problem because there is
not a single well-defined solution. It is therefore necessary to introduce a priori
knowledge into the model. All existing methods are guided by the assumption
that pixels located in known and missing parts of the image share the same
statistical properties or geometric structures. This hypothesis is reflected in dif-
ferent local or global a priori assumptions, in order to obtain a restored image
that is visually plausible. In diffusion-based inpainting, one wants to propagate
the information contained in the pixels from the edge of the damaged area to
the inside of this area. Total variation for inpainting was introduced in [11] to
block the diffusion at the edges of the objects and recover piecewise constant
data. The extension of diffusion-based inpainting to video started with [12] and
[17,18] where motion is simultaneously estimated to fill the damaged area. From
the well-known optical flow model of [16] with L2 smooth regularization, [2]
switched to L1 norms to preserve discontinuities of the different motions, which
was later solved using proximal algorithms in [23]. Very recently, [7] chose a
complete TV-L1 model to solve motion estimation and image reconstruction,
using also proximal algorithms.



However, these diffusion-based models are limited because they cannot handle
textures. This is why models based on full or partial patch copying have been
developed (see more details in [8]) to keep details at high frequencies, starting
with texture synthesis in [15] and then local patch-based inpainting (patches
are only looked for in a neighbourhood of the defect area) in [13] with priority
for filling based on the magnitude of the spatial gradient at the edges of the
area to be filled. Finally, recent methods consider a mixture of patches following
a spatial non-local search as in [1]. This patch-based approach for inpainting
was also extended to videos in [22] and [19] with 3D patches to include some
temporal similarity in patch comparisons. If these models yield better results in
the recovery of texture, they are however highly dependent on the initial filling
of the area, so as not to remain blocked in a local minimum for the solution,
which usually fails at reconstructing regular structures. Moreover, considering
the patch size is also an important criterion in order to recover textures with
different statistical properties.

In the image inpainting context, the idea of mixing both approaches has al-
ready been developed in [14] where diffusion and texture filling are sequentially
processed, in [6] where the image is decomposed into cartoon and texture before
being filled separately, and in [9] where texture is filled guided by the level lines.
In the video denoising context, [5] uses patches combined by the computation of
a structural optical flow of [23]. Our aim in this paper is also to get the best of
both worlds by combining diffusion to recover structure with patches for texture,
with also diffusion-based and patch-based approaches for motion estimation.

3 Statement of the problem

Let us define a sequence of 3 successive color frames {u
b
, u, u

f
} as functions

Ω ⊂ R2 → R3 with bounded variation, where u
b

is the backward frame, u is the
current frame containing the defect to be inpainted, and u

f
is the forward frame.

This defect area is defined by O ⊂ Ω. The problem to be solved is as follows:{
v∗
b
, Γ ∗

b
, u∗, v∗

f
, Γ ∗

f

}
= argmin
v
b
,Γ

b
,u,v

f
,Γ

f

{
ES(v

b
, u, v

f
) + ET (Γ

b
, u, Γ

f
)
}

(1)

where ES represents the energy for structural reconstruction, minimized channel
by channel (or using the luminance channel for the motion estimation), and ET
the energy for textural reconstruction, minimized using color frames directly.
The different variables are explained in the following subsections.

3.1 Structural reconstruction energy

The model chosen for ES is based on the works of [18] and [7], adding a symmetry
between the optical flows (reminding u is here only one channel):

ES(v
b
, u, v

f
) = µ

∫
Ω

|∇u(x)| dx+ λ

∫
Ω

|Jv
b
(x)| dx+ λ

∫
Ω

∣∣Jv
f
(x)
∣∣ dx

+

∫
Ω

|u
b
(x+ v

b
(x))− u(x)| dx+

∫
Ω

∣∣u
f
(x+ v

f
(x))− u(x)

∣∣ dx

(2)



under the constraint u = u0 over Oc = Ω\O to preserve the healthy part of
the frame. The terms containing the motion field v

b
: Ω → R2 (respectively v

f
)

represent the L1 regularized optical flow constraint, proposed by [23], between
the current frame u and the backward frame u

b
(respectively the forward frame

u
f
), but using Jacobian matrices, as a rewriting of the formula in [10]. Every

integral contains a discrete norm |.| defined as |M | =

√∑
i,j

m2
i,j

, which means

either an absolute value, a vector norm or a Frobenius norm depending on the
case. The parameters λ and µ are used to define the trade-off between data
fitting and regularization.

