M. Acheritogaray, P. Degond, A. Frouvelle, and J. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models, vol.4, pp.901-918, 2011.

H. Bahouri, J. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, vol.343, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00732127

S. A. Balbus and C. Terquem, Linear analysis of the hall effect in protostellar disks, Astrophysical Journal, vol.552, pp.235-247

M. J. Benvenutti and L. C. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Differential Integral Equations, vol.29, pp.977-1000, 2016.

J. Bony, Calcul symbolique et propagation des singularités pour leséquations aux dérivées partielles non linéaires, Ann. Sci.École Norm. Sup, issue.4, pp.209-246, 1981.

C. R. Braiding and M. Wardle, Star formation and the hall effect, 2005.

D. Chae, P. Degond, and J. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, pp.555-565, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00765702

D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Differential Equations, vol.256, pp.3835-3858, 2014.

J. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal, vol.23, pp.20-28, 1992.

R. Danchin and J. Tan, On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02353221

, The Global Solvability Of The Hall-magnetohydrodynamics System, Critical Sobolev Spaces, 2019.

E. Dumas and F. Sueur, On the weak solutions to the Maxwell-Landau-Lifshitz equations and to the Hall-magneto-hydrodynamic equations, Comm. Math. Phys, vol.330, pp.1179-1225, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00816222

I. Gallagher, D. Iftimie, and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), vol.53, pp.1387-1424, 2003.

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of neutral layers, Phys. Plasmas, vol.10, pp.3139-3150, 2003.

J. Li, Y. Yu, and W. Zhu, A class large solution of the 3D Hall-magnetohydrodynamic equations, 2019.

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, 2001.

C. Miao and B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci, vol.32, pp.53-76, 2009.

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal, vol.262, pp.3556-3584, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00994719

J. Peetre, New thoughts on Besov spaces, Mathematics Department, 1976.

B. Somov, Magnetic reconnection in solar flares, Physics-Uspekhi, vol.53, pp.954-958

R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differ. Equ, vol.259, pp.5982-6008, 2015.

R. Wan and Y. Zhou, Global well-posedness for the 3D incompressible Hall-magnetohydrodynamic equations with Fujita-Kato type initial data, J. Math. Fluid Mech, vol.21, issue.1, p.pp, 2019.

S. Weng, On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system, J. Differential Equations, vol.260, pp.6504-6524, 2016.

, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, vol.270, pp.2168-2187, 2016.

, LAMA UMR, vol.8050, p.94010

, Créteil cedex 1 E-mail address: jin.tan@u-pec.fr