
HAL Id: hal-02430351
https://hal.science/hal-02430351

Submitted on 7 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deadlock Analysis of Wait-Notify Coordination
Laneve Cosimo, Luca Padovani

To cite this version:
Laneve Cosimo, Luca Padovani. Deadlock Analysis of Wait-Notify Coordination. The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and Privacy - Essays
Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday, Nov 2019, Paris, France.
�hal-02430351�

https://hal.science/hal-02430351
https://hal.archives-ouvertes.fr

Deadlock Analysis of Wait-Notify Coordination

Cosimo Laneve1[0000−0002−0052−4061] and Luca Padovani2[0000−0001−9097−1297]

1 Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus
2 Dipartimento di Informatica, Università di Torino

Abstract. Deadlock analysis of concurrent programs that contain co-
ordination primitives (wait, notify and notifyAll) is notoriously chal-
lenging. Not only these primitives affect the scheduling of processes, but
also notifications unmatched by a corresponding wait are silently lost.
We design a behavioral type system for a core calculus featuring shared
objects and Java-like coordination primitives. The type system is based
on a simple language of object protocols – called usages – to determine
whether objects are used reliably, so as to guarantee deadlock freedom.

1 Introduction

Locks and condition variables [10] are established mechanisms for process coor-
dination that are found, in one form or another, in most programming languages.
Java provides synchronized blocks for enforcing exclusive access to shared ob-
jects and wait, notify and notifyAll primitives to coordinate the threads using
them: a thread performing a wait operation on an object releases the lock on
that object and is suspended; a notify operation performed on an object awak-
ens a thread suspended on it, if there is one; notifyAll is similar to notify,
except that it awakens all suspended threads. Writing correct concurrent pro-
grams using these primitives is notoriously difficult. For example, a thread may
block indefinitely if it attempts to lock an object that is permanently owned by
a different thread or if it suspends waiting for a notification that is never sent.

We see an instance of non-trivial concurrent Java program in Figure 1, which
models a coordination problem whereby a single consumer retrieves items from
two producers. Each producer repeatedly generates and stores a new item into
a buffer (line 5), notifies the consumer that the item is available (line 6) and
waits until the consumer has received the item (line 7). At each iteration, the
consumer waits for an item from each buffer (lines 12 and 15) and notifies the
corresponding producer that the item has been processed (lines 14 and 17). The
main thread of the program forks the producers (lines 25–26) and then runs as
the consumer (line 27). In this example, the fact that producers and consumer use
the two buffers in mutual exclusion is guaranteed by the syntactic structure of the
code, since all accesses to x and y occur within synchronized blocks. However,
understanding whether the three threads coordinate correctly so as to realize the
desired continuous flow of information is not as obvious. This difficulty is largely
due to the ephemeral nature of notifications: a notification sent to a shared
object has an effect only if there is another thread waiting to be notified on that

2 Cosimo Laneve and Luca Padovani

1 public static void producer(Buffer x) {

2 int item = 0;

3 while (true)

4 synchronized (x) {

5 x.Put(item ++);

6 x.notify ();

7 x.wait ();

8 }

9 }

10 public static void consumer(Buffer x, Buffer y) {

11 while (true) {

12 x.wait ();

13 System.out.println(x.Get());

14 x.notify ();

15 y.wait ();

16 System.out.println(y.Get());

17 y.notify ();

18 }

19 }

20 public static void main(String [] args) {

21 Buffer x = new Buffer ();

22 Buffer y = new Buffer ();

23 synchronized (x) {

24 synchronized (y) {

25 new Thread (() -> producer(x)).start();

26 new Thread (() -> producer(y)).start();

27 consumer(x, y);

28 }

29 }

30 }

Fig. 1. Multiple-producers/single-consumer coordination in Java.

object. Otherwise, the notification is lost, with likely undesired implications. For
example, suppose to change the program in Figure 1 so that the synchronized

blocks now in the main method (lines 23–24) are moved into the consumer

method, each protecting accesses to the corresponding buffer. This change would
give producer and consumer a visually appealing symmetric structure, but the
correctness of the program would be fatally compromised. Now a producer could
lock x before the consumer and notify x at a time when the consumer is not yet
waiting for a notification. Eventually, the consumer would block waiting for a
notification on x that will never arrive, leading to a deadlock.

The contribution of this paper is a behavioral type system ensuring that well-
typed programs using shared objects and coordination primitives are deadlock
free. The type system combines two features inspired by previous works on the
static analysis of concurrent programs. First, we use a formulation of the typing

Deadlock Analysis of Wait-Notify Coordination 3

rule for parallel compositions akin to that found in linear logic interpretations
of session types [17, 3]. Unlike these works, where session endpoints are linear
resources, here we apply the typing rule in a setting with shared (hence, non-
linear) objects. Second, we rely on behavioral types – called usages – to make
sure that objects are used reliably, ruling out deadlocks due to missing notifi-
cations. Kobayashi [12] has already studied a type system based on usages for
the deadlock analysis of pi-calculus processes. He shows how to reduce usage
reliability to a reachability problem in a Petri net. As is, this reduction does not
apply to our setting because the encoding of usages with coordination primitives
requires the use of Petri nets with inhibitor arcs [2].

The rest of the paper is structured as follows. Section 2 presents a core cal-
culus of concurrent programs featuring threads, shared objects and coordination
primitives. Section 3 defines types, usages and the key notion of reliability. Typ-
ing rules and properties of well-typed programs are given in Section 4. Section 5
discusses related work in more detail and Section 6 concludes. Because of space
limitations, proofs and the handling of the notifyAll primitive are found in the
appendix, which is not formally part of the submission.

2 Language Syntax and Semantics

We define a core language of concurrent programs featuring threads, shared ob-
jects and a minimal set of coordination primitives inspired to those of Java.
We formalize our language as a process calculus comprising standard constructs
(termination, conditional behavior, object creation, parallel composition, recur-
sion) in which actions represent coordination primitives on objects. Instead of
providing a synchronized construct to enforce mutually exclusive access to a
shared object, we use explicit acquire and release operations on the object.

Formally, our calculus makes use of a countable set of variables and object
names, ranged over by x, y, z, and a set of procedure names, ranged over by A. A
program is a pair

(
D, P

)
, where D is a finite set of procedure definitions of the

form A(x) = PA, with x and PA respectively being the formal parameters and
the body of A. In a program

(
D, P

)
we say that P is the main process. Hereafter

we write α for possibly empty, finite sequences α1, . . . , αn of various entities.
The syntax of processes, expressions and actions is given in Table 1.

Expressions comprise integer literals, variables and object names, and an
unspecified set of operators op such as +, ≤, and so forth. Expressions are
evaluated by means of a total function J·K such that JxK = x.

The process done performs no action. The process π.P performs the action
π and continues as P . The conditional process if e then P else Q behaves as P if
JeK 6= 0 or else as Q. The process new x in P creates a new object x with scope
P . The process fork{P}Q forks P and continues as Q. Finally, A(e) denotes the
invocation of the process corresponding to A with actual parameters e.

An action is either acq(x), which acquires the lock on x, or rel(x), which re-
leases the lock on x, or wait(x), meaning that the process unlocks x and suspends
waiting for a notification, or notify(x) that notifies a process waiting on x, if there

4 Cosimo Laneve and Luca Padovani

Table 1. Syntax of the language with runtime syntax marked by †.

Expression e ::= n (constant)
| x (variable)
| e op e (operator)

Process P,Q ::= done (termination)
| π.P (action prefix)
| if e then P else Q (conditional)
| new x in P (new object)
| fork{P}Q (new process)
| A(e) (invocation)

Action π ::= acq(x) (acquire)
| rel(x) (release)
| wait(x) (wait)
| wait(x, n) (waiting)†

| notify(x) (notify)

is any. Objects are reentrant and can be locked multiple times by the same pro-
cess. The prefix wait(x, n) is a runtime version of wait(x) that keeps track of
the number of times (n) x has been locked before wait(x) was performed. User
programs are not supposed to contain wait(x, n) prefixes. We write acq(x)n.P in
place of acq(x) · · · acq(x).P where there are n subsequent acquisitions of x.

