T. T. Puck and P. I. Marcus, Action of x-rays on mammalian cells, J. Exp. Med, vol.103, pp.653-666, 1956.

H. B. Hewitt and C. W. Wilson, A survival curve for mammalian cells irradiated in vivo, Nature, vol.183, pp.1060-1061, 1959.

D. J. Brenner, The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction, Semin. Radiat. Oncol, vol.18, pp.234-239, 2008.

J. E. Munzenrider, L. J. Verhey, E. S. Gragoudas, J. M. Seddon, M. Urie et al., Conservative treatment of uveal melanoma: Local recurrence after proton beam therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.17, pp.493-498, 1989.

K. M. Egan, E. S. Gragoudas, J. M. Seddon, R. J. Glynn, J. E. Munzenreider et al., The risk of enucleation after proton beam irradiation of uveal melanoma, Ophthalmology, vol.96, pp.1377-1383, 1989.

E. B. Hug, L. N. Loredo, J. D. Slater, A. Devries, R. I. Grove et al., Proton radiation therapy for chordomas and chondrosarcomas of the skull base, J. Neurosurg, vol.91, pp.432-439, 1999.

G. Noël, J. L. Habrand, H. Mammar, D. Pontvert, C. Haie-méder et al., Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: The Centre de Protonthérapie D'Orsay experience, Int. J. Radiat. Oncol. Biol. Phys, vol.51, pp.392-398, 2001.

M. M. Fitzek, A. F. Thornton, J. D. Rabinov, M. H. Lev, F. S. Pardo et al., Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: Results of a phase II prospective trial, J. Neurosurg, vol.91, pp.251-260, 1999.

M. Mizumoto, T. Yamamoto, S. Takano, E. Ishikawa, A. Matsumura et al., Long-term survival after treatment of glioblastoma multiforme with hyperfractionated concomitant boost proton beam therapy, Pract. Radiat. Oncol, vol.5, pp.9-16, 2015.

R. Mohan and D. Grosshans, Proton therapy-Present and future, Adv. Drug Deliv. Rev, vol.109, pp.26-44, 2017.

J. R. Gunther, M. Sato, M. Chintagumpala, L. Ketonen, J. Y. Jones et al., Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.93, pp.54-63, 2015.

H. Paganetti, Proton Relative Biological Effectiveness-Uncertainties and Opportunities, Int. J. Part. Ther, vol.5, pp.2-14, 2018.

D. Thorwarth, M. Soukup, and M. Alber, Dose painting with IMPT, helical tomotherapy and IMXT: A dosimetric comparison, Radiother. Oncol, vol.86, pp.30-34, 2008.

S. E. Schild, W. G. Rule, J. B. Ashman, S. A. Vora, S. Keole et al., Proton beam therapy for locally advanced lung cancer: A review, World J. Clin. Oncol, vol.5, pp.568-575, 2014.

O. Bhattasali, E. Holliday, M. S. Kies, E. Y. Hanna, A. S. Garden et al., Definitive proton radiation therapy and concurrent cisplatin for unresectable head and neck adenoid cystic carcinoma: A series of 9 cases and a critical review of the literature, Head Neck, vol.38, 2016.

S. Lacombe, E. Porcel, and E. Scifoni, Particle therapy and nanomedicine: State of art and research perspectives, Cancer Nanotechnol, vol.8, issue.9, 2017.

R. A. Sharma, R. Plummer, J. K. Stock, T. A. Greenhalgh, O. Ataman et al., Clinical development of new drug-radiotherapy combinations, Nat. Rev. Clin. Oncol, vol.13, pp.627-642, 2016.

H. J. Lee, J. Zeng, and R. Rengan, Proton beam therapy and immunotherapy: An emerging partnership for immune activation in non-small cell lung cancer, Transl. Lung Cancer Res, vol.7, pp.180-188, 2018.

M. R. Horsman and J. Overgaard, The impact of hypoxia and its modification of the outcome of radiotherapy, J. Radiat. Res, vol.57, pp.90-98, 2016.

