Topological Impact on Kinetic Stability of Supramolecular Polymers

Atsuhito Suzuki, Keisuke Aratsu, Sougata Datta, Nobutaka Shimizu, Hideaki Takagi, Rie Haruki, Shin-Ichi Adachi, Martin Hollamby, Fabien Silly, Shiki Yagai

To cite this version:

Atsuhito Suzuki, Keisuke Aratsu, Sougata Datta, Nobutaka Shimizu, Hideaki Takagi, et al.. Topological Impact on Kinetic Stability of Supramolecular Polymers. Journal of the American Chemical Society, American Chemical Society, 2019, 141 (33), pp.13196-13202. 10.1021/jacs.9b06029. hal-02433470

HAL Id: hal-02433470
https://hal.archives-ouvertes.fr/hal-02433470
Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Topological Impact on Kinetic Stability of Supramolecular Polymers

Atsuhito Suzuki,1 Keisuke Aratsu,1 Sougata Datta,2 Nobutaka Shimizu,3 Hideaki Takagi,§ Rie Haruki,§ Shin-ichi Adachi,3 Martin Hollamby,‡ Fabien Silly,§ and Shiki Yagai*1,¶

1Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
2Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
4School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST55BG, UK.
*TIITANS, SPEC, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette, France

ABSTRACT: Kinetically formed metastable molecular assemblies have attracted increasing interest especially in the field of supramolecular polymers. In most cases, metastable assemblies are ensembles of aggregates based on the same supramolecular motif but with different lengths or sizes, and therefore their kinetic stabilities are experimentally indistinguishable. Herein, we demonstrate a topological effect on kinetic stabilities in a complex mixture of metastable supramolecular polymers. Our azobenzene-incorporated monomer at ambient temperature kinetically forms complex mixtures of supramolecular polymers with cyclized and open-ended randomly coiled topologies, while upon heating we obtained thermodynamically stable crystalline fibers. Through the direct visualization of the complex supramolecular polymer mixtures by atomic force microscopy, we demonstrate that the cyclized supramolecular polymer has superior kinetic stability compared to the open-ended species toward the thermal transformation into crystalline fibers. Since the superior kinetic stability of the cyclized species can be attributed to the absence of aggregate termini, we could convert them fully into the thermodynamic species through photo-induced opening of the cyclized structures.

Introduction

Pathway complexity is becoming topical as a general concept applicable to diverse supramolecular polymer systems.1 To utilize such an intriguing concept of molecular self-assembly in order to engineer the structure and property of supramolecular polymers, and hence the resulting soft materials such as nanofibers, gels, and liquid crystalline bulk materials, one must carefully design and analyze not only thermodynamically stable products but also kinetically formed metastable species. Either through mastering intramolecular interactions2 or intermolecular interactions,3 one may rationally access metastable assemblies that enable us to kinetically control the formation of thermodynamically stable species. Although in most systems, metastable assemblies have indistinguishable kinetic stabilities despite their difference in aggregate sizes, in this study we focus on topological effect4 on kinetic stabilities in a complex mixture of metastable supramolecular polymers.

Based on the basic molecular design combining barbituric acid head group, π-conjugated core, and wedge-shaped aliphatic tails, we have explored supramolecular polymer systems of which complex landscape of well-defined higher-order structure states can be manipulated by external stimuli.5 Depending on the π-conjugated core and preparation protocols, a series of molecules form supramolecular polymers with toroidal,6 randomly coiled,7 and helically elongated topologies8 in nonpolar media. A key to these unique topological features is the hydrogen-bond-directed supermacrocyclization (primarily 6-membered) by the barbituric acid group. The resulting supermacrocycles, so-called rosettes, give rise to the intrinsic curvature in highly idiosyncratic stacking mode with translational and rotational displacements.5 One versatile monomer is 1 (Figure 1A), whose supramolecular polymer topologies can be controlled via cooling-rate as well as light to afford random coils, rings, and helical coils (Figure 1B).7 Having this versatile monomer, we sought to understand structure–property relationships of supramolecular polymers by modifying monomer structures. To our surprise, a minor alteration of the monomer structure of 1 with the ether group linking the two
chromophores to 2 with the ester group (Figure 1A) resulted in insoluble crystalline fibers composed of an infinite tape like hydrogen-bonded aggregates upon cooling its hot solutions (Figure 1C). This result implies the presence of pathway complexity in the self-assembly of 2, and we should be able to obtain not only thermodynamically stable crystalline fibers but also supramolecular polymers composed of rosettes as kinetic products. This pathway complexity offers an opportunity to study the topological effect on the kinetic stability of supramolecular polymers that eventually transform into crystalline fibers by changing the hydrogen-bonding pattern.