To define the operational semantics of a program we make use of an infinite
set of process identifiers, ranged over by t and s, and states, which are pairs
of the form H
 P made of a heap H and a process pool P. Heaps are finite
maps from object names to pairs of the form t, n where t identifies the process
that has locked x and n is the number of times x has been acquired. We allow
t to be the distinguished name • and n to be 0 when x is unlocked. Process
pools are finite maps from process identifiers to processes and represent the set
of processes running at a given time. In the following we occasionally write H
as {xi : ti, ni}i∈I and P as {ti : Pi}i∈I . We also write H,H′ for the union of H
and H′ when dom(H) ∩ dom(H′) = ∅. Similarly for P,P ′.

The operational semantics of a program
(
D, P

)
is determined by the transi-

tion relation −→D defined in Table 2 applied to the initial state ∅
 main : P .
To reduce clutter, for each rule we only show those parts of the heap and of the
process pool that are affected by the rule. For example, the verbose version of
[r-done] is H
 t : done,P −→D H
 P. Rules [r-acq-*] and [r-rel-*] model the ac-
quisition and release of a lock. There are two versions of each rule to account for
the fact that locks are reentrant and can be acquired multiple times. Rule [r-wait]

models a process that unlocks an object x and suspends waiting for a notification
on it. The number n of acquisitions is stored in the runtime prefix wait(x, n) so
that, by the time the process is awoken by a notification, it re-acquires x the
appropriate number of times. Rules [r-nfy-*] model notifications. The two rules
differ depending on whether or not there exists a process that is waiting for such

Deadlock Analysis of Wait-Notify Coordination 5

Table 2. Reduction rules.

[r-acq-1] x : •, 0
 t : acq(x).P −→D x : t, 1
 t : P
[r-acq-2] x : t, n
 t : acq(x).P −→D x : t, n+ 1
 t : P
[r-rel-1] x : t, 1
 t : rel(x).P −→D x : •, 0
 t : P
[r-rel-2] x : t, n+ 2
 t : rel(x).P −→D x : t, n+ 1
 t : P
[r-wait] x : t, n
 t : wait(x).P −→D x : •, 0
 t : wait(x, n).P
[r-nfy-1]
 t : wait(x, n).P, s : notify(x).Q −→D
 t : acq(x)n.P, s : Q
[r-nfy-2]
 t : notify(x).P,P −→D
 t : P,P if wait(x) 6∈ P
[r-done]
 t : done −→D

[r-if-1]
 t : if e then P else Q −→D
 t : P if JeK 6= 0
[r-if-2]
 t : if e then P else Q −→D
 t : Q if JeK = 0
[r-fork]
 t : fork{Q}P,P −→D
 t : P, s : Q,P
[r-new] H
 t : new x in P −→D H, x : •, 0
 t : P
[r-call]
 t : A(e) −→D
 t : P{JeK/x} if A(x) = P ∈ D

notification. In [r-nfy-1], one waiting process is awoken and guarded by the appro-
priate number of acquisitions. In [r-nfy-2], the side condition wait(x) /∈ P means
that P does not contain a process of the form t : wait(x, n).P , implying that no
process is currently suspended waiting for a notification on x. In this case, the
notification is simply lost. Rules [r-done], [r-if-*], [r-fork], [r-new] and [r-call] model
terminated processes, conditional processes, forks, object creation and procedure
calls as expected. Notice that [r-fork] has an implicit assumption stating that the
name s of the process being created is fresh. This is because the composition
P,P ′ is well defined only provided that dom(P) ∩ dom(P ′) = ∅. Similarly, rule
[r-new] implicitly assumes that the object x being created is fresh.

We write =⇒D for the reflexive, transitive closure of −→D and H
 P X−→D
if there exist no H′ and P ′ such that H
 P −→D H′
 P ′. With this notation
in place, we formalize the property that we aim to ensure with the type system:

Definition 1 (deadlock-free program). We say that
(
D, P

)
is deadlock free

if ∅
 main : P =⇒D H
 P X−→D implies H = {xi : •, 0}i∈I and P = ∅.

In words, a program is deadlock free if every maximal, finite computation
starting from the initial state – in which the heap is empty and there is only one
running process main : P – ends in a state in which all the objects in the heap
are unlocked and all processes have terminated.

We conclude the section showing how to model the producer-consumer coor-
dination program of Figure 1 in our calculus.

Example 1 (multiple-producers/single-consumer coordination). We model the pro-
gram in Figure 1 by means of the following procedure definitions, which make
use of two objects x and y to coordinate producer and consumer:

Main = new x in new y in acq(x).acq(y).fork{P(x)} fork{P(y)} C(x, y)
P(x) = acq(x).notify(x).wait(x).rel(x).P(x)

C(x, y) = wait(x).notify(x).wait(y).notify(y).C(x, y)

6 Cosimo Laneve and Luca Padovani

Table 3. Syntax of types and usages.

Type T ::= int | n · U
Usage U ::= 0 | κ.U | U | V | U + V | α | µα.U

Usage prefix κ ::= acq | rel | wait | waiting | notify

The overall structure of these procedures matches quite closely that of the
correspondings methods in Figure 1. Let us discuss the differences. First of all, in
the calculus we focus on coordination primitives. All other operations performed
on objects – notably, Put and Get in Figure 1 – that do not affect coordination
are not modeled explicitly. Second, we model while loops using recursion. Third,
we model synchronized blocks in Figure 1 as (matching) pairs of acquire-release
operations on objects. Notice that the consumer never performs explicit releases,
for x and y are always released by wait(x) and wait(y). This corresponds to the
fact that, in Figure 1, the whole code of the consumer runs within a block that
synchronizes on x and y.

It is worth noting that, even after all the background noise that is present in
Figure 1 has been removed, understanding whether the program deadlocks is not
trivial. As anticipated in the introduction, the most critical aspect is determining
whether x and y are always notified at a time when there is a process waiting
to be awoken. �

3 Types and Usages

Our type system rules out deadlocks using two orthogonal mechanisms. The
first one makes sure that well-typed programs do not contain cycles of parallel
processes linked by shared objects. This mechanism suffices to avoid circular
waits, but does not guarantee that each process suspended on a wait operation
is awoken by a notification. To rule out these situations, we also associate each
shared object with a simple protocol description, called usage, that specifies the
operations performed by processes on it. Then, we make sure that usages are re-
liable, namely that each wait operation is matched by (at least) one notification.
The rest of this section is devoted to the formal definition of types, usages and
related notions, leading to the formalization of reliability. The description of the
actual typing rules is deferred to Section 4.

The syntax of types and usages is shown in Table 3. A type is either int, de-
noting an integer value, or an object type n·U where n is a natural number called
counter and U is a usage. The counter indicates the number of times the object
has been acquired. The usage describes the combined operations performed by
processes on the object. The usage 0 describes an object on which no operations
are performed. The usage κ.U describes an object that is used to perform the
operation κ and then according to U . Usage prefixes acq , rel , wait , waiting and
notify are in direct correspondence with the actions in Table 1. In particular,
waiting is a “runtime version” of wait and describes an object on which the wait

Deadlock Analysis of Wait-Notify Coordination 7

operation has been performed and is waiting to be notified. Usages of user pro-
grams are not supposed to contain the waiting prefix. The usage U | V describes
an object that is used by concurrent processes according to U and V , whereas
the usage U + V describes an object that is used either according to U or to V .
Terms of the form µα.U and α are used to describe recursive usages.

