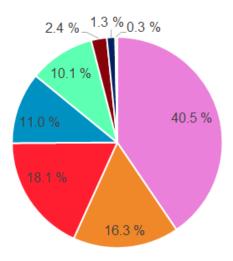
DE LA RECHERCHE À L'INDUSTRIE

<u>Ceaden</u>

On the radio-oxidation at high doses of an industrial polyesterurethane and its pure resin

E. Fromentin¹, C. Aymes-Chodur², D. Doizi¹, M. Cornaton¹, F. Miserque³, F. Cochin⁴, M. V. di Giandomenico⁵, S. Esnouf¹, M. Ferry¹

¹ CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette, France.


- ² Université Paris-Sud, SM2B/ICMMO, UMR CNRS 8182, F-91405, Orsay, France.
- ³ CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette, France.
- ⁴ AREVA NC DOR/RDP, 1 place Jean Millier, F-92084, La Défense Cedex, France.
- ⁵ EDF Lab, Les Renardières, F-77818 Moret-sur-Loing, France.

Ceaden Polymers used in the nuclear industry

A wide variety of polymers in the nuclear industry

Nitrile rubber	Fluoro elastomer	Chlorinated polymer	EPDM	Ероху	Polyurethane	Acrylic
B						Q
Seals	Seals	Hot cell sleeve Protection sheet	Seals Insulation	Coating Paints	Gloves Cables sheath Insulation	Scotch

=>

Chlorinated	polymers
-------------	----------

- Polyolefins
- Ion exchange resins
- Other
- Cellulose
- Fluorinated polymers
- Polyurethanes
- Polyamide

Intermediate Level Long Lived Waste (IL-LLW) Storage and then disposal (future)

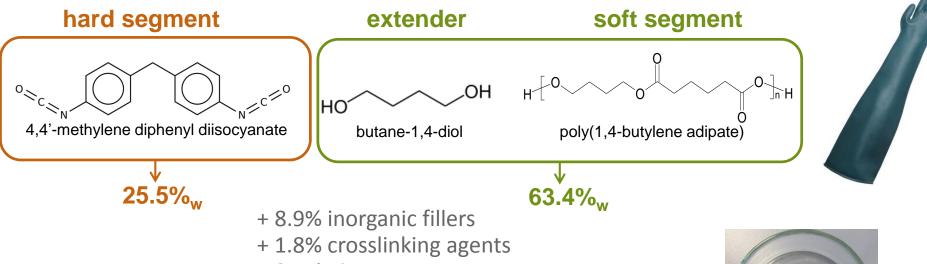
=>

Ceaden Polymers in nuclear waste containers

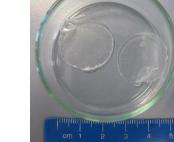
Polymers in contact with radionuclides (RN) in the Intermediate Level Long Lived Waste (IL-LLW) packages

Main risk associated with storage

Gas emission (inflammation, corrosion...)


Estimate/simulate, over years (up to about 10 MGy), main gases emission

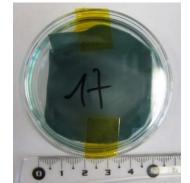
- Necessity to understand the evolution of the different polymers under irradiation
 - Identification and as much as possible quantification of the degradation products


Ceaden Chosen polymers

Industrial polyesterurethane (named hereafter PURm)

- Constituent of glovebox gloves
- Composed of 3 segments synthesized from these precursors

+ 0.4% pigments


- Corresponding pure resin (named hereafter <u>PURe</u>)
 - PURm without charges and additives
 - Evaluation of their effect on the degradation mechanism
 - Identification of a degradation mechanism valid for the entire polymers family

