C. Combes,

, J. Soc. Biol, vol.194, pp.19-23, 2000.

N. P. Horrocks, K. D. Matson, and B. I. Tieleman, Pathogen pressure puts immune defense into perspective, Integr. Comp. Biol, vol.51, pp.563-576, 2011.

C. A. Janeway and K. Bottomly, Signals and signs for lymphocyte responses, Cell, vol.76, pp.275-285, 1994.

C. Coustau, B. Gourbal, D. Duval, T. P. Yoshino, C. M. Adema et al., Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: A review of research progress over the last decade, Fish & Shellfish Immunol, vol.46, pp.5-16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162871

J. Wang, X. Song, and M. Wang, Peptidoglycan recognition proteins in hematophagous arthropods, Dev. Comp. Immunol, vol.83, pp.89-95, 2018.

S. Ranf, Sensing of molecular patterns through cell surface immune receptors, Curr. Opin. Plant Biol, vol.38, pp.68-77, 2017.

A. Ray, M. Cot, G. Puzo, M. Gilleron, and J. Nigou, Bacterial cell wall macroamphiphiles: Pathogen-/microbeassociated molecular patterns detected by mammalian innate immune system, Biochimie, vol.95, pp.33-42, 2013.

R. Galinier, G. Tetreau, A. Portet, S. Pinaud, D. Duval et al., First characterization of viruses from freshwater snails of the genus Biomphalaria, the intermediate host of the parasite Schistosoma mansoni, Acta Trop, vol.167, pp.196-203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01435053

D. Duval, R. Galinier, G. Mouahid, E. Toulza, J. F. Allienne et al., A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control?, PLoS Negl. Trop. Dis, vol.9, p.3489, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162649

L. A. Hertel, C. S. Barbosa, R. A. Santos, and E. S. Loker, Molecular identification of symbiont from the pulmonate snail Biomphalaria glabrata in Brazil, J. parasitol, vol.90, pp.759-763, 2004.

O. L. Baron, P. Van-west, B. Industri, M. Ponchet, G. Dubreuil et al., Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections, PLoS Pathog, issue.9, p.1003792, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00938929

F. Yousif and G. Lämmler, The mode of infection with and the distribution of Angiostrongylus cantonensis larvae in the experimental intermediate hoist Biomphalaria glabrata, Z. Parasitenkd, vol.53, pp.247-250, 1977.

C. T. Lo, Experimental second intermediate hosts of Echinostoma malayanum Leiper, J. Parasitol, vol.59, pp.746-747, 1911.

C. P. Goodall, R. C. Bender, J. K. Brooks, and C. J. Bayne, Biomphalaria glabrata cytosolic copper/zinc superoxide dismutase (SOD1) gene: association of SOD1 alleles with resistance/susceptibility to Schistosoma mansoni, Mol. Biochem. Parasitol, vol.147, pp.207-210, 2006.

K. M. Bonner, C. J. Bayne, M. K. Larson, and M. S. Blouin, Effects of Cu/Zn superoxide dismutase (sod1) genotype and genetic background on growth, reproduction and defense in Biomphalaria glabrata, PLoS Negl. Trop. Dis, vol.6, p.1701, 2012.

J. A. Tennessen, A. Théron, M. Marine, J. Yeh, A. Rognon et al., Hyperdiverse gene cluster in snail host conveys resistance to human schistosome parasites, PLoS Genet, p.1005067, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162644

J. A. Tennessen, K. M. Bonner, S. R. Bollmann, J. A. Johnstun, J. Yeh et al., Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni, PLOS Negl. Trop. Dis, vol.9, p.4077, 2015.

A. E. Lockyer, L. R. Noble, D. Rollinson, and C. S. Jones, Schistosoma mansoni: resistant specific infectioninduced gene expression in Biomphalaria glabrata identified by fluorescent-based differential display, Exp. Parasitol, vol.107, pp.97-104, 2004.

A. E. Lockyer, J. N. Spinks, A. J. Walker, R. A. Kane, L. R. Noble et al., Biomphalaria glabrata transcriptome: Identification of cell-signalling, transcriptional control and immunerelated genes from open reading frame expressed sequence tags (ORESTES), Dev. Comp. Immunol, vol.31, pp.763-782, 2007.