We adopt standard conventions concerning (recursive) usages: we assume
contractiveness, namely that, in a usage µα.U , the variable α occurring in U
is always guarded by a usage prefix; we identify usages modulo (un)folding of
recursions; we omit trailing 0’s.

To illustrate usages before describing the typing rules, consider the process

fork{acq(x).rel(x)} acq(y).acq(x).rel(x).rel(y)

which uses two objects x and y. Notice that x is acquired by two concurrent sub-
processes and that, in one case, this acquisition is nested within the acquisition
and release of y. The operations performed on x are described by the usage
acq .rel | acq .rel whereas those performed on y are described by the usage acq .rel .

In the following, we restrict our attention to well-formed usages in which
every release corresponds to a former acquire and there can only be wait and
notify operations in between them. In particular, we forbid usages that nest
acquire operations. To accommodate reentrance, namely the possibility that the
same object is aquired more than once, we use the information given by the
counter. We keep the notion of well-formed usage informal since it is not essential
in the following.

We now proceed to define a series of auxiliary notions related to types and
usages and that play key roles in the type system and the proofs of its soundness.
To begin with, we formalize a predicate on usages that allows us to identify those
objects on which there is no process waiting for a notification:

Definition 2 (wait-free usage). Let wf(·) be the least predicate on usages
defined by the axioms and rules below:

wf(0) wf(acq .U)
wf(U) wf(V)

wf(U | V)
wf(U + V)

Note that wf(U + V) holds regardless of U and V because the usage U + V
describes an object on which a process behaves according to either U or V , but
the process has not committed to any such behavior yet. Hence, the process
cannot be waiting for a notification on the object.

Next, we define a reduction relation describing the evolution of the type
of an object as the object is used by processes. As we have anticipated earlier,
the effect of operations depends on whether and how many times the object
has been locked. For this reason, the reduction relation we are about to define
concerns types and not just usages.

Definition 3 (type reduction). Let ≡ be the least congruence on usages con-
taining commutativity and associativity of | with identity 0, commutativity, as-
sociativity, and idempotency of +. The reduction relation T T′ is the least

8 Cosimo Laneve and Luca Padovani

Table 4. Reduction of types.

[u-acq-1]

0 · acq .U | V 1 · U | V

[u-acq-2]

n+ 1 · U n+ 2 · U

[u-rel-1]

1 · rel .U | V 0 · U | V

[u-rel-2]

n+ 2 · U n+ 1 · U

[u-wait]

n+ 1 · wait .U | V 0 · waiting .U | V

[u-choice]

n · (U + U ′) | V n · U | V

[u-nfy-1]

n+ 1 · waiting .U | notify .U ′
| V n+ 1 · acq .U | U ′

| V

[u-nfy-2]

wf(V)

n+ 1 · notify .U | V n+ 1 · U | V

[u-cong]

U ≡ U ′ n · U ′ n′ · V ′ V ′ ≡ V
n · U n′ · V

relation defined by the axioms and rules in Table 4. As usual, we write ∗ for
the reflexive and transitive closure of .

Rules [u-acq-1] and [u-rel-1] model the acquisition and the release of an object;
in the first case, the object must be unlocked (the counter is 0) whereas, in the
second case, the object must have been locked exactly once. Rules [u-acq-2] and
[u-rel-2] model nested acquisitions and releases on an object. These rules simply
change the counter to reflect the actual number of (nested) acquisitions and
do not correspond to an actual prefix in the usage. Rule [u-wait] models a wait
operation performed on an object: the counter is set to 0 and the wait prefix
is replaced by waiting , indicating that the object has been unlocked waiting
for a notification. This makes it possible for another process to acquire the
object and eventually notify the one who waits. Rules [u-nfy-1] and [u-nfy-2] model
notifications. In [u-nfy-1], the notification occurs at a time when there is indeed
another process that is waiting to be notified. In this case, the waiting process
attempts to acquire the object. In [u-nfy-2], the notification occurs at a time
when no other process is waiting to be notified. In this case, the notification
has no effect whatsoever and is lost. Finally, rule [u-choice] (in conjunction with
commutativity of +) models the nondeterministic choice between two possible
usages of an object and [u-cong] closes reductions under usage congruence.

Not all types are acceptable for our type system. More specifically, there are
two properties that we wish to be guaranteed:

– whenever there is a pending acquisition operation on a locked object, the
object is eventually unlocked;

– whenever there is a pending wait operation on an object, the object is even-
tually notified.

A type that satisfies these two properties is said to be reliable:

Deadlock Analysis of Wait-Notify Coordination 9

Definition 4 (type reliability). We say that T is reliable, written rel(T), if
the following conditions hold for all n, U and V :

1. T ∗ n · acq .U | V implies n · V ∗ 0 · V ′ for some V ′, and
2. T ∗ 0 · waiting .U | V implies 0 · V ∗ n · notify .U ′ | V ′ for some U ′, V ′.

For example, it is easy to verify that 0 · acq .(wait .rel | acq .notify .rel) is
reliable whereas 0 · acq .wait .rel | acq .notify .rel is not. In the latter usage, the
object may be acquired by a process that notifies the object at a time when there
is no other process waiting to be notified. Eventually, the object is acquired again
but the awaited notification is lost.

Example 2. Consider the type 0·acq .(U | V) where U
def
= µα.acq .notify .wait .rel .α

and V
def
= µα.wait .notify .α. To prove that 0 · acq .(U | V) is reliable, we derive

0 · acq .(U | V) 1 · U | V
 0 · U | waiting .notify .V (?)
 1 · notify .wait .rel .U | waiting .notify .V
 1 · wait .rel .U | acq .notify .V
 0 · waiting .rel .U | acq .notify .V
 1 · waiting .rel .U | notify .V
 1 · acq .rel .U | V
 0 · acq .rel .U | waiting .notify .V
 1 · rel .U | waiting .notify .V
 0 · U | waiting .notify .V (?)

and observe that no other reductions are possible apart from those shown above,
that the two types labelled (?) are equal, and that both conditions of Definition 4
are satisfied for each reachable state. As we shall see in Example 3, the type
0 · acq .(U | V) describes the behavior of the main thread of Example 1 with
respect to each buffer. �

4 Static Semantics

4.1 Type environments

The type system uses type environments, ranged over by Γ , which are finite sets
of associations on variables and procedure names defined by the grammar below:

Type environment Γ ::= ∅ | x : T, Γ | A : [T], Γ

An association x : T indicates that x has type T, whereas an association
A : [T] indicates that A is a procedure accepting parameters of type T.

We write dom(Γ) for the set of variable/procedure names for which there is an
association in Γ and Γ(x) for the type associated with x ∈ dom(Γ). With an abuse
of notation, we write Γ , Γ ′ for the union of Γ and Γ ′ when dom(Γ)∩dom(Γ ′) = ∅.
In addition: we write live(Γ) for the subset of dom(Γ) of live object references

10 Cosimo Laneve and Luca Padovani

on which there are pending operations, that is live(Γ)
def
= {x ∈ dom(Γ) | Γ(x) =

n ·U ∧ (n > 0∨U 6≡ 0)}; we write iszero(Γ) if Γ(x) = 0 ·U for every x ∈ dom(Γ);
we write noAct(Γ) if live(Γ) = ∅.