3.2 Textural reconstruction energy

The second energy ET is an extension to video of the work of [1], using directly
the color frames (not channel by channel as for the structural energy). Here the
search for optimal patches is no longer carried out in a spatial neighbourhood
around the defect, but in a temporal neighbourhood (in the previous frame u

b

and the next frame u
f
). While in [22] and [19] the 3D patch search is not limited

in time distance, here we focus only on 2D patches in the backward and forward
frames. In the current frame u, the central pixel x of the patch pu(x) concerned
by the search of the optimal patch in the neighbour frames u

b
and u

f
is in the

area Õ which is O expanded by half a patch width, in order to propagate patches
containing sufficient healthy data:

ET (Γ
b
, u, Γ

f
) =

∫
Õ

ω(x) ε
[
pu

b
(Γ

b
(x))− pu(x)

]
dx

+

∫
Õ

(1− ω(x)) ε
[
pu

f
(Γ

f
(x))− pu(x)

]
dx

(3)

where Γ
b

and Γ
f

are shift maps, respectively, from u to u
b

and from u to u
f
,

ω(x) ∈ [0, 1] is a weight between the two possible reconstructions of u from for-
ward or backward frames (see Section 4.3), and ε represents the chosen distance
between patches. Here in (4), ε is a convolution between the squared difference of
the patches (pu

b
(Γ

b
(x))−pu(x))2 and a Gaussian kernel ga of standard deviation

a for a non-local means reconstruction:

ε
[
pu

b
(Γ

b
(x))− pu(x)

]
=

∫
Ωp

ga(xp) [u
b
(Γ

b
(x)− xp)− u(x− xp)]2 dxp (4)

where xp ∈ Ωp denotes the coordinates of a pixel inside the patch pu(x) relative
to its center x. Minimizing ES and ET at the same time is a very complex
problem with no proof of existence and uniqueness of a solution for (1), but one
only wishes to obtain an approximate numerical solution by minimizing ES and
ET alternatively, using the result u of the minimization of one to initialize the
other one.



4 Optimization

Applying inpainting to large defects or estimating motions requires a coarse-
to-fine framework. In a video context, it is even more important to follow this
strategy in order to initialize every variable correctly. The idea here is to down-
sample enough the frames to consider that motions are small enough between
them. At such a resolution (the level L→ Lmax), considering Gaussian filtering
to eliminate high frequencies in the downsampling step, the structural recon-
struction works well whereas the textural one is not efficient. On the other hand,
at higher resolution (L→ 0), we want to put more emphasis on texture. This is
why our algorithm can choose a maximum resolution level Ltexture

max to start tex-
ture reconstruction and a minimum resolution level Lstructure

min to stop structural
reconstruction, with Ltexture

max ≥ Lstructure
min − 1 to ensure that at least one of the

reconstructions is applied at each resolution. Consequently, at a given resolution
level L > 0, our algorithm applies only one reconstruction or both in a row:

Algorithm 1 - Reconstruction at resolution levels L and L− 1

1: if L ≥ Lstructure
min then

2: v∗
b
, u∗, v∗

f
← argmin

v
b
,u,v

f

{
ES

(
vb , u, vf

)}
3: vb , vf ← upsampling(v∗

b
, v∗

f
)

4: u← u∗

5: end if

6: if L ≤ Ltexture
max then

7: Γ ∗
b
, Γ ∗

f
← argmin

Γ
b
,Γ

f

{
ET

(
Γb , u, Γf

)}
8: Γb , u, Γf ← upsampling(Γ ∗

b
, u, Γ ∗

f
)

9: u∗ ← argmin
u

{
ET

(
Γb , u, Γf

)}
10: u← u∗

11: else

12: u← upsampling(u)

13: end if

Notice that shift maps upsampling is carried out with the nearest neighbour in-
terpolation, while the bicubic one is used for the other upsamplings. The different
minimizations of u, v

b
, v

f
, Γ

b
and Γ

f
in Algorithm 1 are explained below.