![Figure 1](image1)

Figure 1. (A) Chemical structures of 1 and 2. (B) Schematic illustration of supramolecular polymerization of hydrogen-bonded rosette to form SP\(_{\mathrm{ring}}\) and SP\(_{\mathrm{random}}\). (C) Schematic illustration of supramolecular polymerization based on hydrogen-bonded tape to form TF. The depicted hydrogen-bonding pattern has been deduced from the STM study.

Here we report pathway complexity in the self-assembly of 2 leading to two kinetically formed supramolecular polymers with closed and open-ended topologies, and one thermodynamically stable crystalline fibers. Direct visualization of complex supramolecular polymer mixtures by atomic force microscopy (AFM) led us to conclude that toroidal supramolecular polymers have superior kinetic stability compared to open-ended randomly coiled species toward the transformation into crystalline fibers triggered by thermal energy.

RESULTS AND DISCUSSION

Supramolecular Polymers: Initially we found that monomer 2 can afford two types of nanofibers with essentially different properties. One is soluble supramolecular polymers (SPs) with unique topological diversity. The SPs could be obtained upon dissolving a thin film of 2 (prepared from a chloroform stock solution) in methycyclohexane (MCH) by heating to 65 °C (Figure 2A, top). When the resulting yellowish homogeneous solution (total concentration of monomer, c\(_{\mathrm{T}}\) = 1.0 × 10\(^{-4}\) \(\text{M}\)) was spin-coated onto highly oriented pyrolytic graphite (HOPG) substrate, atomic force microscopy (AFM) showed a complex mixture of open-ended randomly coiled (SP\(_{\mathrm{random}}\)) and circular supramolecular polymer fibers (SP\(_{\mathrm{ring}}\)) (Figure 2B, Figure S1). These structures have similar curvature radii: \(r_{\mathrm{ave}}\) = 23.1 ± 0.2 nm for SP\(_{\mathrm{random}}\), 23.8 ± 0.2 nm for SP\(_{\mathrm{ring}}\) (Figure S2). The similarity in their intrinsic curvature implies that the internal order attained by a regular stacking of rosettes with rotational and translational displacements is identical. Accordingly, these two SPs result from competing open-ended chain elongation and ring-closure pathways of growing supramolecular polymer chains of rosettes upon dissolving 2 (Figure 1B). While a unidirectional stacking of rosettes about 150 nm (2\(\pi r_{\mathrm{ave}}\)) could lead to SP\(_{\mathrm{ring}}\), changes in the turning direction of the curvature en route to SP\(_{\mathrm{ring}}\), caused by some defects in the unidirectional stacking of rosettes, would lead to SP\(_{\mathrm{random}}\). Reflecting the open-ended structure, the lengths of SP\(_{\mathrm{random}}\) are largely distributed from 50 to 600 nm in comparison with those of SP\(_{\mathrm{ring}}\) (Figure 2C). We could not effectively increase the frequency of the ring-closure process by changing the heating rate. The average yield of SP\(_{\mathrm{ring}}\) based on the monomer was 8.4% as estimated by AFM (Figure S3).