The same object may be used in different ways in different parts of a program.
In order to track the combined usage of the object we inductively define two
operators | and + on type environments with the same domain. Intuitively,
(Γ | Γ ′)(x) is the type of an object that is used both as specified in Γ and also as
specified in Γ ′ whereas (Γ + Γ ′)(x) is the type of an object that is used either as
specified in Γ or as specified in Γ ′. The former case happens if x is shared by two
concurrent processes respectively typed by Γ and Γ ′. The latter case happens if
x is used in different branches of a conditional process. Formally:

∅ | ∅ = ∅
x : int, Γ | x : int, Γ ′ = x : int, (Γ | Γ ′)
A : [T], Γ | A : [T], Γ ′ = A : [T], (Γ | Γ ′)
n · U, Γ | m · V, Γ ′ = n+m · U | V, (Γ | Γ ′) n = 0 ∨m = 0

∅+ ∅ = ∅
x : int, Γ + x : int, Γ ′ = x : int, (Γ + Γ ′)
A : [T], Γ +A : [T], Γ ′ = A : [T], (Γ + Γ ′)

n · U, Γ | n · V, Γ ′ = n · U + V, (Γ + Γ ′)

Note that both | and + for environments are partial operators and that the
former enforces the property that the same object cannot be owned by more
than one process at any given time (at least one of the counters must be 0). It
is easy to see that | on environments is commutative and associative (modulo
≡ on usages). In the following we write

∏
i=1..n Γi in place of Γ1 | · · · | Γn.

As usual for behavioral type systems, the type environment used for typing a
process is an abstraction of the behavior of the process projected on the objects it
uses. In particular, a live object association x : n ·U in the type environment of a
process means that the process uses x as specified by U , whereas an association
such as x : 0 · 0 means that the process does not use x at all. To prevent
circular waits between parallel processes, we forbid the existence of cycles in the
corresponding type environments:

Definition 5 (acyclic type environments). We say that a family {Γ} of type
environments has a cycle x1, . . . , xn of n ≥ 2 pairwise distinct names if there
exist Γ1, . . . , Γn ∈ {Γ} such that xi ∈ live(Γi)∩ live(Γ(i mod n)+1) for all 1 ≤ i ≤ n.

We say that {Γ} is acyclic if it has no cycle.

4.2 Typing rules for user syntax

The typing rules for the language in Section 2 are defined in Table 5 and derive
three kinds of judgments. A judgment Γ ` e : T means that the expression e is
well typed in Γ and has type T. A judgment Γ ` P means that the process P is
well typed in Γ . In particular, P uses each object x ∈ dom(Γ) according to the

Deadlock Analysis of Wait-Notify Coordination 11

Table 5. Typing rules for user syntax.

Typing rules for (sequences of) expressions Γ ` e : T

[t-const]

noAct(Γ)

Γ ` n : int

[t-var]

noAct(Γ)

Γ , x : T ` x : T

[t-op]

Γ ` e : int Γ ` e′ : int

Γ ` e op e′ : int

[t-seq]

Γi ` ei : Ti
(i=1..n)

Γ1 | · · · | Γn ` e1, . . . , en : T1, . . . , Tn

Typing rules for processes Γ ` P

[t-done]

noAct(Γ)

Γ ` done

[t-acq-1]

Γ , x : 1 · U ` P
Γ , x : 0 · acq .U ` acq(x).P

[t-acq-2]

Γ , x : n+ 2 · U ` P
Γ , x : n+ 1 · U ` acq(x).P

[t-rel-1]

Γ , x : 0 · U ` P
Γ , x : 1 · rel .U ` rel(x).P

[t-rel-2]

Γ , x : n+ 1 · U ` P
Γ , x : n+ 2 · U ` rel(x).P

[t-wait]

Γ , x : n+ 1 · U ` P
Γ , x : n+ 1 · wait .U ` wait(x).P

[t-notify]

Γ , x : n+ 1 · U ` P
Γ , x : n+ 1 · notify .U ` notify(x).P

[t-if]

Γ ` e : int Γi ` Pi
(i=1,2)

Γ | (Γ1 + Γ2) ` if e then P1 else P2

[t-call]

Γ ` e : T

Γ , A : [T] ` A(e)

[t-fork]

Γi ` Pi
(i=1,2) iszero(Γ1) {Γ1, Γ2} acyclic

Γ1 | Γ2 ` fork{P1}P2

[t-new]

Γ , x : 0 · U ` P rel(0, U)

Γ ` new x in P

Typing rule for programs Γ ` (D, P)

[t-program]

Γ = Ai : [Ti]
(i=1..n) Γ , xi : Ti ` Pi

(i=1..n) Γ ` P
Γ ` ({Ai(xi) = Pi}i=1..n, P)

12 Cosimo Laneve and Luca Padovani

usage in Γ(x). Finally, a judgment Γ `
(
D, P

)
means that the program

(
D, P

)
is well typed in Γ . We now describe the typing rules.

The typing rules for (sequences of) expressions are unremarkable except for
the fact that, as common in substructural type systems, the unused part of the
type environment cannot contain live associations, hence the premise noAct(Γ)
in [t-const] and [t-var].

Rule [t-done] states that the terminated process is well typed in an environ-
ment without live associations, because done does not perform any operation.

Rules [t-acq-1] and [t-acq-2] concern a process acq(x).P that acquires the lock
on x and then continues as P . The difference between the two rules is that in
[t-acq-1] the process is attempting to acquire the lock for the first time (the counter
of the object is 0), whereas in [t-acq-2] the process is performing a reentrant
acquisition, having already acquired the lock n + 1 times. The continuation P
is typed in an environment that reflects the (possibly reentrant) acquision of x.
Note that the acq action occurs in the usage of x only in the case of [t-acq-1]. As
we have anticipated in Section 3, in usages we only keep track of non-reentrant
acquisitions and releases.

Rules [t-rel-1] and [t-rel-2] concern a process rel(x).P . As in the case of [t-acq-*]

rules, they differ depending on whether the lock is actually released ([t-rel-1]) or
not ([t-rel-2]). Only in the first case the release action is noted in the usage of x.
Besides that, the rules update the environment for typing the continuation P .

Rules [t-wait] and [t-notify] concern the coordination primitives. In both cases,
the object must have been previously acquired (the counter is strictly positive)
and the number of acquisitions does not change.

Rule [t-if] is essentially standard. Since only one of the two continuations P1

and P2 executes, the respective type environments Γ1 and Γ2 are composed using
the appropriate disjunctive operator.

Rule [t-fork] types a parallel composition of two processes P1 and P2. The
objects used by the parallel composition are used both by P1 and also by P2.
For this reason, the respective type environments are combined using |. The
iszero(Γ1) premise enforces the property that the process P1 being forked off
does not own any lock. The last premise requires that the family {Γ1, Γ2} be
acyclic, which is equivalent to checking that live(Γ1) ∩ live(Γ2) contains at most
one element. This prevents circular waits between P1 and P2 as discussed earlier.

Rule [t-new] concerns the creation of a new object. The object is initially
unlocked (its counter is 0) and its type must be reliable (Definition 4).

Rule [t-call] is unremarkable and types a process invocation. The only stan-
dard requirement is for the types of the arguments to match those expected in
the corresponding process declaration.

The typing rule [t-program] ensures that all process names have a correspond-
ing definition and verifies that the main process is itself well typed.

Example 3. Let us show that the Main process in Example 1 is well typed. To
do that, consider the type environment Γ = P : [0 · U], C : [1 · V, 1 · V] where U
and V are the usages defined in Example 2 and observe that noAct(Γ) holds.

