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Abstract—The Clock Constraint Specification Language
(CCSL) is a logical time based modeling language to formalize
timing behaviors of real-time and embedded systems. However,
it cannot capture timing behaviors that contain uncertainties,
e.g., uncertainty in execution time and period. This limits the
application of the language to real-world systems, as uncertainty
often exists in practice due to both internal and external factors.
To capture uncertainties in timing behaviors, in this paper
we extend CCSL by introducing parameters into constraints.
We then propose an approach to transform parametric CCSL
constraints into SMT formulas for efficient verification. We apply
our approach to an industrial case which is proposed as the
FMTV (Formal Methods for Timing Verification) Challenge in
2015, which shows that timing behaviors with uncertainties can
be effectively modeled and verified using the parametric CCSL.

Index Terms—Uncertainty, timing behavior, logical time, para-
metric CCSL, SMT

I. Introduction

Model-based design has achieved industrial success in de-
veloping safety-critical real-time and embedded systems. It
introduces formal and abstract approaches to capture unam-
biguously the requirement and design of systems and guar-
antees correct refinement down to implementation. MARTE(a
UML Profile for Modeling and Analysis of Real-Time and
Embedded systems) [1] is such a approach for the specifi-
cation, design, and verification/validation stages of real-time
and embedded systems, and attracting considerable interest
from both academia and industry. The Clock Constraint Spec-
ification Language (CCSL) [2] is a companion language of
MARTE, dedicated to model timing behaviors of systems
using logical time constraints. Several sophisticated tools have
been developed for formal verification of the language [3], [4].

Although logical time and multiform time bases in CCSL
offer some flexibility to unify functional requirements and
performance constraints, there is a limitation making the
language hardly applicable to real-world systems. That is,
CCSL cannot capture the timing behaviors that contain un-
certainties despite the fact that uncertainty usually exists in
realistic real-time and embedded systems [5]. In particular,
uncertainty in time is common due to variable execution times
caused by complex off-the-shelf processors (COTS) [6] and
uncertain response times caused by complex interactions of
an unpredictable environment. A task may also be affected
by various uncertain factors, such as wind speed, temperature,
light intensity, leading to different execution times.

To mitigate the situation, in this work we explore how to
capture uncertainties in timing behaviors in a flexible way

using logical time. In particular, we consider four common
timing uncertainties in execution time, period, jitter and drift.
Jitter and drift are the deviations from true periodicity of a
presumably periodic signal. The deviations will be corrected
before the next execution in the jitter, but accumulate for all
next executions in the drift. To capture the four uncertainties,
we extend the CCSL by introducing parameters into con-
straints. The parameters are integer variables in some intervals.
A constraint with parameters represents a timing behavior with
some uncertainty. We call the extension Parametric CCSL.

We then propose an approach to encode parametric CCSL
into SMT formulas for efficient verification. Thanks to state-
of-the-art SMT solvers such as Z3 [7], encoded SMT formulas
can be efficiently solved. A recent work has shown that SMT
is efficient for various verifications of CCSL, e.g., scheduling
analysis and LTL model checking[4]. By encoding parametric
CCSL constraints into SMT formulas, we show that SMT is
also applicable to the verification of parametric CCSL.

To demonstrate the effectiveness of the proposed approach
in modeling and verifying uncertainty-aware timing behavior
systems, we conduct two case studies, including an industrial
example which was proposed by Thales in 2015 as the For-
mal Methods for Timing Verification (FMTV) challenge [8],
which is an aerial video tracking system used in intelligence,
surveillance, reconnaissance, tactical and security applications,
characterized by strict and less strict constraints on timing.

Our work compares to the most common attempts to use
generic formalisms like parametric time automata [9] or para-
metric process algebras [10] to model timing behaviors with
uncertainty, but advocates for the use of logical clocks as
a complement to real-valued clocks. We take full advantage
of CCSL in modeling, such as the flexibility provided by
logical time, multi-form time bases, unified expressing of both
functional requirements and extra performance constraints.

In summary, the contributions of this paper include:
1) Extension of CCSL with parameters to support modeling

uncertainty-aware timing behaviors and encoding of para-
metric CCSL constraints into SMT formulas.

2) Application of the approach to the FMTV 2015 challenge
in modeling and verifying an aerial video tracking system.

