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Abstract

A signed graph is a graph together with an assignment of signs to the edges. A closed
walk in a signed graph is said to be positive (negative) if it has an even (odd) number
of negative edges, counting repetition. Recognizing the signs of closed walks as one of
the key structural properties of a signed graph, we define a homomorphism of a signed
graph (G, σ) to a signed graph (H, π) to be a mapping of vertices and edges of G to
(respectively) vertices and edges of H which preserves incidence, adjacency and the signs
of closed walks.

In this work we first give a characterization of the sets of closed walks in a graph G
that correspond to the set of negative closed walks in some signed graph on G. We also
give an easy algorithm for the corresponding decision problem.

After verifying the equivalence between this definition and earlier ones, we discuss the
relation between homomorphisms of signed graphs and those of 2-edge-colored graphs.
Next we provide some basic no-homomorphism lemmas. These lemmas lead to a general
method of defining chromatic number which is discussed at length. Finally, we list a few
problems that are the driving force behind the study of homomorphisms of signed graphs.
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1. Introduction

The notion of homomorphisms of signed graphs was first defined by B. Guenin in
an unpublished manuscript. The development of the subject started from [19]. It also
appeared under a different context at [2]. The theory extends the classical notion of graph
homomorphism and is strongly related to the theory of homomorphisms of 2-edge-colored
graphs, but has the main advantage of correlating with the theory of graph minors.

Being unsatisfied with the definition and terminology employed in [19], here we present
a more natural definition which leads to a number of simple no-homomorphism lemmas,
special subclasses and some characterization theorems. The new definition is based on
closed walks and their signs, thus we study them at length. The notion of chromatic
number of a signed graph, introduced long ago by Zaslavsky [27], has recently drawn
considerable attention with a variety of definitions offered. We will show how one such
definition can be regarded as an optimization question with certain restrictions. At the
end, we list only a few of the most motivating questions of this theory.

Toward a comprehensive study, we will begin with terminology and notation. This is
of particular importance due to the diversity of terminology being used in the study of
signed graphs. The following section is on the signs of cycles and closed walks, which we
consider as basic elements of signed graphs. Section 4 is on the main subject of this work,
homomorphisms of signed graphs, and the last section is about motivating problems,
noting that the number of open problems is too large to be listed.

2. Terminology and Notation for Graphs and Signed Graphs

2.1. Graphs

We allow a graph G = (V (G), E(G)) to have loops and multiple edges. Thus the vertex
and edge sets are disjoint, and each edge is provided with a multiset of two vertices, called
its endpoints. If the endpoints are equal, the edge is a loop; if not, it is a link. Different
edges may have the same multiset of endpoints; then they are called parallel edges. By
having a set of edges instead of a multiset, we can have functions that differ on parallel
edges.

An edge cut [X, Y ] of G is the set of all edges with one endpoint in X and another in
Y , where X and Y form a partition of V (G).

A walk of G is a sequence W = v0e1v1e2 · · · , ekvk where for each ei its endpoints are
vi−1 and vi (thus if ei is a loop we must have vi = vi−1). Its length is k and its parity is
the parity of k. It is a closed walk if we have vk = v0. An trivial walk is a walk of length
0, i.e., with one vertex and no edge; this is considered a closed walk. The inverse of W is
the walk W−1 = vkek · · · e2v1e1v0. The walk W is a path if there is no repeated element.
It is a cycle if k ≥ 1, v0 = vk, and that is the only repetition of elements in the walk.
Thus loops are cycles of length 1 and parallel edges form cycles of length 2. Given two
walks W1 = v0e1v1e2 · · · ekvk and W2 = vkek+1vk+1ek+2 · · · ek+lvk+l (W2 starts at the end
of W1) the walk v0e1v1e2 · · · ekvkek+1vk+1ek+2 · · · ek+lvk+l is denoted by W1W2. We often
omit the vertices from the sequence defining a walk, since they are usually obvious; thus
W may be written as e1e2 · · · ek. A closed walk W = v0e1v1e2 · · · ekvk may be rotated to
begin at a different vertex, giving a walk vi−1eivi · · · ekvke1v1 · · · ei−1vi, which we call a
rotation of W .
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A theta graph is a graph that consists of three paths joining the same two vertices,
but which are otherwise pairwise disjoint. Theta subgraphs of a graph are important in
signed graph theory.

2.2. 2-edge-colored graphs

A 2-edge-colored graph, Γ = (V (Γ), E1(Γ), E2(Γ)), is a graph where the set of edges is
decomposed into two disjoint subsets. That is, we have two colors and we associate one
of them to each edge of Γ. Thus, we have a mapping E(Γ) → C, where C is the set of
two colors.

2.3. Signed graphs

A signed graph is a graph G together with an assignment σ : E → {+,−} of a sign (+
or −) to each edge of G. We call G the underlying graph, and σ is called the signature.

We may denote this signed graph by (G, σ) or sometimes by Ĝ. A signed graph where
all edge are positive is denoted by (G,+) and called all positive, and similarly if all edges
are negative it will be denoted by (G,−) and called all negative.

We call a signed graph (G, σ) connected, bipartite, etc. when G is connected, bipartite,
etc.

The signed graph (G, σ) may be thought of as a 2-edge-colored graph (G,E+, E−),
where E+ and E− denote the sets of positive and negative edges, respectively; but that
does not express the fact that signs + and − are essentially different. The difference
between a signed graph and a 2-edge-colored graph is on the notion of sign of a closed
walk in (G, σ). For any walk W = e1e2 · · · el, of a signed graph (G, σ), the sign of W
is σ(W ) := σ(e1)σ(e2) · · ·σ(el). Then W is said to be positive or negative depending
on the value of σ(W ). Since a cycle of a graph is also a closed walk we naturally have
the definition of positive cycles and negative cycles. It is clear that the signs of cycles
determine the signs of all closed walks.

Signs of cycles determine many fundamental properties of a signed graph. The most
important is balance. A signed graph (G, σ) is said to be balanced if every cycle is positive.
It is said to be antibalanced if (G,−σ) is balanced. These two subclasses of signed graphs
together with the subclass of signed bipartite graphs form three subclasses of signed graphs
which will be shown to be of special interest in Section 4.6.

A closely related notion is the notion of switching1: to switch a vertex v of a signed
graph (G, σ) is to negate all signs in the edge cut [{v}, V (G) \ v]. To switch a set X of
vertices is to switch all the vertices of X in any sequence; it has the effect that it negates
the edges in the cut [X, Y ], which is the same as switching the complementary set Y .
A fundamental though obvious fact is that switching does not change the signs of closed
walks. An equivalent property to balance is that, after a suitable switching, every edge is
positive; equivalent to antibalance is that, after suitable switching, every edge is negative.

Historically, a notion similar to that of edge signs in the form of a distinguished edge set
appeared in the first book on graph theory, published by D. König in 1936 [14, Chapter
X, Section 3]. This work contains many basic results about signed graphs (in its own
terminology), as detailed in its entry in [29]. The essential concepts of edge and cycle
signs were first introduced by Harary [7]. Switching in the form of set summation with

1Switching is called resigning in some works on signed graphs.
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a vertex cut is employed by König, but further use of switching of signed graphs begins
only much later in [23, 24].

Two signatures σ1 and σ2 on the same graph G are said to be switching equivalent if
one is obtained from the other by switching. The set of negative closed walks or negative
cycles determines the class to which a signature belongs.

Lemma 1 (Zaslavsky [24, Theorem 3.2]). Given two signatures σ1 and σ2 of a graph G,
σ1 is a switching of σ2 if and only if the sets of positive (or, equivalently, negative) cycles
of (G, σ1) and (G, σ2) are the same.

The proof given in [24] is based on two key observations which we would like to state
separately:

Lemma 2. For a tree T , any two signatures σ1 and σ2 are switching equivalent.

Lemma 3. Given a connected graph G, a signature σ of G, a spanning tree T and
signature τ of T there is a unique signature σ′ which is identical to τ on the edges of T
and is switching equivalent to σ.

The proof of this lemma is based on the following key notions: given a spanning tree
T of G and an edge e of G which is not in T , the subgraph induced by e and edges of T
forms a unique cycle in G, denoted by Ce. The cycles Ce are called the fundamental cycles
of G with respect to T . The set of fundamental cycles with respect to a spanning tree is
called a fundamental system of cycles for G. The lemma is then proved by observing the
relation between the sign of e and the sign of Ce.