M. Maalouf, G. Alphonse, A. Colliaux, M. Beuve, S. Trajkovic-bodennec et al., Different mechanisms of cell death in radiosensitive and radioresistant p53 mutated head and neck squamous cell carcinoma cell lines exposed to carbon ions and x-rays, Int. J. Radiat. Oncol. Biol. Phys, vol.74, pp.200-209, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00382723

S. Ferrandon, P. Saultier, J. Carras, P. Battiston-montagne, G. Alphonse et al., Telomere profiling: Toward glioblastoma personalized medicine, Mol. Neurobiol, vol.47, pp.64-76, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830922

Y. Saintigny, S. Cruet-hennequart, D. H. Hamdi, F. Chevalier, and J. Lefaix, Impact of therapeutic irradiation on healthy articular cartilage, Radiat. Res, vol.183, pp.135-146, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01938044

A. Wozny, A. Lauret, P. Battiston-montagne, J. Guy, M. Beuve et al., Differential pattern of HIF-1? expression in HNSCC cancer stem cells after carbon ion or photon irradiation: One molecular explanation of the oxygen effect, Br. J. Cancer, vol.116, pp.1340-1349, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01938093

Y. Hagiwara, T. Oike, A. Niimi, M. Yamauchi, H. Sato et al., Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation, J. Radiat. Res, vol.60, pp.69-79, 2019.

C. Moncharmont, A. Levy, J. Guy, A. T. Falk, M. Guilbert et al., Radiation-enhanced cell migration/invasion process: A review, Crit. Rev. Oncol. Hematol, vol.92, pp.133-142, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016897

M. R. Atashzar, R. Baharlou, J. Karami, H. Abdollahi, R. Rezaei et al., Cancer Stem Cells: A Review from Origin to Therapeutic Implications, p.17, 2019.

C. Moncharmont, J. Guy, A. Wozny, M. Gilormini, P. Battiston-montagne et al., Carbon ion irradiation withstands cancer stem cells' migration/invasion process in Head and Neck Squamous Cell Carcinoma (HNSCC), Oncotarget, vol.7, pp.47738-47749, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01375896

O. Sokol, M. Krämer, S. Hild, M. Durante, and E. Scifoni, Kill painting of hypoxic tumors with multiple ion beams, Phys. Med. Biol, vol.64, p.45008, 2019.

V. Favaudon, C. Fouillade, and M. Vozenin, Ultrahigh dose-rate, "flash" irradiation minimizes the side-effects of radiotherapy, Cancer Radiother, vol.19, pp.526-531, 2015.

V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath et al., Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice, Sci. Transl. Med, vol.6, 2014.

M. Buonanno, V. Grilj, and D. J. Brenner, Biological effects in normal cells exposed to FLASH dose rate protons, Radiother. Oncol, vol.139, pp.51-55, 2019.

P. Vaupel and A. Mayer, Hypoxia in cancer: Significance and impact on clinical outcome, Cancer Metastasis Rev, vol.26, pp.225-239, 2007.

A. Kanemoto, R. Hirayama, T. Moritake, Y. Furusawa, L. Sun et al., RBE and OER within the spread-out Bragg peak for proton beam therapy: In vitro study at the Proton Medical Research Center at the University of Tsukuba, J. Radiat. Res, vol.55, pp.1028-1032, 2014.

T. Wenzl and J. J. Wilkens, Modelling of the oxygen enhancement ratio for ion beam radiation therapy, Phys. Med. Biol, vol.56, pp.3251-3268, 2011.

E. Malinen and Å. Søvik, Dose or "LET" painting-What is optimal in particle therapy of hypoxic tumors?, Acta Oncol, vol.54, pp.1614-1622, 2015.

E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist

L. Williams and &. Wilkins, , 2006.

Y. Furusawa, K. Fukutsu, M. Aoki, H. Itsukaichi, K. Eguchi-kasai et al., Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)Cand (20)Ne-ion beams, Radiat. Res, vol.154, pp.485-496, 2000.

L. Antonovic, E. Lindblom, A. Dasu, N. Bassler, Y. Furusawa et al., Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: The influence of local oxygenation changes, J. Radiat. Res, vol.55, pp.902-911, 2014.

C. D. Schlaff, A. Krauze, A. Belard, J. J. O'connell, and K. A. Camphausen, Bringing the heavy: Carbon ion therapy in the radiobiological and clinical context, Radiat. Oncol, vol.88, issue.9, 2014.

E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist

L. Williams, &. Wilkins, :. Philadelphia, and P. A. Usa, , 2012.

T. E. Schmid, G. Dollinger, W. Beisker, V. Hable, C. Greubel et al., Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation, Int. J. Radiat. Biol, vol.86, pp.682-691, 2010.