Deadlock Analysis of Wait-Notify Coordination 13

For the two invocations P(x) and P(y) we easily derive

(1) Γ , x : 0 · U, y : 0 · 0 ` x : 0 · U

Γ , x : 0 · U, y : 0 · 0 ` P(x)

(2) Γ , x : 0 · 0, y : 0 · U ` y : 0 · U

Γ , x : 0 · 0, y : 0 · U ` P(y)

using [t-var] and [t-call]. Then we have

(1)

(2)

Γ , x : 1 · V, y : 1 · V ` x, y : 1 · V, 1 · V

Γ , x : 1 · V, y : 1 · V ` C(x, y)

Γ , x : 1 · V, y : 1 · U | V ` fork{P(y)} C(x, y)

Γ , x : 1 · U | V, y : 1 · U | V ` fork{P(x)} fork{P(y)} C(x, y)

Γ , x : 1 · U | V, y : 0 · acq .(U | V) ` acq(y).fork{P(x)} fork{P(y)} C(x, y)

Γ , x : 0 · acq .(U | V), y : 0 · acq .(U | V) ` acq(x) · · · rel(0 · acq .(U | V))

Γ , x : 0 · acq .(U | V) ` new y in · · · rel(0 · acq .(U | V))

Γ ` new x in new y in acq(x).acq(y).fork{P(x)} fork{P(y)} C(x, y)

where the reliability of 0 · acq .(U | V) has already been proved in Example 2.
In the two applications of [t-fork], the acyclicity of the involved environments is
easily established since in each conclusion of (1) and (2) there is only one live
association, for x and y respectively. �

4.3 Typing rules for runtime syntax and states

The soundness proof of our type system follows a standard structure and includes
a subject reduction result stating that typing (but not necessarily types) are
preserved by reductions. Since the operational semantics of a program makes use
of constructs that occur at runtime only (notably, waiting processes and states)
we must extend the typing rules to these constructs before we can formulate the
properties of the type system. The additional typing rules are given in Table 6.

Table 6. Typing rules for runtime syntax.

[t-waiting]

Γ , x : n · U ` P
Γ , x : 0 · waiting .U ` wait(x, n).P

[t-state]

Γ =
∏

i∈I Γi Γi ` Pi
(i∈I) rel(Γ(xj))

(j∈J) {Γi}i∈I acyclic

Γi(xj) = n+ 1, U ⇐⇒ ti = sj
(i∈I,j∈J) Γ(xj) = 0 · U ⇐⇒ sj = • (j∈J)

Γ ` {xj : sj , nj}j∈J

∏

i∈I ti : Pi

14 Cosimo Laneve and Luca Padovani

Rule [t-waiting] accounts for a process waiting for a notification, after which it
will attempt to acquire the lock on x. Once x is notified and the process awak-
ened, the process will acquire the lock n times, reflecting the state of acquisitions
at the time the process performed the wait(x) operation (see [r-wait]).

The rule [t-state] for states looks more complex than it actually is. For the
most part, this rule is a generalization of [t-fork] and [t-new] to an arbitrary
number of concurrent processes (indexed by i ∈ I) and of objects (indexed by
j ∈ J). From left to right, the premises of the rule ensure that:

– each process Pi is well typed in its corresponding environment Γi;
– the type of each object xj , which describes the overall usage of xj by all the

processes, is reliable;
– the family {Γi}i∈I of type environments is acyclic;
– the process ti owns the object xj if and only if the counter for xj in the type

environment Γi of Pi is strictly positive. Because of the definition of | for
type environments, this implies that no other process owns xj ;

– no process owns the object xj if and only if the counter for xj in the overall
environment is zero.

4.4 Properties of well-typed programs

As usual, the key lemma for proving soundness of the type system is subject
reduction, stating that a well-typed state reduces to well-typed state. In our
case, this result guarantees the preservation of typing, but not necessarily the
preservation of types. Indeed, as a program reduces and operations are performed
on objects, the type of such objects changes consequently. To account for these
changes, we lift reduction of types to type environments, thus:

Definition 6 (environment reduction). The reduction relation for environ-
ments, noted , is the least relation such that:

Γ Γ , x : T
T T′

Γ , x : T Γ , x : T′

As usual, ∗ denotes the reflexive, transitive closure of .

The first rule accounts for the possibility that a new object x is created. We
can now formally state subject reduction, which shows that typing is preserved
for any reduction of a well-typed program:

Lemma 1 (subject reduction). Let Γ `
(
D, P

)
and ∅
 main : P −→∗D H′

P ′. Then Γ ′ ` H′
 P ′ for some Γ ′ such that Γ ∗ Γ ′.

The soundness theorem states that well-typed programs are deadlock free:

Theorem 1 (soundness). If Γ ` (D, P), then (D, P) is deadlock free.

Deadlock Analysis of Wait-Notify Coordination 15

5 Related work

Despite the number of works on deadlock analysis of concurrent programs, only
a few address coordination primitives. Below we discuss the most relevant ones.

Static techniques typically employ control-flow analysis to build a depen-
dency graph between objects and enforce its acyclicity. These techniques may
adopt some heuristics to remove likely false positives, but they are necessarily
conservatives. For instance, Deshmukh et al. [5] analyze libraries of concurrent
objects looking for deadlocks that may manifest for some clients of such objects,
by considering all possible aliasing between the locks involved in the objects. The
technique of von Praun [16] is based on the detection of particular patterns in the
code, such as two threads that perform wait(x) and wait(y) in different orders,
which does not necessarily lead to a deadlock. Naik et al. [15] combine different
static analyses that correspond to different conditions that are necessary to yield
a deadlock. Their technique concerns lock acquisition and release, but not coor-
dination primitives. Williams et al. [18] build a lock-order graph that describes
the sequences of lock acquisitions in a library of Java classes. In particular, they
consider implicit acquisitions due to wait operations, but not deadlocks caused
by missed notifications. Hamin and Jacobs [8] present a refinement of separation
logic to reason on locks and wait/notify coordination primitives. Their technique
ensures deadlock freedom by imposing an ordering on the use of locks and by
checking that each wait is matched by at least one notification. The logic allows
them to address single wait operations within loops, which is something our type
system is unable to handle. On the other hand, the use of a lock ordering limits
the technique in presence of loops and recursion whereby blocking operations on
several locks are interleaved, as in our running example (Figure 1).

Dynamic techniques perform deadlock detection by analyzing the log or
scheduling of a program execution [1, 11, 6]. By considering actual program runs,
these techniques potentially offer better precision, at the cost of delayed deadlock
detection. Agarwal and Stoller [1] define feasible sequences, called traces, that
are consistent with the original order of events from each thread and with con-
straints imposed by synchronization events. By analyzing all the possible traces,
they verify that a wait operation always happens before a notify operation. Joshi
et al. [11] extract a simple multi-threaded program from the source code that
records relevant operations for finding deadlocks. Then, they consider any possi-
ble interleavings of the simple program by means of a model checker in search of
deadlocks. The technique returns both false positives (the simple program man-
ifests a deadlock that never occurs in the source program) and false negatives
(the simple program is defined by observing a single execution and the deadlock
may occur in another execution). Deadlocks due to coordination primitives are
not covered by the technique of Eslamimehr and Palsberg [6].

Demartini et al. [4] translate Java into the Promela language, for which
the SPIN model checker verifies deadlock freedom. Their analysis reports all
deadlock possibilities so long as the program does not exceed the maximum
number of modeled objects or threads. Java Pathfinder, a well-known tool that
is used to analyze execution traces, also performs model checking by translating

16 Cosimo Laneve and Luca Padovani

Java to Promela [9]. When checking matches between wait and notify operations,
this technique may suffer from the state-space explosion due to the number of
traces to analyse.

Kobayashi and Laneve [13] present a deadlock analysis for the pi-calculus
which provided the initial inspiration for this work. In fact, attempts were made
to encode the language of Section 2 in the pi-calculus so as to exploit the tech-
nique of Kobayashi and Laneve. The encoding approach proved to be unsat-
isfactory because of the many false positives it triggered. Notably, Kobayashi
and Laneve [13], following [12], define a notion of usage reliability which can
be reduced to a reachability problem in Petri nets. However, the encoding of
usages with wait-notify primitives requires the use of Petri nets with inhibitor
arcs [2], which are more expressive than standard Petri nets.

Our type system does not impose an order on the usage of locks. Rather, it
adopts a typing rule for parallel threads ([t-fork]) inspired by session type systems
based on linear logic [17, 3]. The key idea is to require that, whenever two threads
are combined together in a parallel composition, they can only interact through
at most one object, as suggested by the structure of the cut and tensor rules in
(classical) linear logic [7]. This approach results in a simple and expressive type
system which can deal with recursive processes interleaving blocking actions on
different objects (Figure 1). The downside is that [t-fork] imposes well-typed
programs to exhibit a forest-like topology, ruling out some interesting programs
which are in the scope of other techniques, such as those based on lams [13].

