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This study is part of an ongoing larger project concerning student self-assessment skills in 

university courses. We have developed a method enabling large cohorts of students to assess their 

own learning outcomes and to give their own course grades with the help of an automatic 

verification system. This paper explores the question of accuracy, namely, whether the self-assessed 

grades correspond to the students’ actual skills, and how well the automatic system can pick up 

issues in the self-assessment.  Based on an expert’s evaluation of the skills of two students, we 

conclude that although for large part the model works as intended, there are some cases where 

neither the self-assessment nor the computer verification seem to be accurate. 
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Introduction 

The ability to judge the quality of one’s own work is one of the core skills that should be developed 

during university studies. Self-assessment has been viewed as a valuable assessment process 

through which student can learn to understand the expectations, criteria and standards used in 

assessment, and further, to be able to regulate own learning and acquire skills for lifelong learning 

(Falchikov & Boud, 1989; Kearney, Perkins, & Kennedy-Clark, 2016). However, academic 

community seem to be resistant to change the prevailing assessment practices focusing on testing 

and grading, and practices such as self-assessment are scarcely implemented at course level (Boud 

et al., 2018; Postareff, Virtanen, Katajavuori, & Lindblom-Ylänne, 2012).  

In this paper, we draw attention to assessment practices in university first-year mathematics by 

examining an implementation of student self-assessment processes into large class setting. During 

this process, students frequently evaluated the quality of their learning outcomes, received feedback 

on their performance, and finally decided their own grades according to particular criteria. The 

intended learning outcomes were made transparent through a rubric including both content 

knowledge and generic skills, such as writing mathematics. The digital environment gave 

opportunity for monitoring learning process and giving real-time formative feedback in line with 

previous research on online assessment (Ćukušić, Garača, & Jadrić, 2014; Gigandi, Morrow, & 

Davis, 2011; Ibabe & Jauregizar, 2010), and further, it formed a basis of assessment of the student’s 

progress.  The emphasis of self-assessment was in developing student capability in making 

evaluative judgements (Ajjawi, Tai, Dawson, & Boud, 2018) and building their metacognition skills 

(Mok, Lung, Cheng, Cheung, & Ng, 2006), so that the students’ ability to self-regulate their 

learning for current and future learning would improve. We fill the gap in research by showing how, 

in the case of summative self-assessment, the problems aroused by large class setting were resolved 

by using digital and automatic verification and real-time feedback.    

 



 

 

Self-assessment as a tool for learning 

Self-assessment can be defined as a process during which student evaluate their own achievements 

and judge about their own performance (Falchikov & Boud, 1989). The judgements students make 

are based on information and evidence about their own performance collected from various sources 

(Yan & Brown, 2017). In this paper, we refer to self-assessment as a process in which the students 

evaluate their own progress and performance and give justifications for the result of their evaluation 

according to teacher-given criteria showing intended learning outcomes. 

The use of self-assessment has been shown to improve student engagement and motivation (e.g. 

Andrade & Du, 2007; Mok et. al, 2006), self-efficacy (Kissling & O’Donnell, 2015) and academic 

performance (Ibabe & Jauregizar, 2010), while the ability to self-assess is reportedly intermingled 

with ability to self-regulate own learning (Panadero, Brown, & Strijbos, 2016) and with life-long 

learning skills (Kearney et al., 2016). Consequently, the literature encourages the use of self-

assessment for formative purposes. Research shows that in large class settings digital environments 

with effective formative online assessment can foster a learner-centred focus and engagement in 

learning (Gigandi et al. 2011; Ibabe & Jauregizar, 2010). Recent results show that online self-

assessment can also improve students’ academic success (Ćukušić et al. 2014). However, the debate 

concerning students generating their own grades by self-assessing their own work is more 

complicated and constantly questioned (Boud et al., 2018; Tejeiro et al., 2010). One of the main 

challenges regarding self-assessment for grading is the question of accuracy: How can we be sure 

that students’ grades are valid and reliable? 

The question of accuracy 



 

 

Many studies have found high correlations between self- and teacher-ratings (Falchikov & Boud, 

1989; Kearney et al., 2016). The results indicate that students are able to make reasonable accurate 

judgements if they are properly provided with training and background information to the process. 