J. F. Ward, The complexity of DNA damage: Relevance to biological consequences, Int. J. Radiat. Biol, vol.66, pp.427-432, 1994.

B. D. Michael and K. M. Prise, A multiple-radical model for radiation action on DNA and the dependence of OER on LET, Int. J. Radiat. Biol, vol.69, pp.351-358, 1996.

T. Wenzl and J. J. Wilkens, Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications, Radiat. Oncol, 2011.

J. Meesungnoen and J. Jay-gerin, High-LET ion radiolysis of water: Oxygen production in tracks, Radiat. Res, vol.171, pp.379-386, 2009.

K. F. Baverstock and W. G. Burns, Primary production of oxygen from irradiated water as an explanation for decreased radiobiological oxygen enhancement at high LET, Nature, vol.260, pp.316-318, 1976.

H. Harada, How can we overcome tumor hypoxia in radiation therapy?, J. Radiat. Res, vol.52, pp.545-556, 2011.

T. W. Meijer, J. H. Kaanders, P. N. Span, and J. Bussink, Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy, Clin. Cancer Res, vol.18, pp.5585-5594, 2012.

F. S. Subtil, J. Wilhelm, V. Bill, N. Westholt, S. Rudolph et al., Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency, FASEB J, vol.28, pp.1412-1421, 2014.

A. Wozny, G. Vares, G. Alphonse, A. Lauret, C. Monini et al., ROS Production and Distribution: A New Paradigm to Explain the Differential Effects of X-ray and Carbon Ion Irradiation on Cancer Stem Cell Migration and Invasion, Cancers
URL : https://hal.archives-ouvertes.fr/hal-02124279

M. Shi, X. Guo, M. Shu, and L. Li, Enhancing tumor radiosensitivity by intracellular delivery of survivin antagonists, vol.68, pp.1056-1058, 2007.

E. A. Pérès, A. N. Gérault, S. Valable, S. Roussel, J. Toutain et al., Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe, Oncotarget, vol.6, pp.2101-2119, 2015.

H. Suit, T. Delaney, S. Goldberg, H. Paganetti, B. Clasie et al., Proton vs carbon ion beams in the definitive radiation treatment of cancer patients, Radiother. Oncol, vol.95, pp.3-22, 2010.

A. Brahme, Accurate description of the cell survival and biological effect at low and high doses and LET's, J. Radiat. Res, vol.52, pp.389-407, 2011.

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.454, pp.436-444, 2008.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

W. H. Fridman, F. Pagès, C. Sautès-fridman, and J. Galon, The immune contexture in human tumours: Impact on clinical outcome, Nat. Rev. Cancer, vol.12, pp.298-306, 2012.

M. R. Romo, D. Pérez-martínez, and C. C. Ferrer, Innate immunity in vertebrates: An overview, Immunology, vol.148, pp.125-139, 2016.

H. Wang and J. A. Joyce, Alternative activation of tumor-associated macrophages by IL-4: Priming for protumoral functions, Cell Cycle, vol.9, pp.4824-4835, 2010.

B. C. Kennedy, C. R. Showers, D. E. Anderson, L. Anderson, P. Canoll et al., Tumor-associated macrophages in glioma: Friend or foe?, J. Oncol, vol.486912, 2013.

C. Lan, X. Huang, S. Lin, H. Huang, Q. Cai et al., Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer, Technol. Cancer Res. Treat, vol.12, pp.259-267, 2013.

X. Zhao, J. Qu, Y. Sun, J. Wang, X. Liu et al., Prognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literature, Oncotarget, vol.8, pp.30576-30586, 2017.

J. Albanese and N. Dainiak, Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane-derived vesicles by ionizing radiation, Exp. Hematol, vol.31, pp.455-464, 2003.

M. R. Crittenden, B. Cottam, T. Savage, C. Nguyen, P. Newell et al., Expression of NF-?B p50 in tumor stroma limits the control of tumors by radiation therapy, PLoS ONE, vol.7, 2012.

C. Chiang, S. Y. Fu, S. Wang, C. Yu, F. Chen et al., Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front, Oncol, vol.2, p.89, 2012.