Selective Transformation: The other type of nanofibers was obtained upon further heating the above mixture of SPs. Dynamic light scattering (DLS) of the mixture at 65 °C showed the presence of largely polydisperse assemblies in the range of 80–400 nm, suggesting that SP\(_{\mathrm{ring}}\) and SP\(_{\mathrm{random}}\) are indistinguishable (Figure S4). Upon heating, the yellow color of the solution intensified around 85–90 °C (Figure 2A), and the broad DLS peak spitted into two peaks centered at 90 nm and 700 nm, respectively, suggesting the formation of assemblies with distinguishable size difference (Figure S4). On prolonged heating (3 h) at the same temperature, precipitation occurred (Figure 2A). Optical microscopic observation of the precipitates revealed bundled fibers-like morphology exhibiting birefringence (Figure 2D). AFM observation showed that the fibers are further
composed of helically twisted fibrils (TF) with average edge-to-edge width of 17 nm and helical pitch of 39 nm (Figure 2E). Interestingly, AFM imaging of the supernatant showed only SP
ring and TF, and SP
random that existed up to 65 °C was hardly observed (Figure 2E,F). These observations indicate that SP
random can be selectively converted to TF upon heating, and SP
ring is significantly stable at higher temperature by virtue of its closed topology.

The transformation of SP
random into TF was also investigated by small-angle X-ray scattering (SAXS) analysis. We previously demonstrated that the SAXS profiles of toroidal and randomly coiled SPs are characterized by nonperiodic oscillatory features at Q range of 0.3–1.2 nm\(^{-1}\), which correspond to diameter of the intrinsic curvature. Here, the mixture of SPs displayed a SAXS profile with defined scattering peaks in Q range of 0.18–0.8 nm\(^{-1}\) (Figure 3A, blue curve), which is very similar to the profile of randomly coiled SPs of previously reported 1. Upon heating the solution, the scattering pattern dramatically changed (Figure 3A, red curve), pointing to a significant change in the solution nanostructure, in line with a transition of SP
random to TF. The positions of the oscillations in SAXS data arising from TF (see Supporting Information) were well-replicated by a hollow cylinder model with an outer diameter of 25 nm (Figure S5). This is somewhat longer than the dimension observed on the AFM images (17 nm, Figure 2), with the discrepancy most likely being attributed to a "stretching" of TF along the long axis upon adsorption to HOPG. Interestingly, we do not normally see such large structural changes on adsorption for either SPs or toroidal structures as described above, which points to TF as having a different structure and self-assembly pathway. The intrinsic curvature of the SPs and toroids results in a reduced contact area with the alkyl chains (lower interaction strength with HOPG) on the outside. In the case of TF however, the flatter tape-like structure (Figure 1C) has both a larger contact area and allows the entire molecule of 2 to contact with the HOPG surface.

Figure 2. (A) Photographs of a MCH solution of 2 (c\(_T\) = 1.0 × 10\(^{-4}\) M) upon heating. (B) AFM image of the structural transition of the supramolecular polymers, which were prepared by heating a MCH solution of 2 at a heating rate of 0.3 °C min\(^{-1}\). (C) Proposed mechanism for forming cyclic structure and randomly coiled. (D) Optical micrograph and polarized optical micrographs of precipitated TF. (E,F) AFM images of TF and SP
ring. The blue arrows in (F) indicate “figure eight” SP
ring.

Figure 3. (A) SAXS profiles of the SP
random and SP
ring solution (blue curve) and the TF and SP
ring solution (red curve) of compound 2 (c\(_T\) = 1.0 × 10\(^{-4}\) M). (B) Schematic representation of proposed topologies with different diameter (d) arising in SAXS profiles.
The above thermal transition was studied by temperature-dependent absorption measurements. In the temperature range 25–65 °C, the mixture of SPs \((c_T = 1.0 \times 10^{-3} \text{ M})\) showed a broad absorption band at 348 nm corresponding to electronic transitions of barbiturate naphthalene and azobenzene chromophores of 2 (Figure 4A). This maximum is blue-shifted compared to the monomeric 2 (365 nm), attained by heating a dilute solution \((c_T = 1.0 \times 10^{-3} \text{ M})\) to 90 °C (Figure 4A). The blue shift suggests a face-to-face (H-type) stacking of the naphthalene chromophore in reference to a related compound lacking azobenzene chromophore (Figure S6). Upon heating the mixture, the absorption band abruptly changed above 80 °C, and equilibrated at 85 °C to show the maximum at 368 nm with the appearance of a new absorption shoulder at 460 nm (red curve, Figure 4B). The resulting spectrum is clearly different from that of the monomeric 2, suggesting the transformation of \(\text{SP}_{\text{random}}\) to thermodynamically stable aggregates \(\text{TF}\) comprising a slipped (J-type) arrangement of azobenzene stacks. The transformation was irreversible process as no absorption spectral change was observed upon subsequent cooling. The second heating analysis performed at \(c_T = 3.0, 2.0\) and \(1.0 \times 10^{-3} \text{ M}\) all provided nonsigmoidal dissociation curves of \(\text{TF}\) into monomeric state as a function of temperature, which is characteristic of the cooperative nucleation-elongation mechanism.\(^9\) The elongation enthalpy \((\Delta H_r)\) of 97.1 kJ mol\(^{-1}\) was obtained by curve fitting to the cooperative model developed by Meijer and co-workers.\(^9\) The modified van’t Hoff plot\(^9\) using the critical elongation temperatures \((T_c)\) estimated by the curve fitting and the monomer concentrations provided the standard enthalpy \((\Delta H^0)\) of \(-113\) kJ mol\(^{-1}\), the standard entropy \((\Delta S^0)\) of \(-223\) J mol\(^{-1}\) K\(^{-1}\), and the Gibbs free energy \((\Delta G^0)\) of \(-48\) kJ mol\(^{-1}\) (at 293 K), respectively (Figure S7). The \(\Delta H^0\) value is close to \(\Delta H_r\), demonstrating that \(\text{TF}\) is the thermodynamic product.\(^9\)