Also, students vary in their capability to evaluate their performance e.g., high achievers tend to 

underestimate their performance whereas low achievers tend to overestimate it (Boud & Falchikov, 

1989; Boud et al., 2013; Kearney et al., 2016). However, the accuracy of student self-assessments 

can be improved through using criteria and standards (Andrade & Du, 2007), while students need to 

have multiple opportunities for practising self-assessment in relation to given criteria, with feedback 

to help calibrate the judgements (Hosein and Harle, 2018; Kearney et al., 2016). On the other hand, 

Boud, Lawson and Thompson (2013) argue that increase in accurate self-assessment is not 

immediately transferable, because standards and criteria are somewhat domain-specific. Hence, we 

suggest that in order to understand the expectations, criteria, and disciplinary standards of 

mathematics, and to develop capabilities to make accurate and realistic assessments on own 

learning processes and outcomes, it is required that self-assessment processes are implemented in 

first-year university mathematics. However, in large class setting, typical to that learning context, 

the challenge how to give evidence-based feedback for improving the accuracy needs to be 

resolved. 

The DISA model 

This study is part of a research project centred around an assessment model called DISA (Digital 

Self-assessment). In the model, students assess their own learning outcomes throughout the course 

by using a detailed rubric articulating the subgoals of the ultimate intended learning outcomes. 

Learning goals and criteria are clearly identified, and through self-assessment activities the students 

are actively engaged with them. Evidence of learning is elicited during the course, and students 

receive feedback for their self-assessment from an automatic digital system. 

The feedback is generated in the following way. Every course task has been linked with the learning 

objectives it is supporting. This enables the automatic system to compute, based on the student’s 

coursework, an index from 0 to 1 for each learning objective. This index estimates how well the 

student has acquired the learning objective. From these indices, the system then computes tentative 

grades in each course topic. These tentative grades are compared to the student’s self-assessed 

grades, and the student is advised either to consider a higher or a lower grade for themselves. 

In addition, self-assessment is used for summative purpose in the end of the course, as the students 

self-assess and justify how well they have achieved the intended learning outcomes, and proceed in 

deciding their own course grade based on the self-assessment. In order to prevent abuse of the self-

assessment process, the system described above is used to verify the validity of the course grades. If 

the self-assessed topic grades differ too much from the computed ones, the student’s final course 

grade is disputed. Earlier results imply that the model supports students in using deep learning 

approach, and encourages them to study for themselves, not for an exam (Nieminen, Rämö, Häsä, & 

Tuohilampi, 2017). 



 

 

Aim of the study 

This study aims at gaining a better understanding of the use of self-assessment as an integral part of 

assessment in a large first-year university mathematics course. In the course context, self-

assessment is used to give students an opportunity to think metacognitively about their learning. We 

hypothesise that student active engagement into self-assessment processes is enhanced if these 

processes are valued in grading, but then, the question of accuracy needs to be resolved. This 

question is two-fold: firstly, we are interested in the validity of the student grades, in other words, 

whether they reflect true learning, both in content knowledge and domain-specific generic skills 

such as writing mathematics. Secondly, we need to examine the reliability of the automatic 

verification system: can it spot the cases where self-assessment is inaccurate? The research 

questions in this study are: 

1. How do the students’ evaluations of their own skills compare with evaluations performed by 

the automatic verification system? 

2. How does an expert judge the student’s acquired skills in cases where the automatic 

verification disagrees with student’s self-assessment? 

Method 

This study uses data collected from students taking a first year mathematics course at a major 

research-intensive university in Finland. The second author was the lecturer for the course. The 

course was a proof-based linear algebra course dealing with finite-dimensional vector spaces, and it 

lasted for seven weeks (half a term). During the course, students were given weekly problems to 

solve, part of which were assessed and given feedback on. Some of the tasks were assessed by the 

tutors, some by an automatic assessment system called Stack (Sangwin, 2013). Some tasks were 

also peer-reviewed. 

The course was not graded with a final exam, but grading was done by self-assessment using the 

DISA model. The self-assessment was based on a detailed learning objectives matrix prepared by 

the teacher. The learning objectives were divided into 10 topics: six content-specific and four 

generic skills topics, and the students were asked to give themselves a grade from 0–5 in each of 

these topics, 0 meaning fail. They were also asked to write down reasons for choosing that grade. In 

the end of the course, students chose their own final grade. They were left to decide by themselves 

how to combine the grades from the different topics. The DISA system was used to verify the final 

self-assessment. 

It is worth noting that, in the Finnish context, although the teacher is responsible for the course 

grades, these can be awarded by any means the teacher chooses. There is little fear of distorting the 

grades, as the final grade of a first-year mathematics course carries very little weight in the final 

outcome of a student’s study programme. Also, all courses and exams can be usually retaken as 

many times as the student wishes. 

The participants of this study were 158 students who took the linear algebra course described above, 

gave themselves their own grades using the DISA model, and gave consent for using their data. 