4.1 Motion estimation

In order to minimize ES with respect to the motion vector v
b
, we proceed as

in [23] by linearizing inside the two absolute differences in (2). However, this
linearization is only possible in the case of small displacements. This is why a
constant motion vector v0

b
is introduced, close to v

b
, around which the latter is

estimated, to get:

ES(v
b
, u, v

f
) = µ

∫
Ω

|∇u(x)|dx+ λ

∫
Ω

|Jv
b
(x)|dx+ λ

∫
Ω

|Jv
f
(x)|dx

+

∫
Ω

|∇u
b
(x+ v0

b
(x)) · [v

b
− v0

b
](x) + u

b
(x+ v0

b
(x))− u(x)|dx

+

∫
Ω

|∇u
f
(x+ v0

f
(x)) · [v

f
− v0

f
](x) + u

f
(x+ v0

f
(x))− u(x)|dx

(5)



where ∇u
b
(x+v0

b
(x))·[v

b
−v0

b
](x)+u

b
(x+v0

b
(x))−u(x) will appear as ρ(u, v

b
, u

b
)

afterwards (same goes for v
f
). Minimizing with respect to the motion vector v

b

leads to the form:

v∗
b

= argmin
v
b

max
y

∫
Ω

|ρ(u, v
b
, u

b
)|dx+ 〈 Jv

b
| y 〉 − ιB∞

( y
λ

)
(6)

introducing the dual variable of v
b
, y : Ω → R2×2. This convex problem can be

solved by the primal-dual algorithm of [10], noticing that Jv
b

= [∇v
b,1
,∇v

b,2
]>

and so we get the adjoint operator J∗y = −[div([y1,1 , y1,2 ]>),div([y2,1 , y2,2 ]>)]>.
Whereas the proximal operator associated to y is a projection onto the L∞-norm
ball, the proximal operator associated to v

b
is a soft thresholding (see [23] for

details): 
y(n+1) ← proxλσι

B
∞

(
y(n) + σJv̄(n)

b

)
v(n+1)
b

← proxτρ(u,−,u
b
)

(
v(n)
b
− τJ∗y(n+1)

)
v̄(n+1)
b

← v(n+1)
b

+ θ
(
v(n+1)
b

− v(n)
b

) (7)

where σ, τ > 0 are time steps and θ ∈ [0, 1]. The minimization of ES with respect
to v

f
is carried out in a similar way.

4.2 Structural reconstruction

After motion has been estimated, the inpainting process is obtained by minimiz-
ing:

u∗ = argmin
u

∫
Ω

|u
b
(x+ v

b
(x))− u(x)|dx

+

∫
Ω

|u
f
(x+ v

f
(x))− u(x)|dx+ µ

∫
Ω

|∇u(x)|dx
(8)

In order to rewrite the convex problem (8) with dual variables, the time variable
must be clarified with respect to u, v

b
and v

f
. Indeed, taking 1 as the time step

between two frames, and t as the current time for u, then u
b

and u
f

take the
form:

u
b
(x+ v

b
(x)) = u(x+ v

b
(x, t), t− 1) = u (ϕ

b
(x, t))

u
f
(x+ v

f
(x)) = u(x+ v

f
(x, t), t+ 1) = u

(
ϕ

f
(x, t)

) (9)

with ϕ
b

and ϕ
f

two transformations, which are similar to shift maps, with the
hypothesis that ϕ

b
◦ ϕ

f
= ϕ

f
◦ ϕ

b
= Id almost everywhere. With these new

notations, (8) can be rewritten as:

u∗ = argmin
u

max
z

〈 u ◦ ϕ
b
− u

u ◦ ϕ
f
− u

∇u

∣∣∣∣∣∣ z
〉
−ιB∞ (z

1
)−ιB∞ (z

2
)−ιB∞

(
1

µ

[
z3
z4

])
(10)

introducing the dual variable of u, z : Ω → R4. Noting K the operator with
respect to u in the inner product, it leads to the adjoint operator K∗ as in [18]:

K∗z = det
(
Jϕ

f

)
z
1
◦ ϕ

f
− z

1
+ det (Jϕ

b
) z

2
◦ ϕ

b
− z

2
− div([z

3
, z

4
]>) (11)



Minimizing (10) can also be carried out, using the primal-dual algorithm of [10]:

z(n+1)
1

← proxσι
B

∞

(
z(n)
1

+ σ
(
u ◦ ϕ

b
− ū(n)

))
z(n+1)
2

← proxσι
B

∞

(
z(n)
2

+ σ
(
u ◦ ϕ

f
− ū(n)

)) z(n+1)
3

z(n+1)
4

← proxµσ′ι
B

∞


 z(n)3

z(n)
4

+ σ′∇ū(n)


u(n+1) ← u(n) − τK∗z(n+1)

ū(n+1) ← u(n+1) + θ
(
u(n+1) − u(n)

)

(12)

where σ, σ′, τ > 0 are time steps and θ ∈ [0, 1].