The above spectral change occurred in relatively lower temperature range upon decreasing \(c_T\) (Figure 4B), suggesting that the dissociation of SPs to the monomeric state initiates the transformation of \(\text{SP}_{\text{random}}\) to \(\text{TF}\). To shed more light into this point, we performed time-dependent absorption analysis under isothermal conditions. For this purpose, we prepared MCH solutions of SPs at \(c_T = 2.0, 2.5\) and \(3.0 \times 10^{-4} \text{ M}\), and kept them at 65 °C. For the solution with \(c_T = 3.0 \times 10^{-4} \text{ M}\), the spectral change started after a significantly long lag time of ca. 1500 min (25 h). The lag time became shorter upon decreasing \(c_T\) to destabilize SPs (Figure 4C), suggesting that \(\text{TF}\) is reorganized from monomers.\(^1,\text{a,}\) Namely, \(\text{SP}_{\text{random}}\) is an “off-pathway” intermediate that can be converted to \(\text{TF}\) via the monomeric state.

![Figure 4](image_url)
Isolation of SP_{ring}. So far we have shown that SP_{ring} is thermally stable over SP_{random} even under entropically favored conditions, i.e., at high temperature. To further highlight the thermal stability of SP_{ring}, we attempted to isolate them by passing the heated solution ($c_T = 1.7 \times 10^{-4}$ M) through a membrane filter with pore size of 200 nm to remove TF (Figure 5A,B). AFM measurements demonstrated the presence of SP_{ring} in the filtrate predominantly, while TF was totally filtrated out (Figure 5C, D). From the absorbance of the filtrate, the concentration of 2 that formed SP_{ring} was estimated to be 1.2×10^{-5} M (7.2 mol% of c_T), which is in good agreement with the direct estimation using AFM images (8.4 mol%, Figure S3). By evaporating this filtrate, we obtained a SP_{ring}-enriched solution with $c_T = 1.0 \times 10^{-4}$ M. The SAXS measurement of this SP_{ring}-enriched solution displayed more exquisite oscillations attributed to the intrinsic curvature in comparison with the mixture with SP_{random} (Figure 5E). The SAXS data was analyzed using a model representing a delta distribution of toroids with ellipsoidal core-shell cross-sections [Figure S9], yielding a curvature radius of 21 nm and other structural parameters as described in Supporting Information that are in line with AFM results and the structure of 2. The absorption spectrum of this SP_{ring}-enriched solution did not show significant change upon heating above 80 °C, especially an increase of absorption at 460 nm as an indication of the transformation to TF (Figure 5F). After cooling, an almost comparable amount of SP_{ring} was observed by AFM, suggesting that SP_{ring} are indeed thermally stable species.