Irradiation conditions

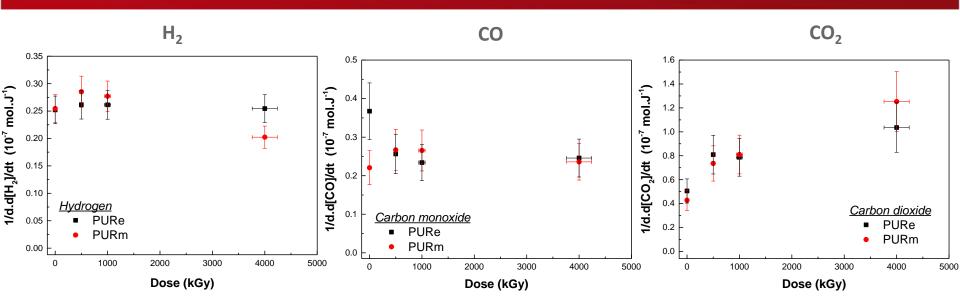
Gamma irradiations

Ceaden

- ⁶⁰Co source (about 0.8 kGy.h⁻¹)
 - PURm: 500, 1 000, 4 000, 10 000 kGy
 - PURe: 500, 1 000, 4 000 kGy
- Homogeneous radio-oxidation conditions
 - Thickness < critical thickness

First-step irradiation

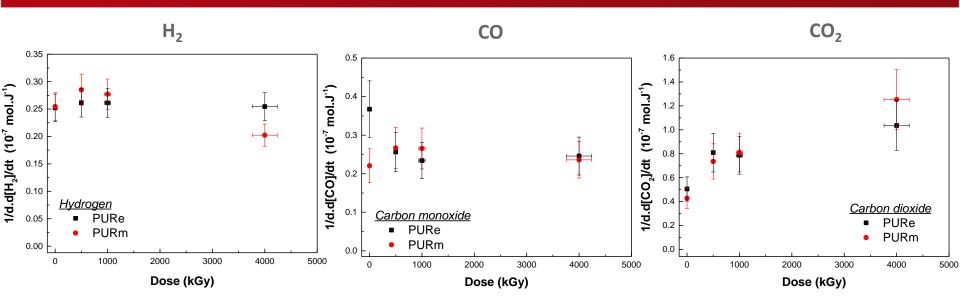
Irradiations using open pillboxes
=> Ageing mechanism determination


Second-step irradiation

- In closed ampoules under controlled atmosphere
- Masses estimated to attain
 - Final hydrogen content < 1 $\%_{\rm vol}$ to avoid readdition
 - Final oxygen content > 10 $\%_{\rm vol}$ to ensure homogeneous oxidative conditions
 - => Gases quantification at different doses

Gases evolution as a function of dose

Representation in mol.J⁻¹ of energy deposited in the polymeric resin


PURe: 100%_{wt} of the material *vs* PURm: 88.9%_{wt} of the industrial material

No relevant influence of charges and additives on the gases evolved

Dose effect up to 4 000 kGy:

- No dose effect on H₂ and CO release
- CO₂ increases
 - Formation of carboxylic acids under radio-oxidation [1]
 - These carboxylic acids are then degraded when dose further increases

Ceaden Gases evolution as a function of dose

Both PUR relatively stable under irradiation

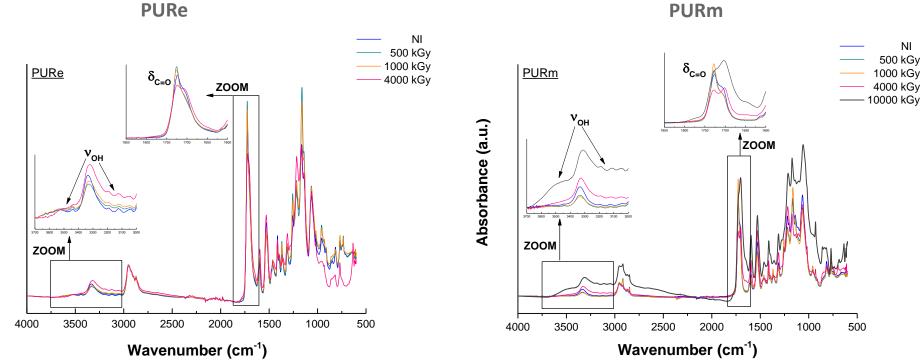
- Compared to other polymers found in IL-LLW like PE
 - $G(H_2)_{PE} \approx 3.5 \cdot 10^{-7} \text{ mol/J vs } G(H_2)_{PUR} \approx 0.25 \cdot 10^{-7} \text{ mol/J}$
- Stability partly due to
 - Aromatic rings from the hard segments [2-4]
 - Esters from the soft segments... [5]