To minimize an energy similar to (2), [7] repeats alternating minimizations be-
tween inpainting u and estimating a unique motion vector field v until conver-
gence. In our case, instead of doing such a thing, it was decided to minimize
the three variables (v

b
, u, v

f
) together, by applying successive proximal steps on

each variable. The three descents in v
b
, v

f
and u give thus better results in the

reconstruction than the first option for an equivalent computation time.

4.3 Shift maps estimation and textural reconstruction

The textural reconstruction is based on the work of [1], where the shift maps Γ
b

and Γ
f

are estimated using the PatchMatch algorithm of [3], with a L2-distance

between patches. Consequently, for Γ
b

(respectively Γ
f
), ∀x ∈ Õ:

Γ
b
(x) = argmin

xb∈Ω

∫
Ωp

ga(xp) [u
b
(xb − xp)− u(x− xp)]2 dxp (13)

For each temporal neighbour frame u
b

and u
f
, each associated part of (3) can

be rewritten, without considering the weight ω for now, as the extreme case of
choosing only the nearest neighbour patch for every pixel in the defect area (see
[1] for details), which introduces a Dirac δ:

EbT (u, Γ
b
) =

∫
Õ

∫
Ω

δ(Γ
b
(x)− xb) ε[pub

(xb)− pu(x)] dxb dx (14)

With the changes of variables x := x− xp and xb := xb − xp which operate two
translations, we obtain from (4) and (14):

EbT (u, Γ
b
) =

∫
O

∫
Ω

m(x, xb) [u
b
(xb)− u(x)]2 dxb dx (15)

with:

m(x, xb) =

∫
Ωp

ga(xp) δ(Γb
(x+ xp)− (xb + xp)) dxp (16)



whose integral over Ω is equal to 1 since ga is assumed normalized. By expanding
the squared difference in (15), u is also the minimizer of the following energy,
which is equal to EbT (u, Γ

b
) up to a constant:

ẼbT (u, Γ
b
) =

∫
O

[
u(x)−

∫
Ω

m(x, xb)ub
(xb) dxb

]2
dx (17)

which directly leads to the non-local means solution defined ∀x ∈ O:

u(x) =

∫
Ω

m(x, xb)ub
(xb) dxb =

∫
Ωp

ga(xp)ub
(Γ

b
(x+ xp)− xp)) dxp (18)

This is the result for only one of the two neighbour frames. To take into account
both frames, some weighted means are introduced with the weights ω(x) and
(1 − ω(x)). Choosing half of both results (ω(x) = 0.5, named TH afterwards)
will cause some blur. However, taking only the best (ω(x) ∈ {0, 1}, named TB)
will cause spatial artifacts. In this case, the choice of the weight 0 or 1 is given
after both shift maps Γ

b
and Γ

f
having been estimated. Then, for each pixel to

recover, the weight ω(x) is equal to 1 if the final distance ε
[
pu

b
(Γ

b
(x))− pu(x)

]
from the backward frame is smaller than the one from the forward frame, i.e.

ε
[
pu

f
(Γ

f
(x))− pu(x)

]
, and is equals to 0 otherwise. An intermediary solution

can be to take a weighted mean (named TαW ), using the following ratio containing
both previous distances ε:

ω(x) =
ε
[
pu

f
(Γ

f
(x))− pu(x)

]α
ε
[
pu

f
(Γ

f
(x))− pu(x)

]α
+ ε

[
pu

b
(Γ

b
(x))− pu(x)

]α (19)

where the power α ∈ [0,+∞). One can notice that this formula can generalize
the two first choices as follows:

lim
α→0

TαW = TH and lim
α→+∞

TαW = TB . (20)

In the next section, the use of TW without specifying α means that α is equal
to 1, which is the case of a classical ratio between the distance from the forward
frame and the sum of both distances.

5 Experiments

Our algorithm is implemented on Matlab and C, using the maximum level
Lmax = 10 in multiresolution pyramid with a factor of

√
2. In order to test

the algorithm, three consecutive Middlebury frames were used where a defect
was artificially put in the central frame (see Fig. 2). The videos of the complete
Middlebury sequences of 8 frames with the defect, and the reconstructions are
available for downloading at the following link: SSVM VideoInpainting.

https://drive.google.com/file/d/1maqeKHPtV_h8Lvlq2Ag_bebHV5A93327/view?usp=sharing


Fig. 2: Frames 8 to 10 from “RubberWhale” (top), “Evergreen” (middle) and
“Dumptruck” (bottom) sequences with a defect highlighted in red in the central frame.