Our results demonstrated that SP_{ring} are either thermodynamically or kinetically inert against dissociation to monomeric state. In an interesting observation on dynamic monomer exchange pathway in a SP system using super-resolution spectroscopy, Meijer et al. has demonstrated that monomer exchange can occur homogeneously from SP chains most likely due to defects, and based on their atomistic and coarse-grained modelling studies, suggested that monomer exchange can originate from defects present in the SP chains. In terms of defects in our system, SP_{ring}, wherein rosettes stack with fully unidirectional rotations, can be regarded as a perfect structure without defect. However, it is unlikely that this enthalpic gain of SP_{ring} can compensate its entropic cost associated with ring-closure, and imparts thermodynamic stability superior to that of SP_{random}. Indeed, not only SP_{ring}, but also much larger circular species with obvious defects were found as “figure eight” shaped structures after heating (blue arrows in Figure 2G,5D). In this context, SP_{ring} are only kinetically stable against dissociation, probably due to the absence of reactive “termini”.

Photoinduced Ring-opening. To further shed light into the topological effect on the kinetic stability of SP_{ring}, we attempted to convert SP_{ring} into open-ended short SPs by means of the trans-to-cis photoisomerization of the azobenzene moiety. Our previous study on SPs of 1 demonstrated that UV-irradiation induces a considerable conformational change of the SPs as a result of the loss of the intrinsic curvature caused by the trans-to-cis isomerization of the azobenzene moieties. UV-Vis and NMR spectroscopic analyses showed that the irradiation of the mixture of SP_{ring} and SP_{random} with UV light ($\lambda = 365$ nm) converted 17 mol% of trans-2 into cis-2 (Figure 6A, S10). In SAXS analysis, the UV-irradiated solution exhibited a featureless profile with no oscillations, in line with a loss of intrinsic curvature (Figure 6B). In AFM imaging, SP_{ring} was hardly found, and only open-ended short fibers lacking the intrinsic curvature were visualized (Figure 6D). Although the majority of
these open-ended fibers are thought to be photo-deformed products of Sp_{random}, a closer inspection of the AFM images revealed the presence of short fibers with lengths of approximately 100-300 nm, which is consistent with the circumference (ca. 145 nm) of Sp_{ring} (pink arrows in inset of Figure 5D). Upon heating the UV-irradiated solution to 90 °C, DLS showed an entire shift of aggregate sizes above 1 µm, which is very contrasting to the result without UV-irradiation (Figure S4), wherein Sp_{ring} could be detected even after heating. The absence of Sp_{ring} was also confirmed by AFM, showing only heavily bundled TF without any trace of Sp_{ring} (Figure 6E).

CONCLUSIONS

In conclusion, we have demonstrated a topological impact on kinetic stability of metastable supramolecular polymers that can be thermally converted to extended fibers via monomeric state. Species with obvious defect are also inert to thermal treatment, we attribute this topological impact on the kinetic stability of supramolecular polymers to the absence/presence of termini, not to the absence/presence of defect. Accordingly, light-induced ring-opening of the circular supramolecular polymers enabled the entire conversion of metastable species into thermodynamic products. Distinct kinetic stabilities of metastable supramolecular polymers with closed and open-ended 1D-topologies demonstrated herein may be a hint to design artificial supramolecular systems whose internal diversity and complexity emerge not only from monomer structures but also topological features of assemblies.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. Experimental details synthetic procedures, compound characterization data, DSC thermograms, PXRD data, UV-vis spectra, GI-WAXD, thermography (PDF)

AUTHOR INFORMATION

Corresponding Author

Shiki Yagai: 0000-0002-4786-8603

ORCID

Shiki Yagai: 0000-0002-4786-8603

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "π-System Figuration: Control of Electron and Structural Dynamism for Innovative Functions" from Japan Society for the Promotion of Science (JSPS) JP26102010. SY thanks Konika Minolta Science and Technology Foundation for partial financial support. The synchrotron XRD experiments were performed at the BL45XU in the SPring-8 with the approval of the RIKEN SPring-8 Center (proposal number 20170055).

REFERENCES

Authors are required to submit a graphic entry for the Table of Contents (TOC) that, in conjunction with the manuscript title, should give the reader a representative idea of one of the following: A key structure, reaction, equation, concept, or theorem, etc., that is discussed in the manuscript. Consult the journal’s Instructions for Authors for TOC graphic specifications.

Insert Table of Contents artwork here