M. M. Leblond, E. A. Pérès, C. Helaine, A. N. Gérault, D. Moulin et al., M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma, Oncotarget, vol.8, pp.72597-72612, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02100869

T. Pinto, A. Laranjeiro-pinto, M. Patrícia-cardoso, A. Monteiro, C. Teixeira-pinto et al., Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities

Y. Xie, H. Zhang, Y. L. Wang, Q. M. Zhou, R. Qiu et al., Alterations of immune functions induced by 12C6+ ion irradiation in mice, Int. J. Radiat. Biol, vol.83, pp.577-581, 2007.

R. Lei, T. Zhao, Q. Li, X. Wang, H. Ma et al., Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo, Int. J. Mol. Sci, vol.16, pp.28334-28346, 2015.

Y. Takahashi, T. Yasui, K. Minami, K. Tamari, K. Hayashi et al., Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma, Oncotarget, vol.10, pp.633-646, 2018.

Z. Yang, N. Zhao, J. Meng, Z. Shi, B. Li et al., Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes, Oncotarget, vol.7, pp.26422-26435, 2016.

S. Conrad, S. Ritter, C. Fournier, and K. Nixdorff, Differential effects of irradiation with carbon ions and x-rays on macrophage function, J. Radiat. Res, vol.50, pp.223-231, 2009.

S. Chiblak, Z. Tang, D. Lemke, M. Knoll, I. Dokic et al., Carbon irradiation overcomes glioma radioresistance by eradicating stem cells and forming an antiangiogenic and immunopermissive niche, JCI Insight, vol.4, 2019.

A. Marín, M. Martín, O. Liñán, F. Alvarenga, M. López et al., Bystander effects and radiotherapy, Rep. Pract. Oncol. Radiother, vol.20, pp.12-21, 2015.

C. Mothersill and C. Seymour, Radiation-induced bystander effects: Past history and future directions, Radiat. Res, vol.155, pp.759-767, 2001.

S. Burdak-rothkamm and K. Rothkamm, Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses, Mutat. Res, vol.778, pp.13-22, 2018.

F. Chevalier, D. H. Hamdi, Y. Saintigny, and J. Lefaix, Proteomic overview and perspectives of the radiation-induced bystander effects, Mutat. Res. Rev. Mutat. Res, vol.763, pp.280-293, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02503001

K. M. Prise and J. M. O'sullivan, Radiation-induced bystander signalling in cancer therapy, Nat. Rev. Cancer, vol.9, pp.351-360, 2009.

C. Shao, M. Folkard, B. D. Michael, and K. M. Prise, Targeted cytoplasmic irradiation induces bystander responses, Proc. Natl. Acad. Sci, vol.101, pp.13495-13500, 2004.

E. I. Azzam, S. M. De-toledo, D. R. Spitz, and J. B. Little, Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures, Cancer Res, vol.62, pp.5436-5442, 2002.

C. Shao, M. Folkard, B. D. Michael, and K. M. Prise, Bystander signaling between glioma cells and fibroblasts targeted with counted particles, Int. J. Cancer, vol.116, pp.45-51, 2005.

F. M. Lyng, C. B. Seymour, and C. Mothersill, Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis, Br. J. Cancer, vol.83, pp.1223-1230, 2000.

O. Olobatuyi, G. De-vries, and T. Hillen, A reaction-diffusion model for radiation-induced bystander effects, J. Math. Biol, vol.75, pp.341-372, 2017.

G. G. Powathil, A. J. Munro, M. A. Chaplain, and M. Swat, Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments, J. Theor. Biol, vol.401, pp.1-14, 2016.

A. J. Munro, Bystander effects and their implications for clinical radiotherapy, J. Radiol. Prot, vol.29, pp.133-142, 2009.

C. Lepleux, A. Marie-brasset, M. Temelie, M. Boulanger, É. Brotin et al., Bystander effectors of chondrosarcoma cells irradiated at different LET impair proliferation of chondrocytes, J. Cell Commun. Signal, vol.13, pp.343-356, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02125509

S. R. Mehta, V. Suhag, M. Semwal, and N. Sharma, Radiotherapy: Basic Concepts and Recent Advances, Med. J. Armed Forces India, vol.66, pp.158-162, 2010.

W. Tu, C. Dong, J. Fu, Y. Pan, A. Kobayashi et al., Both irradiated and bystander effects link with DNA repair capacity and the linear energy transfer, Life Sci, vol.222, pp.228-234, 2019.