5.1 Qualitative results

Concerning the “RubberWhale” frames, results in Fig. 3 show that the textural
methods (3b to 3d) are inadequate to reconstruct the puppet and the backward
properly, whatever the chosen patch. On the other hand, the structural recon-
struction (3e) is already good. However, our algorithm still gives some little
improvement (3f to 3h), in particular at the top of the head of the puppet where
there is false color with the structure, due to the channel separation to inpaint,
and at the corner of the wooden bar at the back which is less rounded.

(a) Defect (b) TB (c) TH (d) TW

(e) Structure (f) Structure + TB (g) Structure + TH (h) Structure + TW

Fig. 3: “RubberWhale” reconstructions (zooms on the defect area).



In order to show more improvements, the two next sequences represent real-
istic scenes with more texture and larger motions. In the case of “Evergreen”
frames for instance, results in Fig. 4 show that textural methods (4b to 4d) can-
not manage to reconstruct the tree branches properly. The best patch approach
(4b) leads to artifacts wheareas the mean approaches (4c and 4d) operates an
averaging, as expected, which results in a lack of texture. The structural recon-
struction (4e) is better but still a little blurry because of the diffusivity and some
branches seems a little bit stretched out. On the other hand, the combination of
both reconstructions (4f to 4h) succeeds in adding texture to structure.

(a) Defect (b) TB (c) TH (d) TW

(e) Structure (f) Structure + TB (g) Structure + TH (h) Structure + TW

Fig. 4: “Evergreen” reconstructions (zooms on the defect area).

The results for “Dumptruck” frames in Fig. 5 show that the structural recon-
struction (5e) leads to a deformation of the truck, which seems to oscillate ver-
tically in the video. Moreover, there is also some ghosting effect behind the car
that goes to the right. Textural reconstructions using means (5c and 5d) lead,
as expected, to blurry reconstructions of the truck. Even if using the best patch
from both adjacent frames (5b), whose result seems to be really good on the
static reconstructed frame, the video shows that the algorithm chooses the clos-
est frame in terms of patch distance and stays locked, this is why a lack of motion
appears in the defect area in the video. Using our algorithm (5f to 5h), we obtain
better results with the textural refinement, which permits to keep a good optical
flow. Only the ghosting effect remains, due to the large displacement of the car.

(a) Defect (b) TB (c) TH (d) TW

(e) Structure (f) Structure + TB (g) Structure + TH (h) Structure + TW

Fig. 5: “Dumptruck” reconstructions (zooms on the defect area).



5.2 Quantitative results

Regarding the PNSR and SSIM quality metrics for the “RubberWhale” frame
reconstructions in Table 1 (up), it leads to the same interpretation: the structural
reconstruction performs as well as our algorithm. For the “Evergreen” frame
reconstructions, the first visual interpretations are also validated by the quality
metrics in Table 1 (middle) where structural reconstruction performs better
than textural reconstruction, and our algorithm gives the best results with a
certain gap. Moreover, choosing any of the three textural reconstructions with
the structural one has no longer a real impact on the result. Concerning the
“Dumptruck” frame reconstructions, by looking at the quality metrics in Table 1
(bottom), our algorithm leads to a significant improvement compared to the
separate structural and textural reconstructions.

RubberWhale -
Textural reconstructions

TB TH TW

- 16.34 - 0.915 38.46 - 0.994 41.12 - 0.996 39.92 - 0.995

Structural
48.49 - 0.999 46.99 - 0.999 48.81 - 0.999 48.59 - 0.999

reconstruction

Evergreen -
Textural reconstructions

TB TH TW

- 18.66 - 0.943 30.94 - 0.978 33.37 - 0.980 33.56 - 0.982

Structural
37.24 - 0.991 40.37 - 0.994 40.47 - 0.994 40.50 - 0.994

reconstruction

Dumptruck -
Textural reconstructions

TB TH TW

- 17.53 - 0.937 33.16 - 0.987 34.35 - 0.989 34.31 - 0.988

Structural
27.76 - 0.975 38.11 - 0.994 38.87 - 0.994 38.58 - 0.994

reconstruction

Table 1: PSNR - SSIM for the different reconstructions of the “RubberWhale” frame
(top), the “Evergreen” frame (middle) and the “Dumptruck” frame (bottom).

6 Conclusion and perspectives

In this paper, we have shown that combining structural reconstruction based on
diffusion approaches and textural reconstruction leads to better results in terms
of visual and metrics quality. To go further, it would be interesting to refine the
optical flow model using total generalized variation as in [20]. Other non-local
textural reconstructions could also be processed, as with the median filter and
also using patch gradients or other new patch regularizations.
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