The rest of this paper is organized as follows. Section II
introduces four typical timing uncertainties considered in this
work. Section III presents CCSL, its parametric extension and
the encoding approach to SMT. Section IV presents two case
studies. Section V finally concludes the work.



II. Uncertainties in Timing Behaviors

In this work, we only focus on four kinds of uncertainties
that commonly occur in timing behaviors, i.e., uncertainties in
execution time, period, drift and jitter.

1) Uncertainty in execution time: The execution time of a
timing behavior is usually uncertain due to various internal
and external factors such as the execution speed of a CPU is
affected by the temperature. Therefore, the execution time of
a timing behavior is usually represented by two arguments,
which are the best and worst execution times. We use l and
u to denote the two arguments, respectively. A value in the
interval [l, u] is considered a valid execution of the behavior.

2) Uncertainty of period: Like execution time, the period
of periodic timing behaviors may be uncertain. For instance, in
the initial design of an embedded system, the period of a task
may not be fixed. Designers may assume a lower bound and
an upper bound for the period. It is desired to formalize such
uncertainty in the design and to determine a feasible value for
the period of the task during verification of the design.

For a timing behavior with a fixed period, there may be un-
certainties due to the physical nature of devices. For instance,
designers always use voltage transitions to capture timing
information, and convert the analog signal into the digital
domain for digital signal processing (DSP) [11]. However, in
practice there is always a small variation of the timing signal’s
rising and falling edges, which makes the timing information
not as accurate as we expect in the ideal case. The arrival
time of a periodic task may drift away, compared with the ideal
arrival time. There are two basic kinds of drifting uncertainties
called drift and jitter, explained below.

3) Uncertainty of drift: In the case of drift, the drifting of
a periodic behavior accumulates for all future execution. More
precisely, a task with a period p and drift d can execute every
xi time units for the ith execution, where xi ∈ [p − d, p + d].

4) Uncertainty of jitter: In the case of jitter, the drifting of
a periodic behavior must be corrected in the next execution.
Assume that there is a task S with period p and jitter d. Task S
can have its ith execution no more than d time units before or
after the time of S ’s ideal ith execution when no jitter occurs.

Fig. 1: The example of periodicity, jitter and drift
Figure 1 depicts the differences of a fixed period, jitter and

drift. As for the task with jitter, it can only start before or after
d time units around the dashed line, which shows the starting
point of each period when the task is strictly periodic.

III. CCSL and its Parametric Extension

In this section, we first briefly introduce CCSL, and then
extend to parametric one to formalize the four kinds of timing

TABLE I: The syntax and semantics of core CCSL

Constraint: φ Semantics: {δ | δ |= φ} Name
a [d] ≺ b ∀n ∈ N+.(Hδ(b, n) − Hδ(a, n) = d)⇒ (b < δ(n)) Precedence
a 4 b ∀n ∈ N+.Hδ(a, n) ≥ Hδ(b, n) Causality
a ⊆ b ∀n ∈ N+.(a ∈ δ(n))⇒ (b ∈ δ(n)) Subclock
a # b ∀n ∈ N+.(a < δ(n)) ∨ (b < δ(n)) Exclusion
a , b + c ∀n ∈ N+.(a ∈ δ(n))⇔ (b ∈ δ(n) ∨ c ∈ δ(n)) Union
a , b ∗ c ∀n ∈ N+.(a ∈ δ(n))⇔ (b ∈ δ(n)) ∧ (c ∈ δ(n)) Intersection
a , b ∧ c ∀n ∈ N+.Hδ(a, n) = max(Hδ(b, n),Hδ(c, n)) Infimum
a , b ∨ c ∀n ∈ N+.Hδ(a, n) = min(Hδ(b, n),Hδ(c, n)) Supremum
a , b $ d ∀n ∈ N+.Hδ(a, n) = max(Hδ(b, n) − d, 0) Delay

a , b $ d on c ∀n ∈ N+.(a ∈ δ(n))⇔ (c ∈ δ(n) ∧ ∃m ∈ N+·

(b ∈ δ(m) ∧ H′δ(c, n,m) = d)) DelayFor

a , b ∝ p ∀n ∈ N+.(a ∈ δ(n))⇔ (b ∈ δ(n) ∧ (Hδ(b, n) + 1)
mod p = 0) Periodicity

uncertainties. We also propose an encoding approach from
parametric CCSL constraints into SMT formulas.

A. The Core CCSL
In CCSL, a timing behavior (e.g., a task sending/receiving

a data, writing in a memory) is formalized by a set of logical
clocks. A logic clock has two actions, i.e., tick and idle. Tick
means the corresponding behavior is occurring, and idle means
not. Logical clocks are controlled by a scheduler to tick or idle.

Definition 1 (Logical clock): A logical clock c is an infinite
sequence (ci)i∈N+ , where each ci can be tick or idle.

As Lamport has pointed out, any countable set can be used
to measure the passing of time [12]. Natural numbers are used
in CCSL. Similarly to synchronous languages [13], logical
clocks are comparable using a synchronous schedule.

Definition 2 (Schedule): Given a set C of clocks, a schedule
on C is a function δ : N+ → 2|C| and ∀i ∈ N+.δ(i) , ∅.
Intuitively, δ(i) ⊆ C is the set of clocks that tick at step i, and
i is called the step or the instant in synchronous terminology.
Furthermore, empty steps will be excluded from the schedule
because they do not affect logical relations on clocks.

To measure time one needs to count the number of ticks of
a given clock taken as reference. Contrary to physical models
that use a single global reference, logical clocks use histories
to define the relations of clocks. Each clock has a memory to
record the number of ticks.

Definition 3 (History): Given a schedule δ : N+ → 2|C| on a
set C of clocks, a history of δ is a function Hδ : C × N+ → N
such that for each clock c ∈ C and natural number i ∈ N+:

Hδ(c, i) =


0 i f i = 1
Hδ(c, i − 1) i f i > 1 ∧ c < δ(i − 1)
Hδ(c, i − 1) + 1 i f i > 1 ∧ c ∈ δ(i − 1)

For simplicity, we also write H′δ(c, i, j) for Hδ(c, j) − Hδ(c, i)
to denote the number of ticks of clock c from step i to j.
Furthermore, Hδ(c, i) and H

′

δ(c, i, j) may be written as H(c, i)
and H

′

(c, i, j) for the sake of simplicity in the context.
There are two classes of CCSL constraints. One is the class

of binary relations, including Precedence, Causality, Subclock,
Exclusion. The other is the class of clock definitions, including
Union, Intersection, Infimum, Supremum, Delay, DelayFor and
Periodicity. Table I gives the syntax and semantics of CCSL
constraints formally. We omit explanation of these constraints
due to page limit. Readers can refer to [14] for more intuitive
explanation of the constraints.



B. Parametric extension of CCSL

Given a schedule δ, we define a lookup function S δ : C ×
N+ → N+ such that S δ(c, i) returns the step where c has its ith

tick according to δ.
Definition 4 (Lookup function): Given a schedule δ on a set

C of clocks, let S δ : C × N+ → N+ be a function such that
for each clock c ∈ C and natural number i ∈ N+:

S δ(c, i) = j such that c ∈ δ( j) ∧ Hδ(c, j) = i − 1
We also write S (c, i) for the sake of simplicity in the context.

1) Relative Periodicity: The definition of original Period-
icity constraint c1 , c2 ∝ p means that c1 must tick whenever
every p ticks of the reference clock c2 from the first tick of
c2. The constraint is sometimes too strict because in some
situations c1 may start to tick periodically with c2 after c2
makes some k (k > 0) ticks. We call it a relative periodicity
and k the offset of the periodicity. A relative periodicity with
an unknown offset is defined in the form of b , a n p.

Definition 5 (Relative Periodicity): A schedule δ satisfies a
relatively periodic constraint b , a n p if there exists a natural
number k such that (∀n ∈ N+.a ∈ δ(n)⇔ b ∈ δ(n)∧ (H(b, n) +

k + 1) mod p = 0) holds.
Apparently, strict periodicity is a special case of relative

periodicity when k = 0.
2) Parametric Periodicity and DelayFor: The original con-

straints Periodicity and DelayFor require fixed values as period
and delayed steps. Such information may not be available in
practice, particularly at early stage e.g., requirement analysis
and system design. Therefore, we extend the constraints by
allowing constrained parameters as period and delayed steps to
make them more flexible. We call them parametric Periodicity
and parametric DelayFor, and denote as b , a n p∧ p ∈ [l, u]
and c , a $ d on b ∧ d ∈ [l, u], where a, b, c are clocks; p, d
are integer variables; and l, u (l < u) are two natural numbers
representing the lower and upper bounds of p, d.