The remark following [23, Theorem 2] states a stronger result: that there is a one-
to-one correspondence between the classes of switching equivalent signatures on G and
subsets of a fundamental system of cycles of G, regarded as the positive fundamental
cycles. It follows that the number of signatures on G which are pairwise not switching
equivalent is 2e−n+c where e is the number of edges, n is the number of vertices and c is
the number of connected components.

These lemmas together also imply a fast algorithm to decide whether two signatures
σ1 and σ2 on a graph G are switching equivalent: Choose a spanning tree T . Switch
both σ1 and σ2 to σ′1 and σ′2 so that they agree on T . Check if σ′1 = σ′2. This simple
method, presented in [24, Lemma 3.1], is essentially the same as the test for balance
found independently by Hansen [6] and Harary and Kabell [8], which switches σ to be
all positive on T and deduces balance of (G, σ) if and only if there is no negative edge in
(G, σ).

Proposition 4. It can be decided in time quadratic in the order of a graph G whether
two given signatures on G are switching equivalent.

Proof. Here is a 6-step algorithm, assuming G is connected. After Step 1, it is the
algorithm of Hansen [6] and Harary–Kabell [8].

Step 1. Multiply the two signatures: σ(e) = σ1(e)σ2(e). Time: O(n2). It is easy to see
that σ1 and σ2 are equivalent if and only if σ is balanced.

Step 2. Find a rooted spanning tree, (T, r). Time: O(n2).
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Step 3. Label each vertex u by the sign in (G, σ) of the path from r to v in T . Time:
O(n2) at worst. This step can be integrated into Step 2.

Step 4. Find the set X of negative vertices. Time: O(n).

Step 5. Negate the signs of edges in the cut [X, V (G) \X]. Time: O(n2). Note that now
all edges in T are positive.

Step 6. Search for a negative edge. Time: O(n2).

If there is no negative edge, σ is balanced and the original signatures are switching
equivalent. If there is a negative edge, σ is unbalanced and the original signatures are not
equivalent.

3. Positive and Negative Elements of the Cycle Space

Given a signed graph Ĝ, the set of cycles and the set of closed walks of the underlying
graph G are each divided into the two sets of positive and negative elements. We think
of the signature as determining sets of negative cycles and closed walks.

These subsets are among the fundamental properties of a signed graph, along with
incidence and adjacency; thus we have two basic questions: Given a subset W of the
closed walks in a graph G, doesW correspond to a set of negative (equivalently, positive)
closed walks in (G, σ) for some signature σ of G? If yes, can we find one such σ by an
efficient algorithm?

One might emphasize the set of positive cycles or positive closed walks, especially
because the former forms a subspace of the cycle space of G. However, in the study of
signed graphs and specially in the study of homomorphism which is the central part of this
work, negative cycles and closed walks are of higher importance. In fact, negative cycles
extend the role which odd cycles play in many parts of graph theory. For this reason,
some authors have used the term “odd cycle” in a signed graph to refer to negative cycles,
even when they have even length!

Observe that the set of all cycles of G could be of exponential order (in the order of
G) and that as long as G contains an edge, the set of closed walks in G is an infinite
set. However, as we mentioned in the previous subsection and will discuss later in this
section, the subset of negative closed walks can be finitely presented, e.g., by a subset of
a fundamental system of cycles of G.

Considering cycles rather than all closed walks, an analogue of the first question has
already been addressed in [23] using the following definition:

Definition 5 (Theta Co-Additivity). A set C of cycles of a graph G is theta co-additive
if, for every theta subgraph Θ of G, the number of cycles in Θ that belong to C is even.

It is then proved that:

Lemma 6 ([23]). A set C of cycles in a graph G is the set of negative cycles of (G, σ) for
some choice of signature σ if and only if C satisfies theta co-additivity.
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3.1. Systems of closed walks

As we will see later, in the study of homomorphisms of signed graphs we may have to
consider closed walks that are not cycles; for example see Lemma 17 and Figure 1. Thus
we introduce the following notion which, working with the set of closed walks rather than
just cycles, extends the notion of theta co-additivity. Then we provide a similar tool to
test whether a given set W of closed walks in G is the exact set of negative closed walks
of (G, σ) for some choice of a signature σ. This test can, in particular, be used for a
NO-certificate. We then present an algorithm by which we can answer the algorithmic
part of the question and produce one such signature if the output is YES. Our algorithm
is efficient with the condition that C is presented efficiently and that testing membership
in C can be done efficiently. Our first test is based on the following definitions.

Definition 7 (Rotation property). A set W of closed walks is said to have the rotation
property if, for each closed walk PQ (the concatenation of walks P and Q), either PQ
and QP are both in W or neither of them is in W .

Definition 8 (Exclusive 3-walk property). A setW of closed walks in a graph G satisfies
the exclusive 3-walk property if it has the rotation property and, for every two vertices x
and y (not necessarily distinct) of G and every three xy-walks W1, W2 and W3 of G,

W1W
−1
2 ∈ W ⇒ (W1W

−1
3 ∈ W) Y (W2W

−1
3 ∈ W),

where Y denotes the “exclusive or” operator. That is to say, given any two vertices x
and y, among the three closed walks induced by any three xy-walks, an even number is
in the set W , i.e., either none of them or exactly two of them.

(We thank Andrzej Szepietowski [22] and an anonymous referee for pointing out the
need to assume the rotation property.)

We give algebraic formulations. The characteristic sign function of closed walks with
respect to W is

σW(W ) =

{
+ if W /∈ W , and

− if W ∈ W .

In terms of this function, Definition 7 becomes the formula

σW(PQ) = σW(QP ) (1)

if P is an xy-walk and Q is a yx-walk, and the implication of Definition 8 becomes the
formula

σW(W1W
−1
2 )σW(W1W

−1
3 )σW(W2W

−1
3 ) = +. (2)

Using this definition, we can characterize the setsW of closed walks in a graph G that
can be the set of negative closed walks in (G, σ) for some choice of signature σ, by the fact
that they satisfy the exclusive 3-walk property (see Theorem 10). As it is easy to prove
that the set of negative closed walks of a signed graph satisfies the property, our main
goal is to show that if a setW of closed walks in G satisfies the exclusive 3-walk property
then W is the set of negative closed walks in (G, σ) for a signature σ of G. Being such a
set would imply certain properties, for example that a trivial walk cannot be a member of
W as it is positive by definition. We collect such properties in the following proposition
and provide a proof solely based on the exclusive 3-walk property.
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Proposition 9. Let G be a graph and let W be a set of closed walks which satisfies the
exclusive 3-walk property. Then W satisfies the following properties:

[i] No trivial walk is in W. (I.e., σW(W0) = + for every trivial walk W0.)

[ii] For any walk W , the closed walk WW−1 is not in W. (I.e., σW(WW−1) = +.)

[iii] For any closed walk W , we have W−1 ∈ W if and only if W ∈ W. (I.e., σW(W−1) =
σW(W ).)

[iv] For any pair of closed walks W and W ′ with the same end point v, WW ′ is in W if
and only if exactly one of W and W ′ is in W. (I.e., σW(WW ′) = σW(W )σW(W ′).)

[v] Given a closed walk W starting at y and an xy-walk P , PWP−1 is in W if and only
if W is in W. (I.e., σW(PWP−1) = σW(W )).

Proof. By taking W as a trivial walk we observe that the first claim is a special case of
the second. Thus we jump to proving the second claim. For this, we take W1 = W2 =
W3 = W . Then the three closed walks in the exclusive 3-walk property are all WW−1

but a condition for W is that all three cannot be in W .
For [iii], let v be the start of W and for x = y = v take W1 = W and W2 = W−1 and

let W3 be the trivial walk at v. Then the three xy-walks to be considered are W , W−1

and WW−1. By part [ii], the last one is never in W , thus we have our claim.
For [iv] take x = y = v and consider W1 = W , W2 = v (the trivial walk at v) and

W3 = (W ′)−1. Then the three walks considered in the exclusive 3-walk property are W ,
W ′ and WW ′. By Equation 2, σW(W )σW(W ′)σW(WW ′) = +.

For [v] rotate PWP−1 to WP−1P ; then apply [iv] and [ii].

Theorem 10. A set W of closed walks in a graph G is the set of negative closed walks
in (G, σ) for some choice of signature σ if and only if W satisfies the exclusive 3-walk
property.

Proof. We will prove the theorem for connected graphs. For graphs with more than one
connected component we may apply the proof to each connected component of the graph.