R. Galinier, E. Roger, Y. Moné, D. Duval, A. Portet et al., A multistrain approach to studying the mechanisms underlying compatibility in the interaction between Biomphalaria glabrata and Schistosoma mansoni, PLOS Negl. Trop. Dis, p.5398, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01511153

C. J. Bayne, U. K. Hahn, and R. C. Bender, Mechanisms of molluscan host resistance and of parasite strategies for survival, Parasitology, vol.123, pp.159-167, 2001.

J. Myers, W. Ittiprasert, N. Raghavan, A. Miller, and M. Knight, Differences in cysteine protease activity in Schistosoma mansoni-resistant and -susceptible Biomphalaria glabrata and characterization of the hepatopancreas cathepsin B Full-length cDNA, J. Parasitol, vol.94, pp.659-668, 2008.

E. Roger, C. Grunau, R. J. Pierce, H. Hirai, B. Gourbal et al., Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata), PLoS Negl. Trop. Dis, vol.2, p.330, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00344615

Y. Moné, B. Gourbal, D. Duval, L. Du-pasquier, S. Kieffer-jaquinod et al., A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an Invertebrate Host/Parasite Model, PLoS Negl. Trop. Dis, p.813, 2010.

R. Galinier, J. Portela, Y. Moné, J. F. Allienne, H. Henri et al., Biomphalysin, a New ? Pore-forming Toxin Involved in Biomphalaria glabrata Immune Defense against Schistosoma mansoni, PLoS Pathog, issue.9, 2013.
URL : https://hal.archives-ouvertes.fr/halsde-00823685

E. A. Pila, M. A. Gordy, V. K. Phillips, A. L. Kabore, S. P. Rudko et al., Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.5305-5310, 2016.

G. Tetreau, S. Pinaud, A. Portet, R. Galinier, B. Gourbal et al., Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate, Front. Immunol, vol.8, p.1249, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01729395

W. Ittiprasert, R. Nene, A. Miller, N. Raghavan, F. Lewis et al., Schistosoma mansoni infection of juvenile Biomphalaria glabrata induces a differential stress response between resistant and susceptible snails, Exp. Parasitol, vol.123, pp.203-211, 2009.

W. Ittiprasert and M. Knight, Reversing the Resistance Phenotype of the Biomphalaria glabrata Snail Host Schistosoma mansoni Infection by Temperature Modulation, PLOS Pathog, vol.8, p.1002677, 2012.

J. M. Lepesant, C. Cosseau, J. Boissier, M. Freitag, J. Portela et al., Chromatin structural changes around satellite repeats on the female sex chromosome in Schistosoma mansoni and their possible role in sex chromosome emergence, Genome Biol, vol.13, p.14, 2012.

J. M. Bridger, H. D. Arican-gotkas, H. A. Foster, L. S. Godwin, A. Harvey et al., The non-random repositioning of whole chromosomes and individual gene loci in interphase nuclei and its relevance in disease, infection, aging, and cancer, Adv. Exp. Med. Biol, vol.773, pp.263-279, 2014.

M. Knight, O. Elhelu, M. Smith, B. Haugen, A. Miller et al., Susceptibility of Snails to Infection with Schistosomes is influenced by Temperature and Expression of Heat Shock Proteins, Epidemiology (Sunnyvale), vol.5, p.189, 2015.

E. A. Pila, M. Tarrabain, A. L. Kabore, and P. C. Hanington, A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni, PLOS Pathog, vol.12, p.1005513, 2016.

J. E. Humphries and L. E. Deneckere, Characterization of a Toll-like receptor (TLR) signaling pathway in Biomphalaria glabrata and its potential regulation by NF-kappaB, Dev. Comp. Immunol, vol.86, pp.118-129, 2018.

N. M. Dheilly, D. Duval, G. Mouahid, R. Emans, J. Allienne et al., A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata, Dev. Comp. Immunol, vol.48, pp.234-243, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01082870

X. Wu, N. Dinguirard, G. Sabat, H. Lui, L. Gonzalez et al., Proteomic analysis of Biomphalaria glabrata plasma proteins with binding affinity to those expressed by early developing larval Schistosoma mansoni, PLOS Pathog, p.1006081, 2017.

S. Zhang and E. S. Loker, The FREP gene family in the snail Biomphalaria glabrata: additional members, and evidence consistent with alternative splicing and FREP retrosequences. Fibrinogen-related proteins, Dev. Comp. Immunol, vol.27, pp.175-187, 2003.

W. Ittiprasert, A. Miller, J. Myers, V. Nene, N. M. El-sayed et al., Identification of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria glabrata snails upon exposure to Schistosoma mansoni, Mol. Biochem. Parasitol, vol.169, pp.27-39, 2010.

A. E. Lockyer, A. M. Emery, R. A. Kane, A. J. Walker, C. D. Mayer et al., Early differential gene expression in haemocytes from resistant and susceptible Biomphalaria glabrata strains in response to Schistosoma mansoni, PLoS ONE, vol.7, p.51102, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00771961

G. Mitta, R. Galinier, P. Tisseyre, J. Allienne, Y. Girerd-chambaz et al., Gene discovery and expression analysis of immune-relevant genes from Biomphalaria glabrata hemocytes, Dev. Comp. Immunol, vol.29, pp.393-407, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00104494

U. K. Hahn, R. C. Bender, and C. J. Bayne, Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species, J. Parasitol, vol.87, pp.292-299, 2001.

M. De-moraes-mourão, N. Dinguirard, G. R. Franco, and T. P. Yoshino, Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference, PLoS Negl. Trop. Dis, vol.3, p.502, 2009.

O. L. Baron, E. Deleury, J. Reichhart, and C. Coustau, The LBP/BPI multigenic family in invertebrates: Evolutionary history and evidences of specialization in mollusks, Dev. Comp. Immunol, vol.57, pp.20-30, 2016.

C. M. Adema, L. W. Hillier, C. S. Jones, E. S. Loker, M. Knight et al., Whole genome analysis of a schistosomiasis-transmitting freshwater snail, Nat. Commun, vol.8, p.15451, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523953

H. Li, J. R. Hambrook, E. A. Pila, A. A. Gharamah, J. Fang et al., Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata, p.767699, 2019.

A. K. Mondal, A. Sreekumar, N. Kundu, R. Kathuria, P. Verma et al., Structural Basis and Functional Implications of the Membrane Pore-Formation Mechanisms of Bacterial Pore-Forming Toxins, Adv. Exp. Med. Biol, vol.1112, pp.281-291, 2018.

T. Akiba, K. Higuchi, E. Mizuki, K. Ekino, T. Shin et al., Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to ?-pore-forming toxins, Proteins, vol.63, pp.243-248, 2006.

A. R. Cole, M. Gibert, M. Popoff, D. S. Moss, R. W. Titball et al., Clostridium perfringens ?-toxin shows structural similarity to the pore-forming toxin aerolysin, Biomphalaria glabrata | VectorBase Available online, vol.11, pp.797-798, 2004.

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, p.40, 2008.

J. Yang and Y. Zhang, I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Res, vol.43, pp.174-181, 2015.

, The ConSurf Server Available, 2020.

H. Ashkenazy, S. Abadi, E. Martz, O. Chay, I. Mayrose et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules, Nucleic Acids Res, vol.44, pp.344-350, 2016.

N. Crickmore, D. R. Zeigler, J. Feitelson, E. Schnepf, J. V. Rie et al., Revision of the Nomenclature for the Bacillus thuringiensis, Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev, vol.62, pp.807-813, 1998.

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.10915-10919, 1992.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

D. T. Jones, W. R. Taylor, and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences, Comput. Appl. Biosci, vol.8, pp.275-282, 1992.