=> Both behave as energy and/or radical scavengers

[2] Dannoux et al., J. Polym. Sci. Part B : Polym. Phys. 46 (2008), 861

- [3] Ferry et al., J. Phys. Chem. B 117 (2013), 14497
- [4] Chang & LaVerne, . Phys. Chem. B 104 (2000), 10557
- [5] Ferry et al., Nucl. Instrum. Methods Phys. Res., Sect. B 334 (2014), 69

Materials evolution as a function of dose Visual evolution and ultimate analyses



Radio-oxidized	Mean dose	Organic elements analysis (% _{weight})			С&НЪ	
polymer	(kGy)	С	Н	0	Ν	Gas release (CO, H ₂)
	0	56.8	6.7	24.3	3.2	
	500	56.7	6.7	24.3	3.2	07
PURm	1 000	56.5	6.6	24.6	3.2	New bonds formation
	4 000	55.3	6.4	26.4	3.2	(-OH, -OOH, C=O) [6]
	10 000	53.8	6.2	28.2	3.0	
	0	61.9	7.3	28.1	2.5	$N \rightarrow$
DUDo	500	61.4	7.3	28.8	2.5	No urethane bond
PURe	1 000	61.3	7.2	28.7	2.5	scission
	4 000	60.0	7.1	30.3	2.5	Confirmed by the
	_					absence of NOx gases

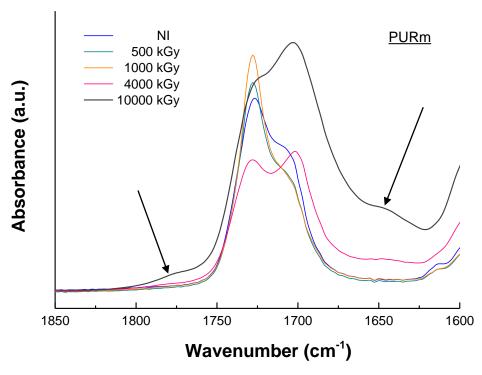
[6] Ferry et al., Ionizing Radiation Effects in Polymers, in: *Reference Module in Materials Science and Materials Engineering*, Elsevier (2016), 1

Ceaden

Materials evolution as a function of dose Infrared spectroscopy (FTIR)

Formation of new bonds in both PUR up to 4 000 kGy

Ceaden


PAGE 9

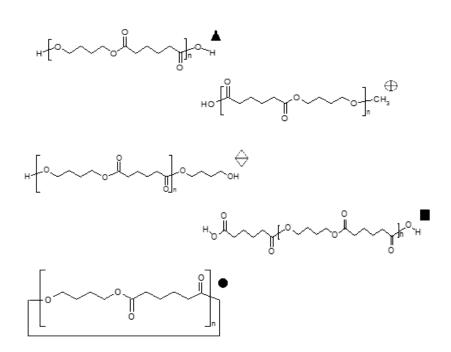
Materials evolution as a function of dose Infrared spectroscopy (FTIR)

Particular case : PURm at 10 000 kGy

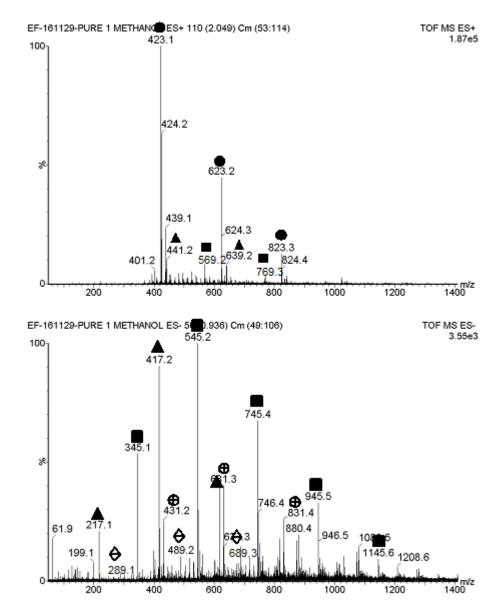
<u>ceaden</u>

- Shoulder at 1780 cm⁻¹
 - Could be lactones [7]
- Band at 1640 cm⁻¹
 - C=C double bonds
 - Surprising under homogeneous oxidative conditions
 - Maybe conjugated bonds (by correlation with the visual evolution, *i.e.* yellowing of the irradiated polymers)

