S. Fortunato, Community detection in graphs, Physics reports, vol.486, issue.3-5, pp.75-174, 2010.

E. Mossel, J. Neeman, and A. Sly, Belief propagation, robust reconstruction and optimal recovery of block models, Conference on Learning Theory, pp.356-370, 2014.

K. Rohe, S. Chatterjee, and B. Yu, Spectral clustering and the high-dimensional stochastic blockmodel, The Annals of Statistics, vol.39, issue.4, pp.1878-1915, 2011.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

L. Gulikers, M. Lelarge, and L. Massoulié, A spectral method for community detection in moderately sparse degree-corrected stochastic block models, Advances in Applied Probability, vol.49, issue.3, pp.686-721, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01258191

J. Lei and A. Rinaldo, Consistency of spectral clustering in stochastic block models, The Annals of Statistics, vol.43, issue.1, pp.215-237, 2015.

R. Rao-nadakuditi, E. J. Mark, and . Newman, Graph spectra and the detectability of community structure in networks, Physical review letters, vol.108, issue.18, p.188701, 2012.

A. Hafiz-tiomoko and R. Couillet, Random matrix improved community detection in heterogeneous networks, Signals, Systems and Computers, 2016 50th Asilomar Conference on, pp.1385-1389, 2016.

A. Saade, F. Krzakala, and L. Zdeborová, Spectral clustering of graphs with the bethe hessian, Advances in Neural Information Processing Systems, pp.406-414, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01140852

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly et al., Spectral redemption in clustering sparse networks, Proceedings of the National Academy of Sciences, vol.110, issue.52, pp.20935-20940, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01223434

C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs, Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pp.1347-1357, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226796

L. Massoulié, Community detection thresholds and the weak ramanujan property, Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pp.694-703, 2014.

E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model. Probability Theory and Related Fields, vol.162, pp.431-461, 2015.

A. Barabási and R. Albert, Emergence of scaling in random networks, science, vol.286, issue.5439, pp.509-512, 1999.

L. Gulikers, M. Lelarge, and L. Massoulié, Non-Backtracking Spectrum of Degree-Corrected Stochastic Block Models, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), vol.67, pp.1-44, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622719

L. Gulikers, M. Lelarge, and L. Massoulié, An impossibility result for reconstruction in the degree-corrected stochastic block model, The Annals of Applied Probability, vol.28, issue.5, pp.3002-3027, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01940494

B. Karrer, E. J. Mark, and . Newman, Stochastic blockmodels and community structure in networks, Physical review E, vol.83, issue.1, p.16107, 2011.

T. Qin and K. Rohe, Regularized spectral clustering under the degree-corrected stochastic blockmodel, Advances in Neural Information Processing Systems, pp.3120-3128, 2013.

M. Can, E. Le, R. Levina, and . Vershynin, Concentration and regularization of random graphs, Random Structures & Algorithms, vol.51, issue.3, pp.538-561, 2017.

A. Joseph and B. Yu, Impact of regularization on spectral clustering, 2013.

A. Dembo and A. Montanari, Gibbs measures and phase transitions on sparse random graphs, Brazilian Journal of Probability and Statistics, vol.24, issue.2, pp.137-211, 2010.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications, Physical Review E, vol.84, issue.6, p.66106, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00661643

A. Lada, N. Adamic, and . Glance, The political blogosphere and the 2004 us election: divided they blog, Proceedings of the 3rd international workshop on Link discovery, pp.36-43, 2005.

A. Terras, Zeta functions of graphs: a stroll through the garden, vol.128, 2010.

L. Zdeborová and F. Krzakala, Statistical physics of inference: Thresholds and algorithms, Advances in Physics, vol.65, issue.5, pp.453-552, 2016.

E. J. Mark, M. Newman, and . Girvan, Finding and evaluating community structure in networks, Physical review E, vol.69, issue.2, p.26113, 2004.

M. E. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.103, pp.8577-8582, 2006.

W. Wayne and . Zachary, An information flow model for conflict and fission in small groups, Journal of anthropological research, vol.33, issue.4, pp.452-473, 1977.

D. Lusseau, K. Schneider, J. Oliver, P. Boisseau, E. Haase et al., The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations, Behavioral Ecology and Sociobiology, vol.54, issue.4, pp.396-405, 2003.

M. Girvan, E. J. Mark, and . Newman, Community structure in social and biological networks, Proceedings of the national academy of sciences, vol.99, pp.7821-7826, 2002.

J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection, 2014.