M. Buonanno, S. M. De-toledo, D. Pain, and E. I. Azzam, Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress, Radiat. Res, vol.175, pp.405-415, 2011.

S. J. Mcmahon, C. K. Mcgarry, K. T. Butterworth, J. M. O'sullivan, A. R. Hounsell et al., Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study, Int. J. Radiat. Oncol. Biol. Phys, vol.87, pp.1148-1154, 2013.

B. J. Blyth and P. J. Sykes, Radiation-induced bystander effects: What are they, and how relevant are they to human radiation exposures?, Radiat. Res, vol.176, pp.139-157, 2011.

P. B. Romesser, O. Cahlon, E. Scher, Y. Zhou, S. L. Berry et al., Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation, Radiother. Oncol, vol.118, pp.286-292, 2016.

T. I. Yock, B. Y. Yeap, D. H. Ebb, E. Weyman, B. R. Eaton et al., Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study, Lancet Oncol, vol.17, pp.287-298, 2016.

C. S. Chung, T. I. Yock, K. Nelson, Y. Xu, N. L. Keating et al., Incidence of second malignancies among patients treated with proton versus photon radiation, Int. J. Radiat. Oncol. Biol. Phys, vol.87, pp.46-52, 2013.

R. V. Sethi, H. A. Shih, B. Y. Yeap, K. W. Mouw, R. Petersen et al., Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy, Cancer, vol.120, pp.126-133, 2014.

O. Mohamad, B. J. Sishc, J. Saha, A. Pompos, A. Rahimi et al., Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research

S. Sugahara, T. Kamada, R. Imai, H. Tsuji, N. Kameda et al., Working Group for the Bone and Soft Tissue Sarcomas. Carbon ion radiotherapy for localized primary sarcoma of the extremities: Results of a phase I/II trial, Radiother. Oncol, vol.105, pp.226-231, 2012.

T. Yanagi, T. Kamada, H. Tsuji, R. Imai, I. Serizawa et al., Dose-volume histogram and dose-surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma, Radiother. Oncol, vol.95, pp.60-65, 2010.

K. Matsumoto, R. Imai, T. Kamada, K. Maruyama, H. Tsuji et al., Working Group for Bone and Soft Tissue Sarcomas. Impact of carbon ion radiotherapy for primary spinal sarcoma, Cancer, vol.119, pp.3496-3503, 2013.

R. Imai, T. Kamada, and N. Araki, Working Group for Bone and Soft Tissue Sarcomas. Carbon Ion Radiation Therapy for Unresectable Sacral Chordoma: An Analysis of 188 Cases, Int. J. Radiat. Oncol. Biol. Phys, vol.95, pp.322-327, 2016.

K. Maruyama, R. Imai, T. Kamada, H. Tsuji, and H. Tsujii, Carbon Ion Radiation Therapy for Chondrosarcoma, Int. J. Radiat. Oncol. Biol. Phys, vol.84, 2012.

S. Kato, T. Ohno, H. Tsujii, T. Nakano, J. Mizoe et al., Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix, Int. J. Radiat. Oncol. Biol. Phys, vol.65, pp.388-397, 2006.

S. Shiba, M. Wakatsuki, S. Kato, T. Ohno, N. Okonogi et al., Carbon-ion radiotherapy for locally advanced cervical cancer with bladder invasion, J. Radiat. Res, vol.57, pp.684-690, 2016.

O. Mohamad, T. Tabuchi, Y. Nitta, A. Nomoto, A. Sato et al., Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: A propensity score-weighted, retrospective, cohort study, Lancet Oncol, vol.20, pp.674-685, 2019.

, Biomarkers in Risk Assessment: Validity and Validation; World Health Organization, 2001.

R. Mayeux, Biomarkers: Potential uses and limitations, NeuroRx, vol.1, pp.182-188, 2004.

P. Maruvada, W. Wang, P. D. Wagner, and S. Srivastava, Biomarkers in molecular medicine: Cancer detection and diagnosis, BioTechniques, vol.38, pp.9-15, 2005.

S. Bonassi and W. W. Au, Biomarkers in molecular epidemiology studies for health risk prediction, Mutat. Res, vol.511, pp.73-86, 2002.