6 Concluding Remarks

We have described a deadlock analysis technique for concurrent programs using
Java-like coordination primitives wait and notify. The technique extends also
to notifyAll (Appendix D). Our technique is based on behavioral types, called
usages, that may be encoded as Petri nets with inhibitor arcs [2]. Thereby, we
reduce deadlock freedom to the reachability problem in this class of Petri nets.

Our technique is unable to address programs where two threads share more
than one object because of the acyclicity constraint in rule [t-fork]. A more fine-
grained approach for tracking object dependencies has been developed by Lan-
eve [14] and is based on lams [13]. However, this approach does not consider
coordination primitives. We initially tried to combine lams and usages with co-
ordination primitives, but the resulting type system proved to be overly restric-
tive with respect to recursive processes: the amount of dependencies prevented
the typing of any recursive process interleaving blocking operations on two or
more objects (such as the consumer in Figure 1). Whether lams and usages with
coordination primitives can be reconciled is still to be determined.

Another limitation of the type system is that it assumes precise knowledge
of the number of acquisitions for each shared object, to the point that types
contain a counter for this purpose. However, this information is not always
statically available. It may be interesting to investigate whether this limitation
can be lifted by allowing a form of counter polymorphism.

Deadlock Analysis of Wait-Notify Coordination 17

References

1. Agarwal, R., Stoller, S.D.: Run-time detection of potential deadlocks for programs
with locks, semaphores, and condition variables. In: Proceedings of PADTAD’06.
pp. 51–60. ACM (2006). https://doi.org/10.1145/1147403.1147413

2. Busi, N.: Analysis issues in petri nets with inhibitor arcs. Theor. Comput. Sci.
275(1-2), 127–177 (2002). https://doi.org/10.1016/S0304-3975(01)00127-X

3. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session
types. Mathematical Structures in Computer Science 26(3), 367–423 (2016).
https://doi.org/10.1017/S0960129514000218

4. Demartini, C., Iosif, R., Sisto, R.: A deadlock detection tool for concurrent java
programs. Softw., Pract. Exper. 29(7), 577–603 (1999)

5. Deshmukh, J.V., Emerson, E.A., Sankaranarayanan, S.: Symbolic modular dead-
lock analysis. Autom. Softw. Eng. 18(3-4), 325–362 (2011)

6. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd International Symposium on Foundations
of Software Engineering (FSE-22). pp. 353–365. ACM (2014)

7. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

8. Hamin, J., Jacobs, B.: Deadlock-free monitors. In: Ahmed, A. (ed.) Proceedings of
ESOP’18. Lecture Notes in Computer Science, vol. 10801, pp. 415–441. Springer
(2018). https://doi.org/10.1007/978-3-319-89884-1 15

9. Havelund, K.: Using runtime analysis to guide model checking of java programs.
In: Proceedings of SPIN’00. Lecture Notes in Computer Science, vol. 1885, pp.
245–264. Springer (2000). https://doi.org/10.1007/10722468 15

10. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun.
ACM 17(10), 549–557 (1974). https://doi.org/10.1145/355620.361161

11. Joshi, P., Naik, M., Sen, K., Gay, D.: An effective dynamic analysis for detect-
ing generalized deadlocks. In: Proceedings of FSE’10. pp. 327–336. ACM (2010).
https://doi.org/10.1145/1882291.1882339

12. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

13. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. Inf.
Comput. 252, 48–70 (2017)

14. Laneve, C.: A lightweight deadlock analysis for programs with threads and reen-
trant locks. In: Proc. of Formal Methods 2018. Lecture Notes in Computer Science,
vol. 10951, pp. 608–624. Springer (2018)

15. Naik, M., Park, C., Sen, K., Gay, D.: Effective static deadlock de-
tection. In: Proceedings of ICSE’09. pp. 386–396. IEEE (2009).
https://doi.org/10.1109/ICSE.2009.5070538

16. von Praun, C.: Detecting synchronization defects in multi-threaded object-oriented
programs. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (2004)

17. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X

18. Williams, A.L., Thies, W., Ernst, M.D.: Static deadlock detection for java libraries.
In: Proceedings of ECOOP’05. Lecture Notes in Computer Science, vol. 3586, pp.
602–629. Springer (2005). https://doi.org/10.1007/11531142 26

18 Cosimo Laneve and Luca Padovani

A Typing derivations for producer-consumer

In this section we provide the typing derivations for the producer and consumer
processes in Example 1. Using the definitions of U and V in Example 2 and that
of Γ in Example 3, we derive

Γ , x : 1 · V, y : 1 · V ` x, y : 1 · V, 1 · V

Γ , x : 1 · V, y : 1 · V ` C(x, y)

Γ , x : 1 · V, y : 1 · notify .V ` notify(y).C(x, y)

Γ , x : 1 · V, y : 1 · V ` wait(y).notify(y).C(x, y)

Γ , x : 1 · notify .V, y : 1 · V ` notify(x).wait(y).notify(y).C(x, y)

Γ , x : 1 · V, y : 1 · V ` wait(x).notify(x).wait(y).notify(y).C(x, y)

for the consumer and

Γ , x : 0 · U, y : 0 · 0 ` x : 0 · U

Γ , x : 0 · U, y : 0 · 0 ` P(x)

Γ , x : 1 · rel .U, y : 0 · 0 ` rel(x).P(x)

Γ , x : 1 · wait .rel .U, y : 0 · 0 ` wait(x).rel(x).P(x)

Γ , x : 1 · notify .wait .rel .U, y : 0 · 0 ` notify(x).wait(x).rel(x).P(x)

Γ , x : 0 · U, y : 0 · 0 ` acq(x).notify(x).wait(x).rel(x).P(x)

for the producer, recalling that we identify recursive usages with their unfolding.

B Soundness Proofs

B.1 Subject Reduction

Given that the syntax and semantics of expressions is only partially specified,
in the following we make the assumption that well-typed expressions satisfy the
basic principle of type preservation under evaluation, namely that Γ ` e : T and
JeK = v imply Γ ` v : T.

Lemma 2 (substitution). The following properties hold:

1. If Γ , x : T ` e : T′ and Γ ` v : T, then Γ ` e{v/x} : T′;
2. If Γ , x : T ` P and Γ ` v : T, then Γ ` P{v/x}.

Proof. The first property is assumed, since syntax and semantics of expressions
are only partially specified. The second property follows by a simple induction
on the typing derivation and a standard weakening result whereby a type envi-
ronment can be augmented by associations for integer numbers and objects with
type 0 · 0. ut

Deadlock Analysis of Wait-Notify Coordination 19

Proposition 1. If both {Γ1 | Γ2, Γ} and {Γ1, Γ2} are acylic, then so is {Γ1, Γ2, Γ}.

Proof. We prove the contrapositive of the statement, namely that if {Γ1, Γ2, Γ}
has a cycle, then either {Γ1 | Γ2, Γ} or {Γ1, Γ2} have one too. If the cycle is entirely
within {Γ} or entirely within {Γ1, Γ2} the result is trivial. Otherwise, observe that
live(Γ1 | Γ2) = live(Γ1)∪ live(Γ2) and that the length of a cycle in a family of type
environments is the same as the number of environments in the family involved
in the cycle. So, if the cycle goes through Γ1 or Γ2, but not both, the same cycle
is also found in {Γ1 | Γ2, Γ}. The most interesting case is when the only cycles
of {Γ1, Γ2, Γ} go through both Γ1 and Γ2 and at least one more environment in Γ .
Consider a cycle x1, . . . , xn where x1 ∈ live(Γ1) ∩ live(Γ2). Then n ≥ 3 and we
conclude that x2, . . . , xn is a cycle of {Γ1 | Γ2, Γ}. ut

Lemma 3 (subject reduction). Let Γ `
(
D, P

)
and ∅
 main : P −→∗D H′

P ′. Then Γ ′ ` H′
 P ′ for some Γ ′ such that Γ ∗ Γ ′.

Proof. By induction on the length of ∅
 main : P −→∗D H′
 P ′. The basic
case is obvious. For the inductive case, we decompose the computation into
∅
 main : P −→∗D H
 P −→D H′
 P ′ and we reason by cases on the
reduction rule being applied to H
 P −→D H′
 P ′. We discuss only a few
interesting cases assuming, without loss of generality, that H = {xj : sj , nj}j∈J
and P = {ti : Pi}i∈I . Then, from [t-state], we deduce the following facts:

1. Γ =
∏
i∈I Γi;

2. Γi ` Pi for every i ∈ I;
3. rel(Γ(xj)) for every j ∈ J ;
4. {Γi}i∈I is acyclic;
5. Γi(xj) = n+ 1, U iff ti = sj and Γ(xj) = 0, U iff sj = • for all i ∈ I, j ∈ J ;

[r-acq-1] Then P = ti : acq(xj).Q,P ′′ and H = H′′, xj : •, 0 and P ′ = Q,P ′′ and

H′ = H′′, xj : ti, 1 for some i ∈ I and j ∈ J . From [t-state] and [t-acq-1] we deduce
that there exist Γ ′′i and U such that Γi = Γ ′′i , xj : 0 · acq .U and Γ ′′i , xj : 1 ·U ` Q.

Let Γ ′i
def
= Γ ′′i , xj : 1 · U and Γ ′k

def
= Γk for every k ∈ I \ {i}. Let Γ ′

def
=
∏
i∈I Γ

′
i . Note

that Γ ′ is well defined because the fact 5 ensures that no other process owns xj .
We conclude by observing that Γ Γ ′.
[r-acq-2] Similar to the previous case, except that H = H′′, xj : ti, n + 1 and

H′ = H′′, xj : ti, n+ 2. We use fact 5 to deduce that nj = n+ 1 and we use the
reentrant reduction of types to increment this counter.
[r-rel-1] Then P = ti : rel(xj).Q,P ′′ and H = H′′, xj : ti, 1 and P ′ = ti : Q,P ′′

and H′ = H′′, xj : •, 0 for some i ∈ I and j ∈ J . From [t-rel-1] and the fact
5 we deduce that there exist Γ ′′i and U such that Γi = Γ ′′i , xj : 1 · rel .U and

Γ ′′i , xj : 0 · U ` Q. Let Γ ′i
def
= Γ ′′i , xj : 0 · U and Γ ′k

def
= Γk for every k ∈ I \ {i}. Let

Γ ′
def
=
∏
i∈I Γ

′
i . We conclude by observing that Γ Γ ′.

[r-fork] Then P = ti : fork{P1}P2,P ′′ and P ′ = ti : P1, s : P2,P ′′ and H′ = H.

From [t-fork] we deduce that Γi = Γi1 | Γi2 and Γik ` Pik for k = 1, 2 and
iszero(Γi1) and {Γi1, Γi2} is acyclic. From iszero(Γi1) and the fact that s is a new

20 Cosimo Laneve and Luca Padovani

thread identifier we deduce that all objects owned by ti before the reduction are
still owned by ti after the reduction and that all objects not owned by ti before
the reduction are not owned by s after the reduction. This suffices to deduce

that the last two premises of [t-state] hold. We conclude by taking Γ ′
def
= Γ and

observing that {Γi1, Γi2} ∪ {Γk}k∈I\{i} is acyclic by Proposition 1.

[r-new] Then P = ti : new x in Q,P ′′ and P ′ = ti : Q,P ′′ and H′ = H, x : •, 0 for

some i ∈ I. From [t-new] we deduce that there exists U such that Γi, x : 0 ·U ` P
and rel(0 ·U). Take Γ ′i

def
= Γi, x : 0 ·U and Γ ′k

def
= Γi, x : 0 ·0 for every k ∈ I \{i} and

Γ ′
def
=
∏
i∈I Γ

′
i . We conclude by observing that Γ Γ ′ and that {Γ ′k}k∈I is acyclic.

[r-call] Then P = ti : A(e),P ′′ and P ′ = ti : Q{v/x},P ′′, where JeK = v

and H′ = H and A(x) = Q ∈ D. From [t-state] and [t-call] we deduce that
Γi = Γ ′i , A : [T] and Γ ′i ` e : T. From the assumed type preservation property
of well-typed expressions we deduce Γ ′i ` v : T. From the hypothesis that the
program is well typed we dedice that Γ = Γ0 | Γ1 and Γ0, x : T ` Q. From

Lemma 2 we deduce Γ0 | Γi ` Q{v/x}. We conclude by taking Γ ′
def
= Γ . ut

B.2 Soundness

Theorem 2 (soundness). If Γ ` H
 P and H
 P X−→D, then P = ∅ and all
the objects in H are unlocked.

Proof. Let H = {yj : sj , nj}j∈J and P = {ti : Qi}i∈I . From [t-state] we deduce
that Γ =

∏
i∈I Γi and Γi ` Qi for all i ∈ I and there exist Uj such that Γ(yj) = nj ·

Uj for all j ∈ J . Also, {Γi}i∈I is acyclic. Using the hypotheses Γ ` H
 P : ` and
H
 P X−→D and the assumption that every process name has a corresponding
declaration in D we deduce that Qi = πi.Pi for every i ∈ I, where πi is a
synchronization primitive concerning some lock xi.

From the hypothesis thatH
 P is well typed we deduce that all the processes
in P are closed, hence for every i ∈ I there exists j ∈ J such that yj = xi. Let
η : I → J be the map such that yη(i) = xi for every i ∈ I.

Using once again the hypothesis that H
 P X−→D we can make the following
deductions:

1. if πi = acq(xi), then sη(i) 6∈ {•, ti} or else H
 P would reduce using either
[r-acq-1] or [r-acq-2];

2. if πi = wait(xi), then sη(i) 6= ti or else H
 P would reduce using [r-wait];
3. if πi = rel(xi), then sη(i) 6= ti or else H
 P would reduce using either [r-rel-1]

or [r-rel-2];
4. if πi = notify(xi), then sη(i) 6= ti or else H
 P would reduce using [r-nfy-2].

From these deductions and the hypothesis that H
 P is well typed we can
further rule out the possibility that any prefix is wait(xi) or rel(xi) or notify(xi),
because the type system allows these operations only when the thread performing
them owns the corresponding lock xi. In summary, each πi has either the form
acq(xi) or the form wait(xi, n). Also, we may deduce xi ∈ live(Γi) because the
process ti is performing an action on xi.

Deadlock Analysis of Wait-Notify Coordination 21

Now we show that, by starting from the assumption that I 6= ∅, it is possible
to find a cycle in {Γi}i∈I . This, of course, contradicts the hypothesis that {Γi}i∈I
is acyclic and therefore the assumption I 6= ∅. To build the cycle, it suffices to
show that for every i ∈ I there exists k ∈ I \{i} such that xi ∈ live(Γi)∩ live(Γk)
and xk 6= xi, bearing in mind that I is finite.

We discuss three sub-cases, in which j
def
= η(i):

– If πi = acq(xi), then xi is owned by a process sj 6= ti. Take k ∈ I such
that tk = sj and observe that k 6= i. From rel(Γ(xi)) we know that tk
must eventually perform an action rel(xi) or wait(xi), hence xi ∈ live(Γk).
Furthermore, the process tk must be blocked on a prefix πk concerning an
object xk different from xi, hence xi 6= xk.

