Dictionary learning via regression: vascular MRI application
Fabien Boux, Florence Forbes, Julyan Arbel, Emmanuel Barbier

To cite this version:

HAL Id: hal-02428647
https://hal.archives-ouvertes.fr/hal-02428647
Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dictionary learning via regression: vascular MRI application

Fabien Boux1,2, Florence Forbes1, Julyan Arbel1 and Emmanuel Barbier2

1INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann
2Grenoble Institut des Neurosciences (GIN)

Congrès National d’Imagerie du Vivant (CNIV) - 4th February 2019
Magnetic Resonance Fingerprinting (MRF)
Idea in the context of microvascularization

Magnetic Resonance Fingerprinting (MRF)

Principle

2-step procedure:

1. Dictionary design
 - Grid formation
 - MR signal simulations

2. Matching procedure
 - Distance computations
 - Estimation

Appeal of the MRF method: fast, robust, accurate and flexible

Limitations
Complex model and time-consuming simulation

The denser the grid, the more accurate the estimates

Typical dictionary size order:
\[\approx 100^{\text{Number of parameters}} \]

How to limit the growth of the dictionary while increasing the number of parameters?
Solve the inverse problem

High-to-low regression context

Find a way to reduce the dictionary sizes (keeping the estimation accuracy of MRF)

• Nearest-neighbor methods \rightarrow [D. Ma, *MRF* (2013)]

• Dictionary learning = regression, characteristics:
 • Nonlinear
 • From high-dimensional space to low-dimensional space
Proposed solution: regression
High-to-low regression context

- Kernel methods and local regression → [G. Nataraj, *PERK* (2017)]
- Neural Networks → [O. Cohen, *DRONE* (2018)]
- Model inference → *Proposed approach*

Gaussian locally-linear mapping (GLLiM)
- Solves nonlinear mapping problem automatically
- Solves the *inverse problem*, then derives the *forward model* parameters

Results

Synthetic data

Extremely fast and accurate estimation of 6 parameters while reducing the dictionary size by a factor > 60
Results
Real data

Anatomical image

Blood Volume faction maps (%)

Analytical approach

Relative differences (%)

Classic MRF estimates (10^5 signals)

Relative differences (%)

Regression MRF estimates (10^4)
GLLiM has the advantage to provide a full posterior distribution, from this distribution we compute:

- the **mean** to obtain the **parameter estimation**
- the **standard deviation** to obtain a **confidence index** related to
Summary

Previous and future works

- Very fast computation of estimates
- Important dictionary size reduction factor
- Accurate estimates (both on synthetical and real data)

Work not presented:
 - Dictionary conception

Future work:
 - Compare with neural network regressions
 - Validate results with histology
References

MRF methods:
• Ma, Dan, et al., Magnetic resonance fingerprinting, Nature (2013)
• Nataraj, Gopal, Jon-Fredrik Nielsen, and Jeffrey A. Fessler, Dictionary-free mri parameter estimation via kernel ridge regression, ISBI (2017)
• Cohen, Ouri, Bo Zhu, and Matthew S. Rosen, MR fingerprinting Deep RecOnstruction NEtwork (DRONE), MRM (2018)

Simulation tool:
• Pannetier, Nicolas Adrien, et al., A simulation tool for dynamic contrast enhanced MRI, PloS one (2013)

Regression:

Data:
Thank you for listening

fabien.boux@univ-grenoble-alpes.fr