Definition 6 (Parametric Periodicity): A schedule δ satisfies
the parametric Periodicity (b , a n p ∧ p ∈ [l, u]) if there
exists a natural number k such that (∀n ∈ N+.a ∈ δ(n) ⇔ b ∈
δ(n) ∧ (H(b, n) + k + 1) mod p = 0) ∧ (l ≤ p ≤ u) holds.

Definition 7 (Parametric DelayFor): A schedule δ satisfies
parameteric DelayFor c , a $ d on b ∧ d ∈ [l, u] if (∀n ∈
N+.c ∈ δ(n)) ⇔ (∃m ∈ N+.b ∈ δ(n) ∧ a ∈ δ(m) ∧ H′(b,m, n) =

d ∧ l ≤ d ≤ u) holds.
Parametric Periodicity and Parametric DelayFor can be used

to capture the uncertainty of periodicity and execution time.
For example, a task T with unfixed execution time of [2, 4]ms
can be captured as T f , Ts $ d on ms ∧ d ∈ [2, 4], where ms
is a clock ticking for every 1 millisecond, and Ts and T f are
the start and end of task T . Thus for every execution of task
T can take a time of no more than 4 and no less than 2 ms.

3) Periodicity with jitter and drift: Next, we consider
formalizing a periodic behavior with jitter and drift. We
assume that a behavior has a fixed period p and its jitter is
d. Then, the nth execution of the behavior is in the range of
[n × p − d, n × p + d] according to the meaning of jitter, as
explained in Section II. To be general, we consider a behavior

a occurs periodically with b with period p and a jitter d,
denoted by a , b ∝ p ± d.

Definition 8 (Periodicity with Jitter): A schedule δ satisfies
a , b ∝ p ± d if the following two conditions hold:
∀n ∈ N+.H′(b, S (a, 1), S (a, n + 1)) ≥ n × p − d∧

H′(b, S (a, 1), S (a, n + 1)) ≤ n × p + d) (1)
∀n ∈ N+.(H(b, n) mod p = 0)⇒ H′(a, S (b,H(b, n) − d),

S (b,H(b, n) + d)) = 1 (2)
Condition 1 means that the number of b’s ticks from the time
when a makes its first tick to the one when it makes the (n+1)th

one must be in the range of [n × p − d, n × p + d]. Condition
2 means that if the history of b is divisible by p at step n,
a must tick once and only once between the steps where b
makes its (H(b, n) + p − d)th and (H(b, n) + p + d)th tick.

Physical jitter is a concrete logic example when b is an ideal
clock that ticks according to an external physical reference
clock, e.g., the clock msec that ticks for every 1 milliseconds.

Like jitter, periodicity with drift can be formalized in a
similar way. We use a , b ./ p ± d to represent that clock a
periodically ticks with clock b with period p and drift d.

Definition 9 (Periodicity with drift): A schedule δ satisfies
a , b ./ p ± d the following two conditions hold:

∀n ∈ N+.H
′

(b, S (a, n), S (a, n + 1)) ≥ p − d∧

H
′

(b, S (a, n), S (a, n + 1)) ≤ p + d) (3)

∀n ∈ N+.a ∈ δ(n)⇒ H
′

(a, S (b,H(b, n) + p − d),
S (b,H(b, n) + p + d)) = 1. (4)

Condition 3 means that the number of ticks of b between two
consecutive ticks of a must be in the range of [p − d, p +

d]. Condition 4 means that a must tick once and only once
between the steps where b makes its (H(b, n) + p − d)th and
(H(b, n) + p + d)th ticks.

We can use Periodicity with jitter and Periodicity with drift
to capture the uncertainty of jitter and drift. For instance, a
task T with period 5ms and drift 1ms can be represented as
Ts , ms ./ 5 ± 1, where Ts represents the start of task T , and
clock ms is defined ticking for every 1 millisecond. Thus, task
T can make a new instance for every 4, 5, or 6 milliseconds.

C. SMT-Based Formal Verification of Parametric CCSL
1) Formal verification of parametric CCSL: Original CCSL

constraints are verified for multiple purposes, such as schedu-
lability analysis, and trace analysis [4]. Among them schedu-
lability analysis is the most important one, which checks
whether there exists or not a schedule satisfying all given
constraints. If unschedulable, it means that there are inconsis-
tencies in the constraints. The consistency might come from
requirements or design of system and should be fixed.