– If πi = wait(xi) and xi is owned by a process sj 6= ti, then we can reason as
in the previous case to find the xk with the desired properties.

– If πi = wait(xi) and xi is not owned by any process, then from [t-waiting]

and rel(Γ(xi)) we deduce that Γ(xi) = nj · U and U ≡ wait .U1 | U2 and
nj ·U2 ∗ m ·notify .U3 | U4. Hence there is (at least) another thread tk 6= ti
owning a reference to xi such that Γk(xi) contains the subterm notify .U3 not
guarded by a wait , therefore xi ∈ live(Γk). We conclude observing that the
process tk must be blocked on a prefix πk concerning an object xk different
from xi, because xi is free.

The above arguments suffice to establish that P = ∅. All that remains to
prove is that all the objects in H are unlocked. From [t-state] we deduce Γ(yj) =
nj · 0 for all j ∈ J . Then, from rel(nj · 0), we deduce nj = 0. From [t-state] we
conclude sj = •. ut

C Partial Decidability of Reliability

In this appendix we demonstrate that the predicate rel(n,U) is partially decid-
able. To this aim, we encode usages in a variant of Petri nets using inhibitor arcs
and we reduce reliability to the reachability predicate in this class of nets [2].
Below we briefly recall the definition of Petri nets with inhibitor arcs and the
definition of execution of a transition. Busi [2] gives all the details.

Definition 7. A Petri net with inhibitor arcs is a tuple N = (S, T, F, I), where

– S and T are finite sets of places and transitions such that S ∩T = ∅; places
and transitions are denoted by circles and boxes, respectively, in Figure 2;

– F : (S × T) ∪ (T × S) → N is the flow function (N is the set of natural
numbers);

– I ⊆ S × T is the inhibiting relation; inhibitor arcs are drawn in red in
Figure 2.

A multiset over the set S of places is called a marking and noted bym,m′,
That is, markings are maps S → N. Given a marking m and a place s, we
say that the place s contains m(s) tokens. The preset of a transition t, noted

22 Cosimo Laneve and Luca Padovani

•t, is the marking such that •t(s) = F (s, t) and represents the tokens to be
“consumed”; the postset of t, noted t•, is the marking such that t•(s) = F (t, s)
and represents the tokens to be “produced”. The inhibitor set of a transition t
is the set ◦t = {s ∈ S | (s, t) ∈ I} and represents the places to be “tested for
absence” of tokens.

A transition t is enabled at m if •t ⊆ m and dom(m)∩◦t = ∅. The execution
of a transition t enabled at m produces the marking m′ = (m \ •t)] t•. This is
written as m[t〉m′.

In order to verify the reliability predicate for types n ·U we will encode these
pairs into Petri nets (with inhibitor arcs) and define a correspondence between
the reduction and the transitions of Petri nets. Actually, we may simplify our
arguments. First, we notice that the rules [u-acq-2] and [u-rel-2] of Table 4 are not
relevant for reliability. This follows by the following proposition.

Proposition 2. Let [n] be 0 if n = 0 and be 1 if n > 0. Then n · U ∗ n′ · U ′
if and only if [n] · U ∗ [n′] · U ′.

Then, we also notice that, in the typing rules for user syntax, reliability is
always checked for pairs 0 · U where U never contains the waiting prefix (this
prefix is produced by the relation – rule [u-wait] – and will have a counterpart
in the Petri net).

Because of the foregoing remarks, we encode a usage U (without any counter)
in a Petri net with inhibitor arcs. The definition of the function PN(U) is reported
in Figure 2. We use three special places, that are called x, wx and nx. These places
are dotted in the figure. Their meaning is as follows:

– if m(x) ≥ 0 then the object x is unlocked, otherwise (m(x) = 0) it is locked;

– m(wx) specifies the number of usages waiting to be notified;

– m(nx) specifies the number of notifications that will awake waiting usages.

The map PN(U) returns a net with an “initial place”, which is the topmost one in
every net. We compose nets by connecting these initial places. Below we discuss
the interesting encodings:

– PN(acq .U) is encoded by a net where a token is put into the initial place of
PN(U) if x is unlocked, e.g. the place x contains a token; no one else can lock
x if PN(U) does not release the lock (the place x always contains at most one
token);

– PN(rel .U) is encoded by a net where a token is put into the x place – e.g. x
is unlocked – that PN(U) is triggered;

– PN(wait .U) is encoded by a net whose first transition releases the lock of
x, puts a token into the place wx and puts a token into a place expressing
that the thread is waiting to be notified – this place models the waiting
prefix. When the notification arrives – e.g. nx contains a token – then the
net transits into a place waiting for acquiring the lock of x – that corresponds
to the acq prefix. When the lock has been acquired then PN(U) can start;

Deadlock Analysis of Wait-Notify Coordination 23

PN(U + U’) =

PN(acq. U) =

PN(wait. U) =

PN(notify. U) =

PN(0)=

PN(U | U’) =

PN(rel. U) =

PN(U) PN(U’) PN(U) PN(U’)

PN(U)

x

PN(U)

x

PN(U)

x

wx

nx

PN(U)

wx

nx

PN(!) =

PN(! !. U) =

!

PN(U) ∉!

PN(U + U’) =

PN(acq. U) =

PN(wait. U) =

PN(notify. U) =

PN(0)=

PN(U | U’) =

PN(rel. U) =

PN(U) PN(U’) PN(U) PN(U’)

PN(U)

x

PN(U)

x

PN(U)

x

wx

nx

PN(U)

wx

nx

PN(!) =

PN(! !. U) =

!

PN(U) ∉!

Fig. 2. The encoding of usages in Petri nets with inhibitor arcs.

– PN(notify .U) is encoded by a net using an inhibitor arc. This arc is used for
separating the two cases of notifications awaking a waiting thread and of
notifications that are skipped because there is no waiting thread. Therefore,
if the place wx is empty then (inhibitor arc) PN(U) starts and the notification
is lost; otherwise a token in nx is put and PN(U) starts;

– PN(µα.U) is defined by taking PN(U) and adding a transition from any place
labelled α to a place that triggers the initial place of PN(U).

The initial marking of PN(U) has a token in the initial place of the net and
a token in the place labelled x. With this setup, the proof that rel(n · U) is
partially decidable is analogous to the corresponding one in [12].

D Extension

Below we discuss the extension of our system to an additional coordination
primitive that is present in Java. The primitive is notifyAll() that awakes all
the waiting threads. The formal account of this primitive consists of extending
prefixes π in Section 2 with the action notifyAll() and the operational semantics

24 Cosimo Laneve and Luca Padovani

with the rules (I is finite, possibly empty):

[R-NfyAll]

x : t, n+ 1

∏
i∈I ti : wait(x, ni).Pi, t : notifyAll(x).Q,P

−→D x : t, n+ 1

∏
i∈I ti : acq(x)ni .Pi, t : Q,P if wait(x) /∈ P

Notice that, since I may be empty, notifyAll(x) is ephemeral, similarly to notify(x).
Correspondingly, usage prefixes are extended with notifyAll whose reductions are

[U-NfyAll]

wf(V)

n+ 1,
∏
i∈I waiting .Ui | notifyAll .U | V n+ 1,

∏
i∈I acq .Ui | U | V

To account for the new notifyAll prefix, Definition 4 of reliability is extended as
follows: T is reliable, written rel(T), whenever the following two conditions hold:

1. if T ∗ n · acq .U | V then n · V ∗ 0 · V ′, for some V ′, and
2. if T ∗ 0 · waiting .U | V , 0 · V ∗ n · κ.V ′ | V ′′ for some n, V ′, V ′′ and
κ ∈ {notify ,notifyAll}.

Finally, we extend PN() to notifyAll so that

PN(notifyALL(x). U)=

PN(U)

wx

nx

and it is now possible to demonstrate that the predicate rel(T) is partially de-
cidable as in the basic case without notifyAll().