First we consider a signed graph (G, σ) and we show that the set W− of the negative
closed walks in (G, σ) satisfies the exclusive 3-walk property. Consider two vertices x and
y (not necessarily distinct) and let W1, W2 and W3 be three xy-walks in (G, σ). Then

σ(W1W
−1
2 )σ(W1W

−1
3 )σ(W2W

−1
3 ) = σ(W1)

2σ(W2)
2σ(W3)

2 = +,

thus verifying the exclusive 3-walk property in the form of Equation (2).
To prove the converse, let W be a set of closed walks in G satisfying the exclusive

3-walk property. We need to show that there exists a signature σ of G such that the set
of negative closed walks in (G, σ) is exactly W . A cycle C of G can be viewed as a closed
walk starting at a vertex of the cycle. By Proposition 9 [vi], whether this closed walk is
in W or not is independent of the choice of the starting vertex. Thus we may simply talk
about a cycle being in W . We then use a fundamental system of cycles of G to define
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a signature σ. Let T be a spanning tree of G and for each edge e /∈ T let Ce be the
fundamental cycle, with respect to T , that contains e. Define a signature σ by

σ(e) =

{
+ if e ∈ T,
σW(Ce) if e /∈ T.

It remains to show that σ(W ) = σW(W ) for every closed walk W . We prove this
by induction on the number of edges that are not in T . By Proposition 9 a trivial walk
W0 is not in W so σW(W0) = + = σ(W0). Let W be a closed walk which uses only
edges of T . As T has no cycle, the induced subgraph by the edges of W must have a
vertex y of degree 1. Let x be the neighbour of this vertex in T . Let P be the walk xey
where e = xy. Then W can be written as W ′PP−1, where W ′ has two fewer edges than
W . By Proposition 9 σW(W ′) = σW(W ). By repeating this process we conclude that
σW(W ) = σW(W0) = + = σ(W ).

To complete the induction we consider a closed walk W which uses k edges not in T
(counting repetitions), k ≥ 1. Let e = xy be one such edge. We build a new walk W ′

which uses k − 1 edges not in T and such that σW(W ′) = σW(W )σ(e). By Proposition 9
we may rotate and, if necessary, invert W so that it starts with Q = xey and continues
with W ′′, so W = QW ′′. Let P be the xy-path obtained from Ce after removing the edge
e. Observe that all edges of P are in T . Let W ′ = PW ′′. Note that W ′ has one less edge
not in T than W does.

Consider the following three xy-walks: W1 = Q, W2 = P and W3 = (W ′′)−1. Then
W1W

−1
2 = Ce, W1W

−1
3 = W and W2W

−1
3 = W ′. By Equation (2),

σW(W1W
−1
2 )σW(W1W

−1
3 )σW(W2W

−1
3 ) = +;

more simply, σW(Ce)σW(W )σW(W ′) = +. So,

σW(W ) = σW(Ce)σW(W ′) = σ(e)σW(W ′) by the definition of σ,

= σ(e)σ(W ′) by induction,

= σ(e)σ(P )σ(W ′′) = σ(e)σ(W ′′) because all edges of P are in T ,

= σ(W ).

3.2. Algorithmics of closed walk systems

Given a closed walk W of graph G, let CW be the subgraph of G which is induced by
edges which appear on W an odd number of times. Then CW has no repeated edges, so
it is an edge-disjoint union of cycles. Equivalently, every vertex has even degree in CW ;
such a subgraph is called an even subgraph. Given a signature σ on G, the product of the
signs of cycles in CW determines whether W is a negative closed walk or a positive one.
Observe that while the set of closed walks in a graph with at least one edge is an infinite
set, the set of even subgraphs is a finite set because each even subgraph uses each edge
at most once. Thus in practice we may use a chosen set of even subgraphs (a finite set)
to define a choice of negative (or positive) closed walks (an infinite set). The question is
then, what conditions on a set of even subgraphs make it the set of negative (or positive)
even subgraphs CW of some signature on G.

Consider a subset W of closed walks in G that may, or may not, be the set of all
negative closed walks in some signed graph on G. Then the choice of W corresponds
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to a choice of CW ’s. Thus a first necessary condition for W to be the set of negative
closed walks in (G, σ) for some choice of σ is that the two sets {CW | W ∈ W} and
{CW | W /∈ W} have no common element.

Observe that the set of all even subgraphs corresponds to the (binary) cycle space
of the graph G, which is the set of binary vectors in ZE2 , of length |E(G)|, which are
in the null space of the vertex-edge incidence matrix of G regarded as a binary matrix.
The (binary) characteristic vector of a closed walk W equals that of the corresponding
even subgraph CW . If we identify a subset of edges with its characteristic vector, then
binary addition corresponds to set summation (that is, symmetric difference). Assume G
is connected and let W1 and W2 be two closed walks in G. By adding a PP−1 walk and
rotating the walks, as needed, we may assume W1 and W2 are starting from the same
vertex, observing that the CWi

will remain the same. Then the set sum CW1 +CW2 , which
corresponds to the binary sum of the characteristic vectors of W1 and W2, equals CW1W2

(noting that W1W2 is only defined if they have a common starting point).
For a signed graph (G, σ) the even subgraphs whose elements correspond to positive

closed walks in (G, σ) form a subspace of the cycle space of codimension at most 1, and
every such subspace is the set of even subgraphs that are positive in some signature of G
[23]. We may then use the notion of basis in linear algebra to present a choice of negative
even subgraphs using only a linear number of edges, by using the notion of a fundamental
system of cycles with respect to a spanning tree. Let T be a spanning tree of G. For an
edge e /∈ E(T ), the fundamental cycle of e with respect to T is the unique cycle contained
in T ∪ e. An elementary consequence of Lemma 1 is that, given a signature σ on G with
negative edge set E−, defining σT (e) := σ(Ce) if e /∈ E(T ) and σT (e) := + if e ∈ E(T ),
then σT is switching equivalent to σ.

Using this terminology, we state in the next theorem how a subset of all the closed
walks (an infinite set) satisfying the exclusive 3-path property can be presented by a
choice of a negative edge set.

Theorem 11. Let G be a connected graph with a spanning tree T . Let W be a subset
of the closed walks in G that satisfies the exclusive 3-path property. Let E− be the set of
edges e /∈ E(T ), such that Ce is in W. Then a closed walk W is in W if and only if CW
can be written as the sum of Ce’s where an odd number of e’s in is E−.

Proof. By Theorem 10, the assumption onW is equivalent to assuming that it is the class
of negative closed walks of a signature σ on G.

If that is true, by Lemma 3 we may switch σ so that every edge of T is positive. Then
σ(W ) = σ(CW ) =

∏
e∈E(CW )\E(T ) σ(e).

4. Homomorphisms

4.1. Graphs

The main goal of this work is the study of homomorphisms of signed graphs with
special focus on improving terminology. To this end we first offer an alternative definition
of a graph homomorphism as follows (recall that we are allowing loops and multiple edges):

Definition 12. A homomorphism of a graph G to a graph H is a mapping f which maps
vertices of G to vertices H and edges of G to the edges of H and preserves the incidence
relation between vertices and edges. We indicate the existence of a homomorphism by
writing G→ H.

10



This contrasts with the usual definition, in which graphs are assumed to be simple, the
vertex mapping is assumed to preserve adjacency (but not non-adjacency) and then the
edge mapping is determined by the vertex mapping. Since signed graphs have multiple
edges that may have different signs, that kind of definition is inadequate.

4.2. Signed graphs

We may now define the central concept of this work:

Definition 13. A homomorphism of a signed graph (G, σ) to a signed graph (H, π),
written (G, σ) → (H, π), is a graph homomorphism that preserves the signs of closed
walks. More precisely, this is a switching homomorphism of signed graphs. We indicate
the existence of a homomorphism by the notation (G, σ)→ (H, π).

Intuitively speaking, since we consider the signs of cycles of a signed graph as one
of its determining characteristics, we define a homomorphism of signed graphs to be a
mapping that preserves the main structures: incidences and cycle signs.

One can redefine homomorphisms of signed graphs in terms of edge signs. A edge-
sign-preserving homomorphism of a signed graph (G, σ) to a signed graph (H, π) is a
homomorphism of underlying graphs, G→ H, that preserves the signs of edges.

Theorem 14. A homomorphism (G, σ)→ (H, π) of signed graphs consists of a switching
of (G, σ) followed by an edge-sign-preserving homomorphism to (H, π), and conversely.

Proof. We first show the easy part. Suppose (G, σ) switches to (G, σ′) such that there
is a graph homomorphism φ : G → H that preserves edge signs. Since φ preserves edge
signs, it preserves the signs of all walks. The signs of closed walks are the same in (G, σ)
and in (G, σ′), so φ, considered as a mapping of signed graphs (G, σ)→ (H, π), preserves
the signs of closed walks.

For the contrary, suppose φ is a signed graph homomorphism (G, σ) → (H, π); thus,
φ is a graph homomorphism G→ H and preserves the signs of closed walks. Let σ′ be a
new signature which assigns to each edge e of G the sign of φ(e) in (H, π). Then φ, as a
mapping from (G, σ′)→ (H, π), preserves the signs of closed walks and in particular the
signs of cycles. Each cycle C in G has the same sign with respect to σ and σ′, as both
signs equal the sign of φ(C) in (H, π). It then follows from Lemma 1 that σ′ is a switching
of σ.

The definition of a homomorphism of one signed graph to another, contained in this
theorem, is the one originally given in [19], and in practice is easier to use. To be more
precise, in [19] a homomorphism of (G, σ) to (H, π) is a mapping f = (f1, f2, f3) where
f1 : V (G)→ {+,−} specifies for each vertex x whether x is switched or not, f2 : V (G)→
V (H) specifies to which vertex of V (H) the vertex x is mapped to and, similarly, f3 :
E(G)→ E(H) is the edge mapping. When working on graphs with no parallel edges, one
may simply write (f1, f2) as f3 would be uniquely determined by f2.

11



4.2.1. Bipartite universality

What is rather surprising, and not so obvious, is that the restriction to signed bipartite
graphs also captures the classic notion of homomorphism of graphs. With any graph G,
we associate a signed bipartite graph S(G) defined as follows: for each edge uv of G, we
first add a parallel edge, and then subdivide both edges in order to form a 4-cycle (if G
has n vertices and m edges, S(G) has thus n + 2m vertices and 4m edges). Finally, for
each such 4-cycle, we assign one negative and three positive signs to its edges. That is,
we replace each edge uv of G by a 4-cycle with one negative edge in which u and v are
not adjacent. The following is proved in [19].

Theorem 15. Given graphs G and H, there is a homomorphism of G to H if and only
if there is a homomorphism of S(G) to S(H).

It is thus of special interest to study the homomorphism relation on the subclass of
signed bipartite graphs. Indeed, as is discussed in Section 6, the study of homomorphisms
of signed graphs was originated in order to address a possible extension of the Four-Color
Theorem that is partly on the family of signed bipartite graphs and partly on that of
antibalanced signed graphs.

4.3. Core

A common notion in the theory of homomorphisms is the notion of core, which is
defined analogously for each of the structural objects. A core is a graph (or a signed graph;
or a 2-edge-colored graph—see Section 5) which does not admit any homomorphism to
one of its proper subgraphs. The core of a graph G is then the smallest subgraph of G
(with respect to subgraph inclusion) to which G admits a homomorphism. It is clear, in
each case, that the core of a graph is a core, and it is not difficult to show that the core
of a graph is unique up to isomorphism.

4.4. Isomorphism and transitivity

Any adaptation of a notion of homomorphism leads to a corresponding notion of
isomorphism. An isomorphism, more precisely a switching isomorphism, from (G, σ) to
(H, π) is a homomorphism φ that has an inverse, i.e., a homomorphism θ : (H, π)→ (G, σ)
such that the compositions φ ◦ θ and θ ◦ φ are the identity self-mappings: φ ◦ θ = id(H,π)

and θ ◦ φ = id(G,σ). Equivalently, φ is a graph isomorphism that preserve the signs of
closed walks; it follows easily that θ is also such a graph isomorphism. We write φ−1 for
θ and call it the inverse isomorphism to φ.

We say that (G, σ) is isomorphic to (H, π) if there is an isomorphism of (G, σ) to
(H, π)

An automorphism of a signed graph (G, σ) is an isomorphism of (G, σ) to itself. The
set of all automorphisms of (G, σ) forms the automorphism group of (G, σ).

We say, as with unsigned graphs, that a signed graph (G, σ) is vertex transitive if for
any two vertices x and y of G, there exists a automorphism of (G, σ) which maps x to y.
That is, the automorphism group is transitive on V . We define edge transitivity similarly.

12



4.5. Girth and no-homomorphism lemmas

That the parity of a closed walk must be preserved by a homomorphism is the key
fact that makes most graph homomorphism problems NP-hard. However, it also leads to
a no-homomorphism lemma based on the easily computable parameter of odd girth (the
least length of an odd cycle): the image of every odd cycle must contain an odd cycle
which, therefore, is of smaller or equal length. Thus if G → H, then the shortest odd
cycle of G is at least as big as the shortest odd cycle of H.

With homomorphisms of signed graphs asking to preserve signs of closed walks, we
have four types of essentially different closed walk to consider: positive even closed walks,
positive odd closed walks, negative even closed walks and negative odd closed walks.
Given a homomorphism of (G, σ) to (H, π), images of closed walks of a given type in
(G, σ) must be of the same type in (H, π).

We will say that a positive even walk is of type 00, a negative even walk is of type 10,
a positive odd walk is of type 01 and a negative odd walk is of type 11. This notation is
convenient in the following sense: given closed walks W1 of type ij and W2 of type i′j′,
both starting at a same vertex, the type of closed walk W1W2 is the binary sum of the
two types, that is ij + i′j′ where addition is done in Z2

2.
We may now introduce four separate notions of girth based on walks, one for each of

the four types of closed walk:

Definition 16 (Walk-girths of signed graphs). Given a signed graph (G, σ), for each walk
type ij we define the length of a shortest nontrivial closed walk of that type in (G, σ) to
be the ij-walk-girth of (G, σ) and denote it by gij(G, σ). When there is no such walk, we
write gij(G, σ) =∞.

For simplicity, we use the term girth of type ij to denote the walk-girth of type ij.

As the examples of Figure 1 show, a walk-girth of type ij is not always obtained by a
cycle; thus we use term walk-girth.

Figure 1: Signed graphs where g10, g11, g01 are realized by a closed walk but not a cycle.

Observe that g00(G, σ) is either ∞ (when G has no edge) or it is 2. While g00 is
thus not of much interest, the other three values are of high interest in the study of
homomorphisms of signed graphs. Indeed we have the following no-homomorphism lemma
from the definition.
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Lemma 17. If a signed graph (G, σ) admits a homomorphism to a signed graph (H, π),
then

gij(G, σ) ≥ gij(H, π)

for each ij ∈ Z2
2.

To emphasize the importance of Lemma 17, we show that given a signed graph (G, σ)
one can compute gij(G, σ) for all four choices of ij in polynomial time.

Proposition 18. Given a signed graph (G, σ) of order n we can compute gij(G, σ) in
time O(n4).

Proof. Our method is that, for each vertex v of G, we compute in time O(n3) the length of
a shortest closed walk of type ij which starts at v. Taking the minimum of all such values
then gives gij(G, σ). (The length of the input is O(n2) because we assume no parallel
edges in (G, σ) have the same sign.)

We use the following notation: Ni(v) is the set of vertices that are at distance i from
v in G. Moreover, for ε = +,−, we define N ε

i (v) to be the set of vertices at distance i
from v that can be reached from v by a path P of length i and sign ε. Observe that these
sets can be built inductively: given N+

i (v) and N−i (v) for i = k − 1, vertices not already
reached which are adjacent to some vertex in N+

i (v) with an edge of sign ε or to some
vertex in N−i (v) with an edge of sign −ε form N ε

k(v).
The time to construct the sets N ε

k(v) for each vertex v is O(n3). Each set satisfies
|N ε

k(v)| = O(n). Each vertex in N ε
k−1(v) scans O(n) vertices for possible inclusion in

N ε
k(v). This procedure is repeated O(n) times for increasing values of k. The time needed

for this is O(n3) for each vertex v; thus, O(n4) in total.
The shortest length of a closed walk of type ij starting at v, denoted by gij(G, v, σ),

is now computed as follows.

ij = 00: g00(G, v, σ) = 2 if N1(v) 6= ∅ and g00(G, v, σ) =∞ otherwise.

ij = 01: Consider the first k where one of the following happens: N+
k (v) or N−k (v)

induces a positive edge, or a negative edge connects a vertex from N+
k (v) to a

vertex from N−k (v). Then g01(G, v, σ) = 2k + 1.

ij = 10: Consider the first k where N+
k (v) ∩N−k (v) 6= ∅. Then g10(G, v, σ) = 2k.

ij = 11: Consider the first k where one of the following happens: N+
k (v) or N−k (v)

induces a negative edge, or a positive edge connects a vertex from N+
k (v) to a

vertex from N−k (v). Then g11(G, v, σ) = 2k + 1.

This computation takes time O(n3) because there are O(n) possible values of k and
the set intersections and edge examinations take time O(n2).

Now the n vertices are examined to find gij(G, σ) = minv gij(G, v, σ). This takes time
O(n).

The longest step is the first, so the whole procedure takes time O(n4).

The bound of O(n4) is for simplicity of the proof; one can certainly do better. We
conjecture that this can be done in time O(n3).
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Observe that if g00(G, σ) = ∞ then G has no edge and, therefore, gij(G, σ) = ∞ for
all other choices of ij. In the next lemma we show something similar but weaker for
other choices of ij: that if G is connected and gij(G, σ) =∞, then at least for one other
choice i′j′ we have gi′j′(G, σ) =∞. This will lead to the study of three special subclasses
of signed graph, each of which is of special importance in the study of homomorphisms.
These classes will be discussed in the next subsection.

Lemma 19. Let (G, σ) be a connected signed graph. If (G, σ) contains two closed walks
W1 and W2 of types i1j1 6= 00 and i2j2 6= 00, respectively, with i1j1 6= i2j2, then it contains
a closed walk W3 of the third nonzero type.

Proof. Since G is connected, there is a (shortest) path P connecting a vertex u of W1 to a
vertex v of W2. Let W3 = W1PW2P

−1, as a closed walk starting at u. Since P is traversed
twice, it affects neither parity nor sign of W3. Therefore, W3 is of type (i1 + j1)(i2 + j2)
(where addition is modulo 2). Since i1j1 and i2j2 are nonzero elements of Z2

2, their sum
is the third nonzero element of this group.

We say that gij(G, σ) is realized by a walk W if W has the type ij and has minimum
length with that type. It appears that gij(G, σ), if finite, may be realized by cycles and
non-cyclic closed walks, or only by cycles, or only by closed walks that are not cycles.
Appearances are misleading, as we see in the following result, where for simplicity we
write gij := gij(G, σ) and m := max(g01, g10, g11). We do not exclude the possibility that
m =∞.

Proposition 20. Let G be a graph that is not bipartite, let σ be a signature on G. Suppose
that, for some ij 6= 00, gij < m or gij = gi∗j∗ = m < ∞ for some other i∗j∗ 6= 00, ij.
Then gij is realized only by cycles.

In particular, if all three types of girth aside from g00 are finite, then at least two of
the three values g10, g01 and g11 are realized only by cycles of G.

Proof. A subwalk of a walk W is any nonempty consecutive sequence of edges in W . A
closed walk that realizes some gij cannot contain a closed subwalk of type 00, or it would
not have minimal length.

Now consider ij as assumed in the statement. Since gij < ∞, there is a closed walk
W that realizes gij. If this walk is not a cycle, by minimality it contains a subwalk C
that is a cycle of type iCjC 6= 00, ij. If we cut C out of W we are left with a closed
walk W ′, shorter than W and of type ij + iCjC = i′j′ 6= 00, ij, iCjC . Both C and W ′ are
shorter than W so gij = m <∞ and both giCjC and gi′j′ are less than m. We have shown
that either all closed walks that realize gij are cycles, or ∞ > gij = m > giCjC , gi′j′ . This
proves that any gij < m can only be realized by cycles.

Suppose now that gij = m < ∞. If gij is realized by a closed walk W that is not
a cycle, the preceding argument shows that m > giCjC , gi′j′ so both giCjC and gi′j′ are
realized only by cycles. Therefore, if any two of g01, g10, g11 equal m, then all three are
realized only by cycles.

The last part of the proposition is now obvious.

As examples in Figure 1 show, for each choice of the ij, ij 6= 00, there exist a signed
graph (G, σ) where the values gij(G, σ), can only be realized only non-cyclic closed walks.
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4.6. Special classes

Lemma 19 leads to the definition of three classes of signed graph which have proven
to be of special importance in the homomorphism study of signed graphs. We refer to
Section 6 for examples of important problems in these classes.

1. If g11(G, σ) = g10(G, σ) =∞, then (G, σ) has no negative cycle, thus it is balanced.
By Lemma 1, after a suitable switching, all edges are positive, i.e., (G, σ) is switching
equivalent to (G,+). This class of signed graphs will be denoted by G01.

2. If g10(G, σ) = g01(G, σ) = ∞, then (G, σ) is antibalanced. By Lemma 1, after
a suitable switching, all edges are negative, i.e., (G, σ) is switching equivalent to
(G,−). This class of signed graphs will be denoted by G11.

3. If g11(G, σ) = g01(G, σ) =∞, then G has no cycle of odd length and, thus, (G, σ) is
a signed bipartite graph. This class of signed graphs will be denoted by G10.

Thus Gij, ij ∈ { 01, 10, 11 }, is the class of signed graphs consisting of signed graphs in
which every closed walk is either of type 00 or ij.

Given two signed graphs (G, σ) and (H, π) both in G01, to decide whether there is a
homomorphism of (G, σ) to (H, π), first we switch each of the graphs so that all edges
are positive; then, by Theorem 14, (G, σ) maps to (H, π) if and only if G maps to H.
The same conclusion applies when both graphs are in the class G11. While therefore
the homomorphism problem in each of these two classes is about homomorphisms of
underlying graphs, as signed graphs the two classes behave differently in connection with
graph minors.

A minor (more precisely, a link minor) of a signed graph is a signed graph obtained
by the following sequence of operations: 1. Delete vertices and edges. 2. Switch a set of
vertices. 3. Contract a set of positive edges. (A link is a non-loop edge. This definition
of contraction, which can be found in [28], is a restriction of the definition of minors from
[24], which also allows contracting loops. For a positive loop, contraction is the same as
deletion.)

In the class G01, the signed graphs without a (K3,+)-minor are the signed graphs
with no cycle in the underlying graph (a forest in the usual sense), and thus all admit
homomorphisms to (K2,+). Similarly those not containing (K4,+) are K4-minor-free
graphs together with a signature where all cycles are positive. Thus all such signed
graphs map to (K3,+).

On the other hand, in the class G11 signed graphs without a (K3,−)-minor are the
signed graphs with no odd cycle in the underlying graph. That is because (K3,−) can
only be obtained as a minor from a negative cycle, which in the class G11 is the same as
an odd cycle. Thus in this case we have the class of bipartite graphs with signature such
that all cycles are positive, and therefore, each admits a homomorphism to (K2,−). A
restatement of a result of Catlin from [3] (the proof of equivalence is left to the reader) is
that a signed graph (G, σ) in G11 which does not have a (K4,−)-minor maps to (K3,−).

Recalling that the homomorphism question in each of the classes G01 and G11 is (only)
about the homomorphisms of the underlying graphs, we may restate previous claims
as follows. Given a graph G, if (G,+) has no (K3,+)-minor (respectively, no (K4,+)-
minor), then G maps to K2 (respectively, K3). Similarly, if for a given graph G the signed
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graph (G,−) has no (K3,−)-minor (respectively, no (K4,−)-minor), then G maps to K3

(respectively, K4). While the conclusions of the two cases are the same, the class of graphs
for which the first statement applies is strictly included in the class of graphs for which
the latter one applies. More importantly, the class of graphs for which the first statement
works is a sparse family of graphs whereas the class of graphs in the latter statement in
particular contains all bipartite graphs, thus includes a dense family of graphs.

This observation has been one of the main motivations behind the development of
this theory of homomorphisms of signed graphs. Some possible generalizations will be
mentioned in Section 6.

4.7. Definitions of a chromatic number for signed graphs

One of the most classic notions of graph theory is the notion of proper coloring together
with the associated parameter: chromatic number. Recall that proper coloring of a simple
graph is a coloring of vertices where adjacent vertices receive different colors and the
chromatic number is the minimum number of colors required in such a coloring. A natural
extension of proper coloring of graphs to signed graphs, using signed colors, was first given
in [25] (see also [26] and [27]). Motivated by this notion of proper coloring, various other
definitions of chromatic number of signed graphs have been recently introduced, whose
difference depends on the choice of the set of signed colors; see e.g. [11] for circular coloring
and [4] for list coloring.

Here we present chromatic number as a natural optimization problem. To better
express the idea, we begin with a reformulation of chromatic number of graphs which is
better suited to the homomorphism viewpoint: the chromatic number of a simple graph G
is the smallest order of a homomorphic image ofG which is also simple (i.e., without loops).
It is easy to verify that this definition gives the classic chromatic number. Observing the
importance of the odd cycles in the value of the chromatic number, and that loops, which
are odd cycles of length 1, are the crucial objects to be avoided in the target graph, we
may refine the definition of chromatic number as follows. Given a triangle-free graph (or
more generally one with odd girth 2k + 1) what is the smallest order of a triangle-free
graph (or, respectively, a graph of odd girth 2k+1) to which G admits a homomorphism?
For example, as an extension of the Four-Color Theorem, and using that theorem itself,
it has been shown that every triangle-free planar graph admits a triangle free image of
order at most 16 and that 16 is the best possible (see [17] and references therein, also
Section 6). This upper bound of 16 is reduced to 5 if we consider the subclass of planar
graphs of odd girth at least 13 (see [30]). Considering our no-homomorphism lemma,
Lemma 17, we generalize this idea to signed graphs as follows.

Definition 21. Given a triple L = (l01, l10, l11) where lij is either a positive integer
or infinity, and given a signed graph (G, σ) satisfying gij(G, σ) ≥ lij, we define the L-
chromatic number of (G, σ), denoted by χL(G, σ), to be the minimum number of vertices
of a signed graph (H, π) which satisfies gij(H, π) ≥ lij and (G, σ)→ (H, π).

Furthermore, given a triple K = (k01, k10, k11) satisfying kij ≥ lij, we define the (K,L)-
chromatic number of a class S of signed graphs to be the maximum of the L-chromatic
numbers of signed graphs (G, σ) in S satisfying gij(G, σ) ≥ kij, and ∞ when there is no
such maximum.

With this terminology, if we take L = (∞,∞, l), then any signed graph (G, σ) satisfy-
ing gij(G, σ) ≥ lij is a signed graph in G11, i.e., an antibalanced signed graph, and thus it
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can be switched to (G,−) (all edges negative). As mentioned in the previous section, in
this class of signed graphs the question of whether (G, σ) maps to (H, π) is reduced to the
question of whether the graph G maps to H. Similarly for L = (l,∞,∞) a signed graph
satisfying gij(G, σ) ≥ lij is a signed graph in G01, i.e., a balanced signed graph, which
switches to (G,+), so homomorphism questions on these signed graphs are identical to
homomorphism questions on graphs.

Let P be the class of signed planar graphs. With our terminology, it is a restatement
of the Four-Color Theorem to say that for K = L = (∞,∞, 3) and for K = L = (3,∞,∞)
the (K,L)-chromatic number of P is 4. For K = (∞,∞, 5) and L = (∞,∞, 3) it is a
restatement of the Grötzsch theorem to say that the (K,L)-chromatic number of P is 3.
The result of [17] can be also restated as: for K = L = (∞,∞, 5) the (K,L)-chromatic
number of P is 16. In general, determining the (K,L)-chromatic number of planar graphs
is a question of high interest. Special cases will be mentioned in Section 6.

The notion of proper coloring of signed graphs as defined in [25] corresponds to the
(K,L)-chromatic number for K = L = (3, 2, 1). That is to say, given a signed graph
where digons and negative loops are allowed but positive loops are not, we want to find a
smallest homomorphic image without a positive loop. For more detail we refer to Section
2.4 of [1].

5. Connections to 2-Edge-Colored Graphs

A homomorphism of a 2-edge-colored graph G = (V (G), E1(G), E2(G)) to a 2-edge-
colored graph H = (V (H), E1(H), E2(H)) is a homomorphism of the underlying graph G
to the underlying graph H which preserves colors of the edges.

Homomorphisms of signed graphs can be viewed as a special case of homomorphisms
of 2-edge-colored graphs in a few ways; we discuss three such possibilities here.

5.1. Signs as colors

The easiest connection is by way of Theorem 14. A signed graph (G, σ) is a 2-edge-
colored graph with the colors + and −. Then an edge-sign-preserving homomorphism
of signed graphs is identical to a homomorphism of 2-edge-colored graphs. Thus by
Theorem 14, there is a (switching) homomorphism of (G, σ) to (H, π) if and only if there
are a switching σ′ of σ and a 2-edge-colored graph homomorphism (G, σ′)→ (H, π).

5.2. Double switching graph

The second connection is based on a construction first presented by R. C. Brewster
and T. Graves in [2]. In fact, in that paper Brewster and Graves introduced and studied
(independently of other writers) the notion of homomorphisms of signed graphs as “edge-
switching [i.e., switching] homomorphisms of edge-colored graphs”.

Definition 22. Let (G, σ) be a signed graph. We define the double switching graph
DSG(G, σ) to be a signed graph with two vertex sets, V + and V −, each a copy of V (G),
with edges uαvβ (α, β = ±) for each edge uv, and signs σ̄(uαvβ) = αβσ(uv). We normally
treat DSG(G, σ) as a 2-edge-colored graph.

Observe that (G, σ) is an induced subgraph of DSG(G, σ). It is induced by V + and
also by V −. To switch a vertex x of signed graph (G, σ), when viewed as a subgraph
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induced by V +, is to replace x+ by x−. Thus DSG(G, σ) can be partitioned into two
copies of (G, σ′) for any switching σ′ of σ. For this reason one may refer to DSG(G, σ) as
the double switching graph of (G, σ).

Brewster and Graves used this construction to connect homomorphisms of signed
graphs to homomorphisms of 2-edge-colored graphs. We restate here two main connec-
tions:

Theorem 23. Given signed graphs (G, σ) and (H, π), there exists a switching homomor-
phism of (G, σ) to (H, π) if and only if there exists a color-preserving homomorphism of
the 2-edge-colored graph (G, σ) (equivalently, of DSG(G, σ)) to the 2-edge-colored graph
DSG(H, π).

Theorem 24. A signed graph (G, σ) is a core if and only if DSG(G, σ) is a core as a
2-edge-colored graph.

It is noteworthy that if (G, σ) is in Gij for i, j ∈ {0, 1}, then so is DSG(G, σ) when
viewed as a signed graph.

5.3. Extended double cover

We now introduce a new construction which provides a different setting to capture
homomorphisms of signed graphs as a special case of homomorphisms of 2-edge-colored
graphs.

Definition 25. Let (G, σ) be a signed graph. We define EDC(G, σ) to be a signed graph
on vertex set V + ∪ V −, where V + := {v+ : v ∈ V (G)} and V − := {v− : v ∈ V (G)}.
Vertices x+ and x− are connected by a negative edge; all other edges, to be described
next, are positive. If vertices u and v are adjacent in (G, σ) by a positive edge, then v+u+

and v−u− are two positive edges of EDC(G, σ), if vertices u and v are adjacent in (G, σ)
by a negative edge, then v+u− and v−u+ are two positive edges of EDC(G, σ).

Since EDC(G, σ) consists of the double covering graph of (G, σ), as defined in [24],
with positive edge signs and added negative edges x+x−, we call it the extended double
cover of (G, σ). Let (G, σ)◦ denote (G, σ) with a negative loop attached to each vertex.
There is a natural projection pG : EDC(G, σ)→ (G, σ)◦ induced by mapping x+, x− 7→ x
for each x ∈ V (G). The negative edges map to the negative loops. A positive edge uαvβ

maps to the edge uv with sign αβ. A fiber of p is any set p−1G (u) = {u+, u−} (for a
vertex) or p−1G (uv) = {u+vσ(uv), u−v−σ(uv)} (for an edge), which for a negative loop means
p−1G (uu) = {u+u−}.

To be of interest for homomorphisms we first show that EDC(G, σ) is independent of
switching. We define a fibered automorphism of EDC(G, σ) to be an automorphism that
preserves fibers; that is, it carries an element of a fiber to itself or to the other element
of the same fiber. More generally, we define a fibered homomorphism ψ : EDC(G, σ) →
EDC(H, π) to be a graph homomorphism that respects fibers; that is, if x ∈ V (G), then
{ψ(x+), ψ(x−)} = {y+, y−} for some y ∈ V (H). This definition implies that ψ(x+x−) =
y+y− and that ψ carries an edge fiber p−1G (uv) to pH(yz) for some edge yz ∈ E(H).

Lemma 26. Let (G, σ) and (H, π) be signed graphs. Suppose ψ is a graph homomorphism
EDC(G, σ) → EDC(H, π). Then ψ is a 2-edge-colored homomorphism (i.e., it preserves
edge signs) if and only if it is a fibered homomorphism.
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Proof. The proof follows from the fact that the only negative edges are of the form x+x−

and such an edge exists for every vertex x in both graphs.

Proposition 27. Let (G, σ) be a signed graph and let σ′ be a switching of σ. Then
EDC(G, σ) is isomorphic to EDC(G, σ′) as a 2-edge-colored graph. The isomorphism is
a fibered isomorphism.

Proof. Let X be a set of vertices that are switched in order to get σ′ from σ. An isomor-
phism of EDC(G, σ) to EDC(G, σ′) then consists of interchanging the roles of v+ and v−

for every vertex v ∈ X. This is a fibered isomorphism.

Theorem 28. There is a homomorphism of a signed graph (G, σ) to a signed graph (H, π)
if and only if there is a color-preserving homomorphism of EDC(G, σ) to EDC(H, π).

Proof. Suppose (G, σ) maps to (H, π) as a signed graph. The by Theorem 14 there are
a switching σ′ of σ and a mapping φ of (G, σ′) to (H, π) which preserves the signs as
well. By Proposition 27 switching σ will give an isomorphic copy of EDC(G, σ) (as a
2-edge-colored graph), thus, without loss of generality, σ′ = σ.

We need to present a homomorphism from EDC(G, σ) to EDC(H, π) which preserves
edge signs (i.e., colors). We show that the most natural extension of φ works. More
precisely, let ψ(xε) = φ(x)ε for each vertex x of G and for ε = +,− (this gives the
mapping of vertices); for the edges we define ψ(xεyδ) = φ(x)εφ(y)δ for every edge xεyδ of
EDC(G, σ), where ε, δ = +,− (this gives the mapping of edges). This is a homomorphism
because φ never maps two adjacent vertices of G to a single vertex of H. Also, ψ is clearly
sign-preserving.

For the other direction, suppose ψ is a homomorphism from EDC(G, σ) to EDC(H, π)
preserving signs. Thus each pair x+x− must map to a pair of the form z+z− as these are
the only negative edges (i.e., ψ is a fibered homomorphism). To complete the proof we
should introduce a switching σ′ of σ under which we may find a homomorphism preserving
edge signs. To this end it is enough to decide for each vertex x whether we switch x. As
x+x− is mapped to a pair z+z−, either we have ψ(x+) = z+ and ψ(x−) = z− or we have
ψ(x+) = z− and ψ(x−) = z+. In the former case we do not switch x, in the latter case
we do switch x. Let σ′ be the signature obtained after such switching. Observe that by
the definition of σ′, after composing the mapping ψ with the isomorphism which changes
EDC(G, σ′) to EDC(G, σ) (by Proposition 27) we have a homomorphism ψ′ of EDC(G, σ′)
to EDC(H, π) which preserves vertex signs, i.e., φ′(xε) = zε for some z ∈ V (H).

We now define φ as a sign preserving homomorphism from (G, σ′) to (H, π) as follows:
for the vertex mapping, if ψ(x+x−) = z+z− then define φ(x) = z; for the edge mapping,
let pGψ(xy) = {x+yε, x−yε} in EDC(G, σ′). Thus σ′(xy) = ε and since ψ′ preserves vertex
signs it is straightforward to show that π(φ(xy)) = ε = σ′(xy), as we wished.

It worth noting the effect of the extended double cover construction on the three
special classes of signed graphs. If (G, σ) is balanced (that is to say (G, σ) is in the class
G01), then one may switch σ to σ′ so that all edges are positive. Thus EDC(G, σ′) consists
of two vertex-disjoint copies of G with a negative edge between each pair of corresponding
vertices; we observe that EDC(G, σ′) itself is a balanced signed graph and so is EDC(G, σ)
(by Proposition 27). If (G, σ) is antibalanced, then EDC(G, σ) is a signed bipartite graph,
and vice versa, if (G, σ) is a signed bipartite graph, then EDC(G, σ) is antibalanced. We
prove this and more in the next proposition.
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Theorem 29. Let (G, σ) be a signed graph.

(1) (G, σ) is antibalanced if and only if EDC(G, σ) is a signed bipartite graph.

(2) (G, σ) is a signed bipartite graph if and only if EDC(G, σ) is antibalanced.

Proof. (1) If (G, σ) ∈ G11, then it can be switched to (G,−) such that all edges are
negative. It is then immediate that EDC(G,−) is a signed bipartite graph, and it is
isomorphic to EDC(G, σ).

Conversely, suppose EDC(G, σ) is a signed bipartite graph. Each two vertices x+, x−

must be in opposite sets of the bipartition, so by switching to, say, (G, σ′) we can ensure
that the two sets are V + and V −. Then every edge in EDC(G, σ) has the form xεy−ε, so
every edge of (G, σ′) is negative. It follows that (G, σ) is antibalanced.

(2) We now consider a signed bipartite graph (G, σ). Let A,B be the partition of
vertices of G into two independent sets. By switching A+ ∪ A− we make all edges of
EDC(G, σ) negative. Thus, EDC(G, σ) is antibalanced.

For the converse, suppose EDC(G, σ) is antibalanced. That means we can make it all
negative by switching a set X ⊆ V +∪V −. Since x+x− is already negative, x+ and x− are
either both in X or both not in X. For two adjacent vertices x, y ∈ V (G), exactly one of
x+ and y+ is in X. Let A := pG(X) and B := V (G) \A; this gives a bipartition of V (G)
such that no edge of G has both endpoints in A or both in B. Thus, G is bipartite.

The extended double cover can be used to give a nice inductive definition of signed
projective cubes. These graphs and problems about homomorphism to them are what
motivated the definition of a homomorphism of signed graphs in the first place (see [18]).
We write more in Section 6 on the importance of these graphs and a connection to the
Four-Color Theorem.

Definition 30. A signed projective cube of dimension 1, denoted by SPC(1), is a signed
graph on two vertices connected by one negative edge and one positive edge. A signed
projective cube of dimension k, k ≥ 2, denoted by SPC(k), is defined to be EDC(SPC(k−
1)).

Proposition 31. For k ≥ 1, SPC(k) is isomorphic as a 2-edge-colored graph to the signed
graph whose vertices are the elements of Zk2 and in which two vertices x and y are adjacent
by a positive edge if they differ in exactly one coordinate and are adjacent by a negative
edge if they differ in all coordinates.

That is, SPC(k) is isomorphic as a 2-edge-colored graph to the signed graph that
consists of a k-dimensional cube graph Qk on vertex set {0, 1}k with all edges positive
and with additional negative diagonals xx̄, where x̄ := (1, 1, . . . , 1)− x.

Proof. The proposition is obviously true for k = 1. We assume it for k and show how the
construction of SPC(k + 1) in Definition 30 produces the graph in the proposition.

By definition, the vertex set of EDC(SPC(k + 1)) is {(x, 0), (x, 1) : x ∈ {0, 1}k} and
the edges are the positive edges (x, 0)(y, 0) and (x, 1)(y, 1) whenever xy ∈ E+(SPC(k)),
(x, 0)(ȳ, 1) and (x, 1)(ȳ, 0) whenever xy ∈ E−(SPC(k)) (which means that y = x̄), and
the negative edges (x, 0)(x, 1) for all x ∈ {0, 1}k. Now relabel every vertex (x, 1) by the
new name (x̄, 1). With the new labeling, the signed edge set is identical to that of the
definition of SPC(k + 1) in the proposition.
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Corollary 32. The signed projective cube SPC(k) is antibalanced if and only if k is even
and is a signed bipartite graph if and only if k is odd.

Proof. This follows by induction from Theorem 29 applied to the definition of SPC(k).

6. Further Discussion and Future Work

We expect to extend many properties of homomorphisms and coloring of graphs to
signed graphs. The special interest here will be a stronger connection with graph minors.
However, many interesting ideas seem to arise independently. Here we mention only some
of the most challenging problems of the subject.

6.1. Signed projective cubes and packing of negative edge sets

The problem that motivated the introduction of homomorphisms of signed graphs (by
B. Guenin) is the following conjecture in extension of the Four-Color Theorem, proposed
in [16] and [5]:

Conjecture 33. We propose:

1. If (G,−) is an antibalanced signed planar graph satisfying g11(G,−) ≥ 2k + 1, then
(G,−)→ SPC(2k).

2. If (G, σ) is a signed planar bipartite graph satisfying g10(G, σ) ≥ 2k, then (G,−) →
SPC(2k − 1).

Combined with a result of [20] and terminology introduced here the conjecture amounts
to claiming that

i. for K = L = (∞,∞, 2k + 1) the (K,L)-chromatic number of planar graphs is 22k,

ii. for K = L = (∞, 2k,∞, ) the (K,L)-chromatic number of planar graphs is 22k−1.