E. Deleury, G. Dubreuil, N. Elangovan, E. Wajnberg, J. Reichhart et al., Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study, PLOS ONE, vol.7, p.32512, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00700368

A. Portet, R. Galinier, S. Pinaud, J. Portela, F. Nowacki et al., BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata, Front. Immunol, vol.9, p.1206, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01838951

S. Pinaud, J. Portela, D. Duval, F. C. Nowacki, M. Olive et al., A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata, PLOS Pathog, vol.12, p.1005361, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259482

S. Pinaud, A. Portet, J. Allienne, L. Belmudes, C. Saint-beat et al., Molecular characterisation of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata, Dev. Comp. Immunol, vol.92, pp.238-252, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01952235

F. C. Los, T. M. Randis, R. V. Aroian, and A. J. Ratner, Role of pore-forming toxins in bacterial infectious diseases. Microbiol, Mol. Biol. Rev, vol.77, pp.173-207, 2013.

M. R. Popoff, Clostridial pore-forming toxins: powerful virulence factors, Anaerobe, vol.30, pp.220-238, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01797567

X. Chi, P. Su, D. Bi, Z. Tai, Y. Li et al., Lamprey immune protein-1 (LIP-1) from Lampetra japonica induces cell cycle arrest and cell death in HeLa cells, Fish Shellfish Immunol, vol.75, pp.295-300, 2018.

F. Wu, B. Feng, Y. Ren, D. Wu, Y. Chen et al., A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey, Cell Discov, vol.3, p.17033, 2017.

N. Jia, N. Liu, W. Cheng, Y. Jiang, H. Sun et al., Structural basis for receptor recognition and pore formation of a zebrafish aerolysin-like protein, EMBO reports, vol.17, pp.235-248, 2016.

M. Podobnik, Pore-forming toxins in Cnidaria, Dev. Biol, vol.72, pp.133-141, 2017.

L. Dang, P. Rougé, and E. J. Van-damme, Amaranthin-Like Proteins with Aerolysin Domains in Plants, Front Plant Sci, vol.8, p.1368, 2017.

S. Manzano, Z. Megías, C. Martínez, A. García, E. Aguado et al., Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco, vol.89, pp.58-72, 2017.

I. Hasan, M. Gerdol, Y. Fujii, S. Rajia, Y. Koide et al., A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis). Mar. Drugs, vol.14, p.92, 2016.

M. Jouiaei, K. Sunagar, A. Federman-gross, H. Scheib, P. F. Alewood et al., Evolution of an Ancient Venom: Recognition of a Novel Family of Cnidarian Toxins and the Common Evolutionary Origin of Sodium and Potassium Neurotoxins in Sea Anemone, Mol. Biol. Evol, vol.32, pp.1598-1610, 2015.

Y. Moran, D. Fredman, P. Szczesny, M. Grynberg, and U. Technau, Recurrent Horizontal Transfer of Bacterial Toxin Genes to Eukaryotes, Mol. Biol.Evol, vol.29, pp.2223-2230, 2012.

P. Szczesny, I. Iacovache, A. Muszewska, K. Ginalski, F. G. Van-der-goot et al., Extending the Aerolysin Family: From Bacteria to Vertebrates, PLoS ONE, 2011.

Y. Zhang, Why do we study animal toxins? Dongwuxue Yanjiu, vol.36, pp.183-222, 2015.

L. Chen, J. Xie, D. Cao, N. Jia, Y. Li et al., The poreforming protein Aep1 is an innate immune molecule that prevents zebrafish from bacterial infection, Dev. Comp. Immunol, vol.82, pp.49-54, 2018.

Y. Xiang, C. Yan, X. Guo, K. Zhou, S. Li et al., Hostderived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection, Proc. Natl. Acad. Sci. U S A, vol.111, pp.6702-6707, 2014.

D. Sher, Y. Fishman, M. Zhang, M. Lebendiker, A. Gaathon et al., Hydralysins, a new category of beta-pore-forming toxins in cnidaria, J. Biol. Chem, vol.280, pp.22847-22855, 2005.

D. Sher, Y. Fishman, N. Melamed-book, M. Zhang, and E. Zlotkin, Osmotically driven prey disintegration in the gastrovascular cavity of the green hydra by a pore-forming protein, FASEB J, vol.22, pp.207-214, 2008.

A. Crisp, C. Boschetti, M. Perry, A. Tunnacliffe, and G. Micklem, Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes, Genome Biol, vol.16, p.50, 2015.