Earlier work [2] has shown SMT is one of the most efficient
approaches to the verification of CCSL. By encoding CCSL
constraints into SMT formulas, one can make use of the
state-of-the-art SMT solvers such as Z3 to solve the encoded
formulas. Despite the fact that not all encoded SMT formulas
can be efficiently solved in the domain of all natural numbers,
the bounded verification result is still useful to find bounded or
periodic schedules and to detect inconsistencies in constraints.



In this paper we only focus on the schedulability analysis
of parametric CCSL, but we believe other applications can
be easily achieved in the similar way in original CCSL. Like
original CCSL, parametric CCSL needs to encode into SMT
formulas for schedulability analysis. That can be achieved
based on the encoding approach of original CCSL constraints.

2) Encoding parametric CCSL into SMT formulas: For
each logical clock, we declare a clock predicate tc : N+ →

Bool, where Bool is the set of Boolean values. A schedule δ :
N+ → 2C for a set C of clocks can be equivalently defined by
a set TC of clock predicates as ∀i ∈ N+∀c ∈ C.c ∈ δ(i)⇔ tc(i).

The history function of a clock can be defined over clock
predicate. Let hc : N+ → N be a history function for clock c.

hc(i) =


0 if i = 1
hc(i − 1) if i > 1 ∧ ¬tc(i − 1)
hc(i − 1) + 1 if i > 1 ∧ tc(i − 1)

where i ∈ N+. We write h
′

c(i, j) to represent hc( j) − hc(i).
Likewise, we can define another function sc : N+ → N over

tc and hc for the lookup function of each clock c.
∀i ∈ N+.sc(i) = j ⇔ tc( j) ∧ hc( j) = i − 1.

Then, parametric CCSL constraints can be straightforwardly
transformed into SMT formulas by replacing c ∈ δ(n) (resp.
c < δ(n)) with tc(n) (resp. ¬tc(n)), Hδ(c, n) with hc(n) and
S δ(c, n) with sc(n). For instance, a Parametric DelayFor con-
straint is transformed into the following SMT formula:
∀n ∈ N+.tc(n)⇔ ∃m ∈ N+.tb(n)∧ta(m)∧h

′

b(m, n) = d∧l ≤ d ≤ u.

Other parametric constraints can be encoded likewise. We omit
the details due to space limit.

IV. Case Study

We present two case studies to show how timing behaviors
with uncertainty are modeled and verified by parametric CCSL
constraints. Experimental results are also presented to evaluate
the verification performance.

A. Case Study 1: The Simple Producer-consumer Problem

The producer-consumer problem is known as a bounded
buffer problem, where the producer and the consumer, share a
common, fixed-size buffer used as a queue. The producer can
put generated data into the non-full buffer, and the consumer
can consume data from the non-empty buffer.

4T1 :

p1, b1, w1

T2 :

p2, b2, w2

Fig. 2: A producer-consumer problem

Figure 2 shows producer-consumer problem using a buffer
with size 4. T1 (the producer) and T2 (the consumer) are two
periodic tasks with the release period of those two tasks are in
interval [8, 14] and [10, 16]. The best and worst case execution
times of T1 (resp. T2) are 8 (resp. 8) and 10 (resp. 12).

Next, we explain how to specify the problem using paramet-
ric CCSL. For every task T , clocks Ts and T f are used to repre-
sent the start and finish of T . Apparently, the two clocks satisfy
the constraint Ts ≺ T f . The constraint T f [1] ≺ Ts means only

TABLE II: A solution to the parameters in the constraints

Para Rang Solution
1 2 3 4 5 6 7 8 9

p_p1 [4,7] 5 5 5 5 6 6 6 7 7
p_p2 [5,8] 5 6 7 8 6 7 8 7 8

one task instance can be executing simultaneously. The buffer
with size n can be captured by constraint con [n] ≺ pro, where
clocks con and pro represent the consumer and producer. The
constraints for the problem are defined below:

T1 f 4 T2s T2 f [4] ≺ T1s

T1s , msec n p_p1 p_p1 ∈ [4, 7]
T2s , msec n p_p2 p_p2 ∈ [5, 8]
T1 f , T1s $ p_p3 on msec p_p3 ∈ [4, 5]
T2 f , T2s $ p_p4 on msec p_p4 ∈ [4, 6]

It is worth mentioning that the numbers in the constraints
are obtained by dividing the real numbers in the problem by
2, which is the common divisor of these real numbers. As
what we has defined in Definition 6, the periodicity of one
schedule must be one constant value in an interval. We can
do this because we are using logical time. To be specific,
we introduce a reference clock called msec in the constraints
and assume it ticks once every two time units. Thus four
parameters p_p1, p_p2, p_p3 and p_p4 can be defined to
represent the Parametric Periodicity and Parametric DelayFor,
and they should satisfy some constraints, i.e., p_p1 ∈ [4, 7].

We encode the constraints into SMT formulas and use the
SMT solver Z3 to solve them. Z3 times out when trying to find
a schedule with infinite steps. Then, we consider the schedule
within the first 30 steps. Z3 returns a schedule. Table II shows
all the solutions of the parameters in the constraints.

Fig. 3: A schedule of the model with p_p1 = 7, p_p2 = 8

Figure 3 displays a schedule with bound 30, and the periods
of task T1 and T2 are p_p1 = 7 and p_p1 = 8, which satisfy
p_p1 ∈ [4, 7] and p_p2 ∈ [5, 8]. Furthermore, the number of
ticks between the first, second and third ticks of clock T1 s
and T1 f are 4, 5 and 5, respectively. They are in the range of
[4, 5], and consequently satisfy the best and worst execution
time constraints. It can be easily proved that all the other
constraints are satisfied. The dashed arrows in the figure show
one possible the execution sequence of T1 and T2 under the
constraints, i.e., T1 s → T1 f → T2 s → T2 f .
B. Case Study 2: The FMTV Challenge

The FMTV 2015 challenge [8] consists of two subsystems,
i.e., a video frame processing subsystem and a tracking &
camera control subsystem.
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Fig. 4: Two subsystems in the FMTV 2015 Challenge

1) Aerial Video Frame Processing Subsystem: The first
challenge is a non-trivial scheduling problem in the aerial
video frame processing system. In the system, there is a video
frame processing chain to compute the timing latency for
the frame processing and the timing distance separating two
consecutive frame losses. Figure 4a shows the whole process.

The process can be formalized as the following four tasks.
1) Pre-processing (T1): In this task, the frames are sent from

the camera with a period 40ms ± 0.01%. Triggered by the
arrival of a frame, it will take 28ms to produce a new frame.

2) Processing (T2): The task takes the frame generated by task
T1 as input. The min (max) execution time is 17ms (19ms).
When finishing, a new frame is stored into the register.

3) Filtering (T3): This task is activated with a period of
40
3 ± 0.05% ms, and the execution time is 8 ms. In the

end, a new frame is stored in the buffer.
4) D/A converting (T4): This task is also activated with a

periodicity of 40 ± 0.01% ms. It takes 10 ms with a non-
empty buffer, and at the end, a new frame will be displayed
on the monitor, 1ms otherwise and without new frame.
As an example, we only explain in the paper how task T4

is defined using parametric CCSL. The other three tasks can
be defined likewise and we omit their definition details.

T4 s , T4 s1 + T4 s2 T4 s1 # T4 s2

T4 f , T4 f 1 + T4 f 2 T4 f 1 # T4 f 2

T4 f 1 , T4 s1 $ 1 on msec T4 f 2 , T4 s2 $ 3 on msec

T4 s , msec ./ 5 ± 1
From aforementioned, task T4 is affected by the status of the

buffer. We declare four logical clocks T4 s1, T4 s2 and T4 f 1, T4 f 2
to capture the start and end of the task in two conditions, i.e.,
the buffer is empty or nonempty. Because the buffer cannot
be empty and nonempty simultaneously, the clocks must be
exclusive, i.e., T4 s1 # T4 s2 and T4 f 1 # T4 f 2. Furthermore, T4’s
period(40 ± 0.01%) can be modeled as periodicity of drift,
denoted by T4 s , msec ./ 5 ± 1.

T1 f ≡ T2 s T2 f ≡ T3 s1 (7a)
T4 s1 [3] ≺ T3 f 1 T3 f 1 ≺ T4 s1 (7b)

Task T2 and T3 are triggered by the arrival of the output
of tasks T1 and T2, and this synchronization pattern can be
captured as 7a. And 7b is used to formalize the buffer pattern
and the data dependency between tasks T3 and T4.