It is then natural to ask more generally for the (K,L) chromatic number of planar
graphs, for each value of K and L. For K = (3, 4, 3), and L = (3, 2, 1) it was proposed
by Máčajová, Raspaud and Škoviera [15] that the (K,L)-chromatic number of the class
of planar signed graphs is 2. This conjecture has recently been disproved in [12]. For
K = L = (3, 4, 3), the question is about finding a smallest simple signed graph admitting
a homomorphism from every simple planar signed graph; the best known bounds so far
are a lower bound of 10 given in [19] and an upper bound of 40 given in [21]. T

The question captures some other well-known results or conjectures in the theory of
coloring planar graphs, such as the Grötzsch theorem and the Jaeger–Zhang conjecture.

Conjecture 33 is related to several other conjectures, a notable one being a conjecture
of P. Seymour on the edge-chromatic number of planar multigraphs. The connection
with homomorphisms to projective cubes and edge-partitioning problems is stated in
the following theorem, we refer to [18] for a proof and further details on connections to
Seymour’s edge-coloring conjecture.

Theorem 34 ([18]). A signed graph (G, σ) maps to SPC(k) if and only if E(G) can be
partitioned into k + 1 sets Ei such that each Ei is the set of negative edges of a signature
that is switching equivalent to σ.
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This leads to the following packing problem:

Problem 35. Given a signed graph (G, σ) what is the maximum number of signatures
σ1, σ2, . . . , σl such that

i. each σi is switching equivalent to σ, and

ii. the sets E−(σi) are pairwise disjoint?

A starting point for this question then is to ask whether, given a signed graph (G, σ),
there is a switching (G, σ′) that has no negative edge in common with (G, σ). Using our
results from Section 3 we may provide an easy test for this case of the question. We
consider that the empty graph, with no vertices or edges, is bipartite.

Theorem 36. Given a signed graph (G, σ), there exists a switching (G, σ′) such that the
two signed graphs have no negative edge in common if and only if the set of negative edges
of (G, σ) induces a bipartite graph.

Proof. Let G− be the subgraph induced by the set of negative edges of (G, σ). Note that
G− is bipartite if and only if its edge set is a subset of a cut [X, Y ] with Y := V (G) \X.

For sufficiency assume that G− is bipartite. Switching X, the negative edge set be-
comes [X, Y ] \ E−, which is disjoint from E− and induces a bipartite subgraph.

Conversely, if (G, σ) and (G, σ′) are switching equivalent with no common negative
edge, then the cut [X, Y ] which we switch to get one from the other contains all negative
edges of both; thus, both sets of negative edges together induce a bipartite graph.

(This short proof was contributed by Nicholas Lacasse.)

We note that the bipartition {X, Y } may not be unique, so the switched signed graph
may not be unique, but each such resulting signed graph has negative edge set that is
disjoint from E−. Indeed, every (G, σ′) whose negative edge set is disjoint from E− is
obtained in this way.

Alternate Proofs. Here is a different approach to necessity. If G− is not bipartite, then it
contains an odd cycle C. Since all edges of C are negative and it has odd length, it is a
negative cycle; thus any signature which is switching equivalent to σ must have an odd
number of edges of C; in particular at least one negative edge must belong to C, thus to
G−.

Here is an entirely different proof of sufficiency using a contraction technique that has
other applications. As in the short proof above, we assume G− is bipartite. Thus each
negative cycle, and, therefore, each negative closed walk, has at least one positive edge.
LetW be the set of negative closed walks of G. By Theorem 10,W satisfies the exclusive
3-walk property. Let Ḡ be the minor of G obtained by contracting all negative edges of
(G, σ) (without deletion of parallel edges or loops), and let W̄ be the set of closed walks
in Ḡ obtained from walks in W . As each walk in W has at least one positive edge, none
of the closed walks in W̄ is a trivial walk. It is then straightforward to check that W̄ has
inherited the exclusive 3-walk property, and therefore, by Theorem 10, W̄ is the set of
negative closed walks (Ḡ, η) for some signature η of Ḡ. As each edge of Ḡ corresponds to
an edge of G, we may lift η to a signature σ′ of G which assigns negative sign to exactly
those edges to which η has assigned a negative sign. As such, the set of negative closed
walks of (G, σ′) is the same as that of (G, σ). But since all negative edges of σ were
contracted to get Ḡ, the two signed graphs on G have no negative edge in common.
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We would like to point out the importance of this theorem in approaching Conjec-
ture 33. To this end we first restate the conjecture in the following uniform form:

Conjecture 37. A planar signed graph (G, σ) maps to SPC(k) if and only if the four
girth conditions of Lemma 17, the no-homomorphism lemma, are satisfied.

The two conjectures are equivalent because if for (G, σ) we have gij(G, σ) ≥ gij(SPC(2k)),
then since g01(SPC(2k)) = g10(SPC(2k)) = ∞, (G, σ) must be an antibalanced graph;
and similarly (G, σ) must be a signed bipartite graph in order to satisfy gij(G, σ) ≥
gij(SPC(2k − 1)).

While the case k = 1 of the conjecture is rather trivial, the case k = 2 of the conjecture
is equivalent to the four-color theorem. It is verified for k ≤ 7 through an equivalent
reformulation and by means of induction on k (we refer to [18] for details). In attempt to
apply induction (based on k) directly on this statement, what one would need is to find a
signature σ′ equivalent to σ, such that the signed graph (G̃, η) obtained by switching as in
the alternate proof of Theorem 36 satisfies the four conditions of the no-homomorphism
lemma for mapping to SPC(k − 1).

One may also consider a more general form of the question.

Problem 38. Given signed graphs (G, σ) and (G, η), are there switchings (G, σ′) and
(G, η′) such that the two signatures have no negative edge in common?

Problem 35 is the planar dual of the packing problem for T -joins. Consider a signed
plane graph (G, σ) and the consequent signs of dual vertices (i.e., faces of G). The dual
edges have the same signs as in the original signed graph. Let T be the set of negative
dual vertices. The negative edges of the dual graph G∗ have the property that they have
even degree at every positive vertex of G∗ and odd degree at every negative vertex. This
is the definition of a T -join. Switching (G, σ) to (G, σ′) does not change T , but it does
change the negative edge set. Thus, E−(G, σ) and E−(G, σ′) are disjoint if and only if
the corresponding T -joins are disjoint. Thus, packing the most negative edge sets as in
Problem 35 is the planar dual of packing the most T -joins in a graph with a fixed set T
of evenly many vertices.

Finally, we would like to mention a possible extension of Conjecture 37 in relation to
minors theory.

Conjecture 39. A signed graph (G, σ) without a (K5,−)-minor maps to SPC(k) if and
only if the four girth conditions of Lemma 17, the no-homomorphism lemma, are satisfied.

6.2. Future work

One may observe that the four no-homomorphism conditions of Lemma 17 are on the
four possible types of cycle based on the parity of the length and the sign. Parity itself is
the sign of the cycle when all edges are negative. This leads to the idea of assigning an
array of signatures to a given graph. A homomorphism among such structures then is a
mapping of basic elements that preserves the signs of closed walks in all signatures. We
hope to address this generalization and its properties in future work.

The algorithm of Proposition 18 is designed only to show that gij(G, σ) can be com-
puted in polynomial time. It would of interest to design more efficient algorithms. We
believe the computation should be possible in time O(n3).
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As an extension of the four-color problem, Hadwiger proposed that every simple graph
with no Kn-minor admits a proper (n− 1)-coloring. That is, any balanced signed graph
without a loop and with no (Kn,+)-minor admits a homomorphism to the balanced
complete graph on n−1 vertices. This is widely believed to be one of the most challenging
problems in graph theory. B. Gerards and P. Seymour independently then introduced a
strengthening of the conjecture which can be well stated using the terminology of signed
graphs:

Conjecture 40 (Odd-Hadwiger). If (G,−) is an antibalanced signed graph with no loop
that has no (Kn,−)-minor, then (G,−)→ (Kn−1,−).

This important conjecture remains wide open. B. Guenin in 2005 claimed a proof for
n = 4 (assuming the four-color theorem), but to now there has been no publication.
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[12] F. Kardǒs, J. Narboni. On the Four-Color Theorem for signed graphs. Submitted.
https://arXiv.org/abs/1906.05638

[13] W. Klostermeyer and C.Q. Zhang. (2 + ε)-coloring of planar graphs with large odd
girth. J. Graph Theory 33(2) (2000), 109–119.

[14] D. König. Theorie der endlichen und unendlichen Graphen. Akademische Verlagsge-
sellschaft, Leipzig, 1936.
English trans. by R.C. Read, Theory of Finite and Infinite Graphs. Birkhauser,
Boston, 1990.
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