S. M. Soucy, J. Huang, and J. P. Gogarten, Horizontal gene transfer: building the web of life, Nat. Rev. Genet, vol.16, pp.472-482, 2015.

P. J. Keeling and J. D. Palmer, Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet, vol.9, pp.605-618, 2008.

L. Boto, Horizontal gene transfer in the acquisition of novel traits by metazoans, Proc. Biol. Sci, 2014.

F. Husnik and J. P. Mccutcheon, Functional horizontal gene transfer from bacteria to eukaryotes, Nat. Rev. Microbiol, vol.16, pp.67-79, 2018.

O. Knapp, E. Maier, R. Benz, B. Geny, and M. R. Popoff, Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX), Biochim. Biophys. Acta, vol.1788, pp.2584-2593, 2009.

T. Akiba, Y. Abe, S. Kitada, Y. Kusaka, A. Ito et al., Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells, J. Mol. Biol, vol.386, pp.121-133, 2009.

C. G. Savva, A. R. Clark, C. E. Naylor, M. R. Popoff, D. S. Moss et al., The pore structure of Clostridium perfringens epsilon toxin, Nat. Commun, vol.10, pp.1-10, 2019.

C. Xu, B. Wang, Z. Yu, and M. Sun, Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins, Toxins (Basel), vol.6, pp.2732-2770, 2014.

S. Kitada, Y. Abe, T. Maeda, and H. Shimada, Parasporin-2 requires GPI-anchored proteins for the efficient cytocidal action to human hepatoma cells, Toxicology, vol.264, pp.80-88, 2009.

S. Okumura, H. Saitoh, T. Ishikawa, K. Inouye, and E. Mizuki, Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis, Biochim. Biophys. Acta, pp.1808-1476, 2011.

S. E. Ivie and M. S. Mcclain, Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1, Biochemistry, vol.51, pp.7588-7595, 2012.

M. Bokori-brown, M. C. Kokkinidou, C. G. Savva, S. Fernandes-da-costa, C. E. Naylor et al., Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies, Protein Sci, vol.22, pp.650-659, 2013.

M. A. Aboul-soud, M. Z. Al-amri, A. Kumar, Y. A. Al-sheikh, A. E. Ashour et al., Specific Cytotoxic Effects of Parasporal Crystal Proteins Isolated from Native Saudi Arabian Bacillus thuringiensis Strains against Cervical Cancer Cells, Molecules, vol.24, p.506, 2019.

T. Chubicka, D. Girija, K. Deepa, S. Salini, N. Meera et al., A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway, J. Biosci, vol.43, pp.407-416, 2018.

K. Brasseur, P. Auger, E. Asselin, S. Parent, J. Côté et al., Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells, PLoS ONE, vol.10, p.135106, 2015.

H. Saitoh, S. Okumura, T. Ishikawa, T. Akao, E. Mizuki et al., Investigation of a novel Bacillus thuringiensis gene encoding a parasporal protein, parasporin-4, that preferentially kills human leukemic T cells, Biosci. Biotechnol. Biochem, vol.70, pp.2935-2941, 2006.

Y. Abe, H. Shimada, and S. Kitada, Raft-targeting and oligomerization of Parasporin-2, a bacillus thuringiensis crystal protein with anti-tumour activity, J. Biochem, vol.143, pp.269-275, 2008.

M. Ohba, K. Nakashima, and T. Miyazaki, An optimum method for generation of functional recombinant apoptosis inhibitor of macrophage (AIM) protein, Seikagaku, vol.84, pp.588-591, 2012.

J. Chaisakul, W. C. Hodgson, S. Kuruppu, and N. Prasongsook, Effects of Animal Venoms and Toxins on Hallmarks of Cancer, J. Cancer, vol.7, pp.1571-1578, 2016.

A. Tabata, Y. Ohkubo, E. Sakakura, T. Tomoyasu, K. Ohkura et al., Investigation of a bacterial pore-forming chimera toxin for application as a novel drug-delivery system tool, © 2020 by the authors. Licensee MDPI, vol.32, pp.2323-2329, 2012.