Dictionary learning via regression: vascular MRI application

Fabien Boux, Florence Forbes, Julyan Arbel, Emmanuel Barbier

To cite this version:

HAL Id: hal-02428647
https://hal.archives-ouvertes.fr/hal-02428647
Submitted on 6 Jan 2020
Dictionary learning via regression: vascular MRI application

Fabien Boux1,2, Florence Forbes1, Julyan Arbel1 and Emmanuel Barbier2

1INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann
2Grenoble Institut des Neurosciences (GIN)

Congrès National d’Imagerie du Vivant (CNIV) - 4th February 2019
Magnetic Resonance Fingerprinting (MRF)
Idea in the context of microvascularization

Magnetic Resonance Fingerprinting (MRF)

Principle

2-step procedure:

1. Dictionary design
 - Grid formation
 - MR signal simulations

2. Matching procedure
 - Distance computations
 - Estimation

Appeal of the MRF method: **fast, robust, accurate and flexible**

Limitations
Complex model and time-consuming simulation

The denser the grid, the more accurate the estimates

Typical dictionary size order:
\[\approx 100^{\text{Nber of parameters}} \]

How to limit the growth of the dictionary while increasing the number of parameters?
Solve the inverse problem
High-to-low regression context

Find a way to reduce the dictionary sizes (keeping the estimation accuracy of MRF)

• Nearest-neighbor methods → [D. Ma, MRF (2013)]

• Dictionary learning = regression, characteristics:
 • Nonlinear
 • From high-dimensional space to low-dimensional space
Proposed solution: regression

High-to-low regression context

- Kernel methods and local regression \rightarrow [G. Nataraj, \textit{PERK} (2017)]
- Neural Networks \rightarrow [O. Cohen, \textit{DRONE} (2018)]
- Model inference \rightarrow \textit{Proposed approach}

Gaussian locally-linear mapping (GLLiM)

- Solves nonlinear mapping problem automatically
- Solves the \textit{inverse problem}, then derives the \textit{forward model} parameters
Extremely fast and accurate estimation of 6 parameters while reducing the dictionary size by a factor > 60
Results

Real data

<table>
<thead>
<tr>
<th>Blood Volume fraction maps (%)</th>
<th>Analytical approach</th>
<th>Classic MRF estimates (10^5 signals)</th>
<th>Regression MRF estimates (10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical image</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GLLiM has the advantage to provide a full posterior distribution, from this distribution we compute:

- the **mean** to obtain the **parameter estimation**
- the **standard deviation** to obtain a **confidence index** related to
Summary
Previous and future works

- Very fast computation of estimates
- Important dictionary size reduction factor
- Accurate estimates (both on synthetical and real data)

Work not presented:
 • Dictionary conception

Future work:
 • Compare with neural network regressions
 • Validate results with histology
References

MRF methods:
• Ma, Dan, et al., Magnetic resonance fingerprinting, Nature (2013)
• Nataraj, Gopal, Jon-Fredrik Nielsen, and Jeffrey A. Fessler, Dictionary-free mri parameter estimation via kernel ridge regression, ISBI (2017)
• Cohen, Ouri, Bo Zhu, and Matthew S. Rosen, MR fingerprinting Deep RecOnstruction NEtwork (DRONE), MRM (2018)

Simulation tool:
• Pannetier, Nicolas Adrien, et al., A simulation tool for dynamic contrast enhanced MRI, PloS one (2013)

Regression:

Data:
Thank you for listening

fabien.boux@univ-grenoble-alpes.fr