Fig. 5: A schedule of task T2, T3 and T4 under bound 30

We encode the constraints into SMT formulas and analyze
the satisfiability of the formulas using Z3. A schedule with
bound 30 in Figure 5 is studied to shows the behaviors of tasks
T2, T3 and T4.The history between the ith tick of clock T2 s
and T2 f is always 3, which satisfies the fixed execution time
constraint. When it comes to tasks T3 and T4, they are the same
as task T2. Then the history between the two consecutive ticks
of T4 s are 5, 4, 4, which satisfies the constraint periodicity drift.
Furthermore, an execution sequence T2 s → T2 f → T3 s →

T3 s1 → T3 f → T3 f 1 → T4 s → T4 s2 → T4 f → T4 f 2 as
shown by the dashed arrows in the figure depicts the execution
dependencies of the tasks T2,T3 and T4. It is a bounded
schedule which satisfies all the constraints.

2) Tracking and Camera Control Subsystem: For the cam-
era tracking subsystem, it identifies objects on the camera
images and commands the camera motors so to follow the
objects. This subsystem consists of 3 additional tasks: Task
T6 is a periodic task with period P6 = 100 and a certain drift
J6 = 4. Task T5 is activated by Task T6 with a synchronous



Fig. 6: A schedule of task T5, T6 and T7 under bound 40

call. Task T7 is activated synchronously by Task T6 and con-
trols the motors. Task T6 execution time is: C6,1 = 4ms before
invoking Task T5; C6,2 ∈ [13, 15] ms after the completion of
Task T5 and before the invocation of Task T7. Task T7 has an
execution time of C7 ∈ [11, 14] ms. Here, the clock msec are
defined to tick for every 4 ms.

T5 f 1 , T5 s1 $ 1 on msec T5 s1 , msec ./ 25 ± 1
T5 f 2 , T5 s2 $ p_p3 on msec p_p3 ∈ [3, 4]

For Task T5, we declare four clocks T5s1, T5 f 1,T5s2, and
T5 f 2 to capture the start and finish of the first and second
parts of the task. The clocks satisfy the constraints above.

Then, we transform the constraints into SMT formulas and
solve them using Z3. Z3 returns one solution with bound 40.
The schedule is shown in Figure 6. All the constraints can be
proved to be satisfied by the solution.

C. Performance Evaluation

We study the efficiency of solving the encoded SMT formu-
las in the two case studies. All the experiments were performed
on Linux Mint 19 Cinnamon running on Intel© Xeon© CPU
E5-1620 @3.60GHz×4 and 16GB memory. Table III shows
the time that is taken by Z3 to return a result under different
bound. One can see that there is an almost exponential increase
of time, which corresponds to the NP-completeness of the
scheduling problem of core CCSL [15]. Nevertheless, when
the bound is small e.g., 40, we can obtain a result within
reasonable time, which is still useful to analyze the constraints,
particularly to detect inconsistencies in them.

V. Conclusion and Discussion

We proposed an approach of extending CCSL with param-
eters and encoding the parametric CCSL into SMT formulas
to model and verify the uncertainty-aware timing behaviors of
embedded systems. Then we applied the approach to solving
an opening timing verification problem for the industrial user-
case proposed in the FMTV 2015 challenge.

Several approaches have been proposed to model uncer-
tainties in real-time systems, e.g., parametric timed automata
[16] and timed process algebra [10]. They rely on "physical-
by nature" timings. Systems are presented as synchronously
timed (a single global continuous time) and system events are
constrained by value relations between physical clocks.

We are not trying to provide a competing approach. Instead,
we make use of the flexibility of logical time and extend its

TABLE III: Execution time under different bound (s)

Bound Case Study 1 Case Study 2.1 Case Study 2.2
4/14/4 10/33/1 8/19/3

20 6.945 10.192 1.443
25 19.502 35.939 3.568
30 38.530 317.403 50.693
35 142.600 3024.993 114.717
40 420.606 43728.863 190.747
45 515.013 Time out 364.619
50 1557.640 Time out 910.096
55 1929.804 Time out 1485.992
60 4006.540 Time out 2118.655
65 8557.390 Time out 44257.193

1 The 4/14/4, 10/33/1 and 8/19/3 indicate the number of clocks,
constraints and parameters of each model, respectively.

expressiveness to cope with uncertainties. As the first step of
modeling uncertainties using logical time, this work illustrates
the possibility of linking physical time to logical time but
raises more research problems such as the relationship between
physical time models and logical time models. We believe that
this work would inspire more work on studying problems in
logical time scheduling using existing results of physical time
scheduling, and vice versa.
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