E. Pernot, J. Hall, S. Baatout, M. A. Benotmane, E. Blanchardon et al., Ionizing radiation biomarkers for potential use in epidemiological studies, Mutat. Res, vol.751, pp.258-286, 2012.

L. Cheng, B. Brzozowska, A. Sollazzo, L. Lundholm, H. Lisowska et al., Simultaneous induction of dispersed and clustered DNA lesions compromises DNA damage response in human peripheral blood lymphocytes, PLoS ONE, vol.13, 2018.

W. Zong and C. B. Thompson, Necrotic death as a cell fate, Genes Dev, vol.20, pp.1-15, 2006.

A. Pour-khavari, Y. Liu, E. He, S. Skog, and S. Haghdoost, Serum 8-Oxo-dG as a Predictor of Sensitivity and Outcome of Radiotherapy and Chemotherapy of Upper Gastrointestinal Tumours, Oxid. Med. Cell. Longev, 2018.

S. Zhou, W. Ye, Q. Shao, M. Zhang, and J. Liang, Nrf2 is a potential therapeutic target in radioresistance in human cancer, Crit. Rev. Oncol. Hematol, vol.88, pp.706-715, 2013.

X. Lou, J. Zhou, H. Ma, S. Xu, E. He et al., The Half-Life of Serum Thymidine Kinase 1 Concentration Is an Important Tool for Monitoring Surgical Response in Patients with Lung Cancer: A Meta-Analysis, Genet. Test. Mol. Biomark, vol.21, pp.471-478, 2017.

J. Wang, Q. Liu, X. Zhou, Y. He, Q. Guo et al., Thymidine kinase 1 expression in ovarian serous adenocarcinoma is superior to Ki-67: A new prognostic biomarker, Tumour Biol, 2017.

Y. Wang, X. Jiang, S. Dong, J. Shen, H. Yu et al., Serum TK1 is a more reliable marker than CEA and AFP for cancer screening in a study of 56,286 people, Cancer Biomark, vol.16, pp.529-536, 2016.

W. Kim, B. Son, S. Lee, H. Do, and B. Youn, Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy, Cancer Metastasis Rev, vol.37, pp.213-225, 2018.

M. Durante, N. Reppingen, and K. D. Held, Immunologically augmented cancer treatment using modern radiotherapy, Trends Mol. Med, vol.19, pp.565-582, 2013.

O. V. Belyakov, S. A. Mitchell, D. Parikh, G. Randers-pehrson, S. A. Marino et al., Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away, Proc. Natl. Acad. Sci, vol.102, pp.14203-14208, 2005.

K. Lumniczky and G. Sáfrány, The impact of radiation therapy on the antitumor immunity: Local effects and systemic consequences, Cancer Lett, vol.356, pp.114-125, 2015.

L. R. Ballou, S. J. Laulederkind, E. F. Rosloniec, and R. Raghow, Ceramide signalling and the immune response, Biochim. Biophys. Acta BBA Lipids Lipid Metab, vol.1301, pp.273-287, 1996.

F. Liu, Z. Wang, W. Li, and Y. Wei, Transcriptional response of murine bone marrow cells to total-body carbon-ion irradiation, Mutat. Res. Genet. Toxicol. Environ. Mutagen, vol.839, pp.49-58, 2019.

C. E. Hellweg, C. Baumstark-khan, C. Schmitz, P. Lau, M. M. Meier et al., Carbon-ion-induced activation of the NF-?B pathway, Radiat. Res, vol.175, pp.424-431, 2011.

K. N. Rithidech, P. Reungpatthanaphong, L. Honikel, A. Rusek, and S. R. Simon, Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells, Radiat. Environ. Biophys, vol.49, pp.405-419, 2010.

C. Björklund, T. Reilly, S. Gahm, C. Bottazzi, B. Mantovani et al., Increased long-term expression of pentraxin 3 in irradiated human arteries and veins compared to internal controls from free tissue transfers, J. Transl. Med, issue.11, 2013.

S. Skiöld, O. Azimzadeh, J. Merl-pham, I. Naslund, P. Wersall et al., Unique proteomic signature for radiation sensitive patients; A comparative study between normo-sensitive and radiation sensitive breast cancer patients, Mutat. Res, vol.776, pp.128-135, 2015.

S. Haghdoost, P. Svoboda, I. Näslund, M. Harms-ringdahl, A. Tilikides et al., Can 8-oxo-dG be used as a predictor for individual radiosensitivity?, Int. J. Radiat. Oncol. Biol. Phys, vol.50, pp.405-410, 2001.