All infrared band attributions (containing carbon) confirmed by C-1s XPS analyses


Materials evolution as a function of dose Soluble fraction (in THF)

- Soluble fraction in THF followed as a function of dose for both polymers
 - Non-irradiated polymers
 - Totally soluble
 - Up to about 500 kGy
 - Ratio scission/crosslinking ↘
 - By about 500 kGy
 - Ratio scission/crosslinking 7
 - Total solubility attained again at
 ≈ 4 000 kGy for PURe and at
 doses higher than 10 000 kGy for
 PURm
 - Evolution of the ageing mechanism as a function of dose
 - Evaluation of the polymers behavior at these high doses
 - *First evidence of a difference between the two PUR*



Low molecular mass trapped molecules identification

- Attempt to identify the molecules trapped in the polymer
 - Extraction in methanol
 - ESI-MS of the extracted molecules

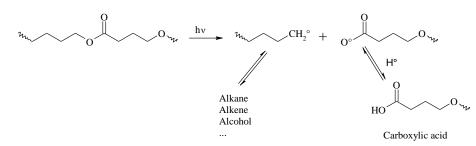
Identification of oligomers from soft segments

Low molecular mass trapped molecules identification

RECHERCHE À L'INDUSTRIE

Ceaden

Kind of molecules		Example of molecules						
Oligomers		н _о п=[1;7]						
Fotoro	Lactonized	° ~ ~ ° ~ °	2,7-oxepanedione (lactonized adipic acid)		Lactones and double bonds Confirmation of their presence (FTIR spectra			
Esters	Non lactonized	но	Monomethyl adipate		analysis) Aromatic molecule			
Carboxylic acids		но ОН	Adipic acid		Observed only from PURm radio-oxidized at			
<u>One</u> alcohol		но	Butane-1,4-diol	10 000 kGy <i>First and only evidence of</i>				
<u>One</u> ether		~~_ ₀ ~~~	Butoxybutene		the hard segments			
<u>One</u> aromatic molecule		H ₂ N NH ₂	Bis(4- aminophenyl)methanone		decomposition			



Radio-oxidation of PUR: degradation mechanisms up to 10 MGy

- Dose effect moderated (energy and/or radical scavengers)
- For pure resin (PURe) as for industrial material (PURm)
 - Quantification of the main gases evolved
 - H_2 and $CO \rightarrow and CO_2 \nearrow$
 - New bonds in the polymers
 - Lactones, ketones, alcohols, hydroperoxides... but also double bonds
 - Low molecular mass molecules trapped
 - Oligomers, adipic acid... mainly issued from soft segments

Degradation mechanism of the aromatic polyesterurethanes under radiooxidation

Ester bonds scissions

Charges and additives presence effect

- Separation of the effect of radio-oxidation on the resin and on the other components of an industrial polymer
 - Degradation mechanism for one polymer family
 - No irradiation of all materials
 - Verification with few experiments
- Quantification of the radiation chemical yields of gases
 - Integration into a simulation program
- All the main polymer families encountered in IL-LLW studied
 Chlorinated polymers, polyolefins...

Thank you for your attention

Acknowledgements

- S. Rouif (IONISOS), P. Le Tutour (LABRA) & V. Labed (GAMMATEC)

for their helpful collaboration during irradiations

- A. Geysen & J. Goldberg (Lubrizol) for providing PURe
- S. Legand, D. Lebeau, J.L. Roujou, D. Durand, V. Dauvois & S. Esnouf

(LRMO) for their assistance during experiments