Most of the students were majoring in either mathematics, mathematics education or some other 



 

 

field related to mathematics such as computer science, physics or chemistry. Most students were 

first year students, but the cohort included also older participants, up to post-doctoral level. 

We narrow our study to two of the ten learning objective topics of the course: (1) “Matrices” 

(content-specific) and (2) “Reading and writing mathematics” (generic skill). These two topics were 

chosen since both are among the most central topics of the course and there were relatively many 

tasks linked to them. Also, we wanted to compare self-assessments on a content-specific topic with 

those on a generic skill. Henceforth, these topics are abbreviated as [M] and [RW]. Examples of 

learning objectives pertaining to these topics are given in Table 1. 

Topic Skills corresponding 

to grades 1-2 

Skills corresponding to 

grades 3-4 

Skills corresponding to 

grade 5 

Matrices 

[M] 

I can perform basic 

matrix operations and 

know what zero and 

identity matrices are 

I can check, using the 

definition of an inverse, 

whether two given matrices 

are each other’s inverses 

I can apply matrix 

multiplication and 

properties of matrices in 

modelling practical 

problems 

Reading 

and writing 

[RW] 

I use course's notation 

in my answers 

I write complete, intelligible 

sentences that are readable 

to others 

I can write proofs for claims 

that concern abstract or 

general objects 

Table 1: Part of the learning objectives matrix of the course. In total, there were 10 topics and 10–15 

learning objectives in each topic 

To answer Research question 1, we compared the grades students gave themselves on the two topics 

in the final self-assessment with the results of the automatic verification of that self-assessment. The 

computations were done with R version 3.5.0. For Research question 2, coursework and final self-

assessment of two students whose self-assessment was poorly in line with the automatic verification 

were chosen for closer inspection. In this manuscript, we call them Student A and Student B. The 

two students’ anonymised answers to all of the written tasks as well as their Stack exercise points 

were analysed by the second author. This author was also the teacher of the course and can be 

regarded as an expert in the subject. When the expert was grading the students, she did not know 

how the students had assessed themselves. The expert read every written solution the student had 

submitted, and evaluated which learning objects in topics [M] and [RW] the student had reached.  

Every time the expert could see the student mastering a learning object, she made a note in the 

learning objectives matrix. After that, there were learning objectives for mastering of which the 

student had not provided any evidence in the written solutions. The expert then looked at the Stack 

exercises that were linked to these learning objectives to see how many points the student had 

received from them. She used the information in determining whether the student had reached the 

remaining learning objectives. When the expert had considered each learning objective, she 

awarded the student a grade in both topics by looking from the learning objectives matrix which 

grade the reached learning objectives corresponded to. In borderline cases, the expert used her 

expertise as a mathematician and teacher of the course. For the topic “Reading and writing 



 

 

mathematics”, the expert could only evaluate the student’s skills in writing as there were no tasks 

that were linked to reading skills. 

Results 

Research question 1: comparison of self-assessed grades with automatic verification 

The distributions of the self-assessed grades in the two topics [M] (Matrices) and [RW] (Reading 

and writing mathematics) are shown in Table 2. We see that the students gave the grades 3 and 4 

more often for [RW] than for [M], but the top grade 5 was more common in [M] than in [RW]. 

Grade 1 2 3 4 5 

[M] 3 10 25 47 73 

[RW] 2 10 37 58 51 

Table 2: Frequencies of each grade in the two topics 

The computer verification system computed tentative grades for the two topics for each student. 

The distribution of differences between the computed grade and student self-assessed grade are 

reported in Table 3. 

Difference -5 -4 -3 -2 -1 0 1 2 

[M] 1 1 5 20 26 86 19 0 

[RW] 0 2 6 15 20 75 34 6 

Table 3: Frequencies of the differences: computed grade minus self-assessed grade in the two topics 

We see that the computer and student grades agree well. In [M], there are 86 matches, 53 cases in 

which the self-assessed grade was higher than the computed grade (negative difference), and only 

19 cases in which the self-assessed grade was lower (positive difference). In [RW], there are 75 

matches, 43 cases in which the self-assessed grade was higher, and 40 cases in which the self-

assessed grade was lower. In both topics, between 81-83 % of self-assessed grades lie within 1 

grade point from the computed grade. 

Research question 2: Expert opinion in conflicted cases 

Student A’s self-assessed grades were lower than the computed ones. For both topics, the self-

assessed grade was 4 and computed grade 5. The expert’s evaluation agreed with the computed 

grades. The expert observed that Student A had done almost all tasks during the course. Even 

though not all the answers were correct, all the learning objectives in topic [M] were fulfilled. 

Students were asked to make corrections to some tasks, and student A had always resubmitted 

solutions written in good mathematical style. The student’s explanations were concise and readable, 

and the student was able to construct proofs concerning abstract mathematical objects. Based on 

this, the expert’s grade for topic [RW] was 5. 

Student B’s self-assessed grades were greater than the computed ones. For topic [M], the self-

assessed grade was 5 and the computed grade 3. The expert’s evaluation yielded grade 4, that is, 



 

 

something in between. For [RW], the self-assessed grade was 3 and the computed grade 1. The 

expert’s evaluation agreed with the self-assessed one. The expert observed that Student B had 

submitted only a fraction of the course tasks. However, the expert was able to evaluate from the 

solutions that Student B accomplished almost all learning objectives in [M]. Some of Student B’s 

skills were shown in the intermediate steps of tasks that were not directly linked to topic [M]. For 

example, the student determined whether given vectors are linearly independent by forming a 

system of linear equations and calculating the determinant of the coefficient matrix. This showed 

that the student knew how invertibility of matrices is connected to the number of solutions of a 

system of linear equations even though the topic of the task was linear independence. Student B had 

not corrected any solutions when encouraged to. According to the expert, the student reached 

partially all the learning objectives in [RW], but did not fully master any of them, not even the ones 

corresponding to grade 1. For example, the student mixed up equivalence arrows with equality 

signs, wrote long, confused sentences and used “if–then” structures inside a proof in the place of 

assumptions and conclusions. However, the overall structures of the proofs were correct. Based on 

this, the expert’s interpretation was that the student’s grade for [RW] was 3. 

Discussion 

In this study, a new model of determining course grades via self-assessment was examined with a 

focus on the accuracy of the self-assessed grades. The students gave themselves grades in all course 

topics, and these grades were automatically verified by comparing them against the course work the 

students had done. We analysed the results of the verified self-assessment in two topics, one 

content-specific topic (matrices) and one subject-related generic skill (reading and writing 

mathematics). 

The students’ self-assessment agreed well with the automatic verification. Most discrepancies are 

within one grade point, which can be explained by the coarseness of the grading scale: the “real” 

skill level is often between two grade points and must be forced to one or the other direction. The 

high agreement is not surprising, as previous studies have shown that explicit criteria and standards 

support self-assessment, as does frequent practice and feedback (Andrade & Du, 2007; Kearney et 

al., 2016). It remains to be studied how great an effect the feedback that the students received for 

their self-assessment exercises had on their final self-assessment. 

The students gave fairly good grades to themselves in both examined topics. For reading and 

writing mathematics, the grades were more concentrated around the second-best grade, whereas for 

matrices, the top grade was clearly the most common grade. Perhaps it was easier for the students to 

understand the learning objectives as well as recognise their achievements in the mathematical 

topic, and without clear evidence for mastery, they were hesitant to award themselves the best grade 

in a generic skill. Our results could be understood in the view of previous results (Falchikov & 

Boud, 1989) showing that in science courses, self-assessment was more accurate that in other fields.  

We examined more closely two students whose self-examined and computed grades differed. In the 

first case, self-evaluated grades were below the computed ones. The expert’s evaluation agreed with 

the computed grade. The student was a high achiever, and from previous studies we know that such 

students tend to underestimate their performance (Boud et al., 2013; Kearney et al., 2016). In the 



 

 

second case, the self-evaluated grades were above the computed ones. The expert’s evaluation was 

between the two for the mathematical topic and agreed with the self-assessed grade for the generic 

skill. In this case, the student had skipped many tasks which made it difficult for the automatic 

system to estimate the grade fairly. Also, the expert noted that the student seemed to have some 

skills from all grade categories in the learning objectives matrix, but not to have fully reached any. 

This kind of case would be very difficult for the automatic verification system to estimate correctly. 

The study used a method in which an expert evaluated students’ skills based on all the work they 

had done on the course, evaluating against the intended learning outcomes, not by grading 

individual tasks. The method suffered from some of the maladies related to teacher evaluation, such 

as time restriction and personal bias. The accuracy of teacher-grading is not an issue to be taken as 

obvious truth (Brown, 1997). One should also note that neither the expert nor the automatic system 

were able to evaluate students’ reading skills even though they were included in the self-assessed 

grades. 

This study opened a new way to critically examine a self-assessment model as a viable option for 

grading students. We did not find any fundamental problem with reliability. However, at least in 

one of the studied cases, the verification system did not estimate the student’s skills very well. A 

larger sample needs to be studied in order to find out whether such issues are common. Also, we 

need to study students’ written justifications for their grades in order to better understand what is 

involved when the self-assessment process does not go as intended. 
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