H. Nikjoo, P. O'neill, M. Terrissol, and D. T. Goodhead, Quantitative modelling of DNA damage using Monte Carlo track structure method, Radiat. Environ. Biophys, vol.38, pp.31-38, 1999.

S. Skiöld, I. Naslund, K. Brehwens, A. Andersson, P. Wersall et al., Radiation-induced stress response in peripheral blood of breast cancer patients differs between patients with severe acute skin reactions and patients with no side effects to radiotherapy, Mutat. Res, vol.756, pp.152-157, 2013.

E. I. Azzam, J. Jay-gerin, and D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer Lett, vol.327, pp.48-60, 2012.

X. Zhou, N. Li, Y. Wang, Y. Wang, X. Zhang et al., Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change, vol.11, pp.886-892, 2011.

X. Li, X. Zha, Y. Wang, R. Jia, B. Hu et al., Toxic effects and foundation of proton radiation on the early-life stage of zebrafish development, Chemosphere, pp.302-312, 0200.

S. Haghdoost, S. Czene, I. Näslund, S. Skog, and M. Harms-ringdahl, Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro, Free Radic. Res, vol.39, pp.153-162, 2005.

S. Haghdoost, L. Sjölander, S. Czene, and M. Harms-ringdahl, The nucleotide pool is a significant target for oxidative stress. Free Radic, Biol. Med, vol.41, pp.620-626, 2006.

V. Prevost, F. Sichel, I. Pottier, A. Leduc, S. Lagadu et al., Production of early and late nuclear DNA damage and extracellular 8-oxodG in normal human skin fibroblasts after carbon ion irradiation compared to X-rays, Toxicol. In Vitro, vol.52, pp.116-121, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02181592

J. Shen, P. Deininger, J. D. Hunt, and H. Zhao, 8-Hydroxy-2 -deoxyguanosine (8-OH-dG) as a potential survival biomarker in patients with nonsmall-cell lung cancer, Cancer, vol.109, pp.574-580, 2007.

M. Erhola, S. Toyokuni, K. Okada, T. Tanaka, H. Hiai et al., Biomarker evidence of DNA oxidation in lung cancer patients: Association of urinary 8-hydroxy-2 -deoxyguanosine excretion with radiotherapy, chemotherapy, and response to treatment, FEBS Lett, vol.409, pp.287-291, 1997.

T. Dziaman, Z. Banaszkiewicz, K. Roszkowski, D. Gackowski, E. Wisniewska et al., 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients, Int. J. Cancer, vol.134, pp.376-383, 2014.

S. B. Murugaiyan, R. Ramasamy, M. Nakkeeran, V. Rangdhol, A. R. Srinivasan et al., Urinary 8-hydroxydeoxyguanosine as a marker of oxidative stress induced genetic toxicity in oral cancer patients, Indian J. Dent. Res, vol.26, pp.226-230, 2015.

B. F. Jordan and P. Sonveaux, Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy, Front. Pharm, vol.3, p.94, 2012.

C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks et al., Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality, Int. J. Radiat. Oncol. Biol. Phys, vol.47, pp.551-560, 2000.

S. M. Bentzen and V. Gregoire, Molecular imaging-based dose painting: A novel paradigm for radiation therapy prescription, Semin. Radiat. Oncol, vol.21, pp.101-110, 2011.

M. Gérard, A. Corroyer-dulmont, P. Lesueur, S. Collet, M. Chérel et al., Hypoxia Imaging and Adaptive Radiotherapy: A State-of-the-Art Approach in the Management of Glioma, Front. Med

A. Corroyer-dulmont, A. Chakhoyan, S. Collet, L. Durand, E. T. Mackenzie et al., Imaging Modalities to Assess Oxygen Status in Glioblastoma, Front. Med
URL : https://hal.archives-ouvertes.fr/hal-01587314

P. Mahasittiwat, J. Mizoe, A. Hasegawa, H. Ishikawa, K. Yoshikawa et al., )C] methionine positron emission tomography for target delineation in malignant gliomas: Impact on results of carbon ion radiotherapy, Int. J. Radiat. Oncol. Biol. Phys, vol.70, issue.11, pp.515-522, 2008.

L. Kong, J. Gao, J. Hu, R. Lu, J. Yang et al., Carbon ion radiotherapy boost in the treatment of glioblastoma: A randomized phase I/III clinical trial, Cancer Commun

C. Beck, I. Robert, B. Reina-san-martin, V. Schreiber, F. Dantzer et al., ADP-ribose) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3, vol.329, pp.18-25, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02369965

C. Beck, C. Boehler, J. Guirouilh-barbat, M. Bonnet, G. Illuzzi et al., PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways, Nucleic Acids Res, vol.42, pp.5616-5632, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065054

H. Farmer, N. Mccabe, C. J. Lord, A. N. Tutt, D. A. Johnson et al., Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature, vol.434, pp.917-921, 2005.

H. E. Bryant, N. Schultz, H. D. Thomas, K. M. Parker, D. Flower et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase, Nature, vol.434, pp.913-917, 2005.

A. J. Chalmers, M. Lakshman, N. Chan, R. G. Bristow, and . Poly, ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets, Semin. Radiat. Oncol, vol.20, pp.274-281, 2010.

P. Lesueur, F. Chevalier, J. Austry, W. Waissi, H. Burckel et al., ADP-ribose)-polymerase inhibitors as radiosensitizers: A systematic review of pre-clinical and clinical human studies, Oncotarget, vol.8, pp.69105-69124, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01938036

T. Hirai, H. Shirai, H. Fujimori, R. Okayasu, K. Sasai et al., Radiosensitization effect of poly(ADP-ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation, Cancer Sci, vol.103, pp.1045-1050, 2012.

P. Lesueur, F. Chevalier, E. A. El-habr, M. Junier, H. Chneiweiss et al., Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation, Sci. Rep, vol.8, p.3664, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738585

M. Césaire, U. Ghosh, J. Austry, E. Muller, F. P. Cammarata et al., Sensitization of chondrosarcoma cells with PARP inhibitor and high-LET radiation, J. Bone Oncol, vol.17, 2019.

T. Hirai, S. Saito, H. Fujimori, K. Matsushita, T. Nishio et al., Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells, Biochem. Biophys. Res. Commun, vol.478, pp.234-240, 2016.

R. J. Carter, C. M. Nickson, J. M. Thompson, A. Kacperek, M. A. Hill et al., Characterisation of Deubiquitylating Enzymes in the Cellular Response to High-LET Ionizing Radiation and Complex DNA Damage, Int. J. Radiat. Oncol. Biol. Phys, vol.104, pp.656-665, 2019.

M. Montenegro, S. N. Nahar, A. K. Pradhan, K. Huang, and Y. Yu, Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics, J. Phys. Chem. A, vol.113, pp.12364-12369, 2009.

R. Delorme, F. Taupin, M. Flaender, J. Ravanat, C. Champion et al., Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement, Med. Phys, vol.44, pp.5949-5960, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01690606

J. Kim, S. Seo, K. Kim, T. Kim, M. Chung et al., Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect, Nanotechnology, vol.21, p.425102, 2010.

S. Bonvalot, P. L. Rutkowski, J. Thariat, S. Carrère, A. Ducassou et al., NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2-3, randomised, controlled trial, Lancet Oncol, vol.20, pp.1148-1159, 2019.

C. Verry, L. Sancey, S. Dufort, G. Le-duc, C. Mendoza et al., Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol, BMJ Open, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381987

S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith et al., Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med, vol.366, pp.2443-2454, 2012.

T. Walle, R. Martinez-monge, A. Cerwenka, D. Ajona, I. Melero et al., Radiation effects on antitumor immune responses: Current perspectives and challenges, Adv. Med. Oncol, vol.10, 2018.

S. R. Gameiro, A. S. Malamas, M. B. Bernstein, K. Y. Tsang, A. Vassantachart et al., Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell-Mediated Killing, Int. J. Radiat. Oncol. Biol. Phys, vol.95, pp.120-130, 2016.

S. G. Ellsworth, Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors, Adv. Radiat. Oncol, vol.3, pp.512-519, 2018.

P. Fang, Y. Shiraishi, V. Verma, W. Jiang, J. Song et al., Lymphocyte-Sparing Effect of Proton Therapy in Patients with Esophageal Cancer Treated with Definitive Chemoradiation, Int. J. Part. Ther, vol.4, pp.23-32, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI