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Abstract

This paper considers a discrete-time scheduling method for the power balancing of a continuous-time DC microgrid
system. A high-order dynamics and a resistor network are used for modelling the electrical storage unit and the DC
bus of the centralized microgrid system, respectively. A PH (Port-Hamiltonian) formulation on graphs is employed to
explicitly describe the microgrid topology. This modelling approach allows us to derive a discrete-time model which
preserves the power and energy balance of the physical system. Next, a constrained economic MPC (Model Predictive
Control) using the proposed control model is formulated for efficiently managing the microgrid operation. The systematic
combination of the network modelling method and optimization-based control allows us to generate the appropriate power
profiles. Finally, the benefits of the proposed approach are validated through simulation and comparison results over a
particular DC microgrid elevator system under different scenarios and using real numerical data.
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1. Introduction

Nowadays, industrial and research communities are con-
centrating their attention to microgrid systems and their
development for improving the energy reliability of the
classical power grid. A microgrid is represented by a group5

of interconnected customer loads and Distributed Energy
Resources (DER) within clearly defined electrical bound-
aries which acts as a single controllable entity that can
connect and disconnect from the grid (known as “island-
ing”) [1].10

DERs are small power sources that can be aggregated
to provide the power necessary to meet (part of) a reg-
ular demand. It includes the distributed energy storage
and generation systems. The distributed energy genera-
tion systems are integrated to the local system to reduce15

the impact on the environment of the fossil fuel resources.
However, the electricity price of the external grid varies
during a day. It may be expensive when the energy de-
mand is high. Moreover, the power supplied by the dis-
tributed energy generation system is unstable [2, 3]. Con-20

sequently, the distributed energy storage system is used to
store energy when it is available and cheap. Then, it is
reused in the contrary case. In microgrids, DERs are con-
nected to the load systems through converters to satisfy
the energy demand [4, 5].25

We focus here on DC microgrid systems (e.g., the multi-
source elevator system described in Fig. 1) due to their
ability to integrate (through DC/DC or AC/DC convert-
ers) different distributed renewable energy resources which
generate DC power (e.g., the solar panel) or AC power with30

varying frequencies (e.g., wind turbine). Nonetheless, DC
to AC converters are still necessary due to the fact that
some sources and loads cannot be directly connected to
the DC bus.

Within the global energy system the fast dynamics cor-35

respond to the actuators (e.g., converter, motor), trans-
mission lines and high power energy storage (e.g., super-
capacitor) which need to be stabilized around a set-point
(see, e.g, [6, 7]). The slow dynamics correspond to the en-
ergy storage unit (e.g., battery, elevator system, thermal40

system) and are governed by cost criteria [8, 9]. Thus,
at the control design step we need to take into account
the different timescales appearing in the system dynam-
ics. With respect to the above mentioned issues, let us
delineate the following remarks:45

• The energy cost optimization is generally a
continuous-time optimization problem for which the
solution gives the time profile of the control variables.
Usually, it is difficult to find its exact solution. In
this work, we consider the indirect approach where50

we discretize the optimization problem to obtain a
finite-dimensional optimization problem which is eas-
ier to solve (the reader is referred to [10] for details
on the direct and indirect approaches). Moreover, its
discretization requires the discrete-time model of the55

microgrid dynamics.

• The microgrid dynamics has different time scales [11].
To reduce the computational complexity, the energy
cost optimization usually uses the slow dynamics ob-

Preprint submitted to International Journal of Electrical Power & Energy Systems November 30, 2019



tained by reducing the fast dynamics of the converter60

and the transmission lines.

The excess power of a distributed system is usually eval-
uated by selling to the external grid or storing in an elec-
trical storage system. Hence, the storage scheduling is
an important issue, knowing the fact that the storage ca-65

pacity (i.e., power and energy) is limited. The authors
of [1, 12] proposed a reactive method (without consider-
ing prediction) based on logical rules to switch the sys-
tem to different operation modes. To reduce the required
computation and increase the robustness, this method is70

formulated in [13] through the use of multi-agent systems
paradigm. However, this approach is not efficient since,
in some cases, the battery can charge from the external
grid when the electricity price is expensive. An off-line
optimization-based control approach which takes into ac-75

count the system dynamics, constraints and power pre-
diction is proposed in [14, 15]. However, to improve the
control design robustness, some works concentrate on its
on-line version, i.e., MPC (Model Predictive Control) (see,
e.g., [16]). Note that there are two types of MPC: tracking80

MPC [17, 18] and economic MPC [19, 20]. The tracking
MPC aims at stabilizing the systems to given references by
penalizing in the cost function the discrepancies between
controlled variables and their references. Moreover, for
the effectiveness, chosen cost functions are usually convex85

which are minimal on the corresponding reference profiles.
In economic MPC, the cost functions reflect profit criteria
which are generally nonlinear and non-convex. Moreover,
this controller is used to generate references for lower levels
regulators. Thus, the MPC for minimizing the electricity90

cost of microgrid systems can be categorized into economic
MPC [9].

The authors in [8, 21] use in an MPC framework simple
models for the battery and/or transmission lines which do
not entirely capture the real dynamics properties. They95

use a first-order model for the electrical storage unit. In
fact, the electrical storage unit (e.g., a battery) may in-
clude many sub-storage parts which are connected by resis-
tive elements. Only some of these parts can directly supply
the energy. For the slow time scale, the internal charge dis-100

tribution between these parts can not be ignored. Thus, a
first-order model for the electrical storage unit may give in-
correct informations about the real available charge. Also,
in these works, the transmission lines network dynamics
are simply described by a power balance relation. This is105

not realistic for DC microgrids where the components are
placed far from the each other [4]. Hence, the resistance
of the transmission lines can not be neglected.

In general, the microgrid dynamics has at least two en-
ergetic properties which may be useful for studying the en-110

ergy cost optimization: the energy balance and the under-
lying power-preserving structure. For example, [9, 22] and
many other works do not take explicitly into account these
properties when developing the model of the microgrid sys-
tem. Thus, the properties may be lost while studying the115

energy cost optimization through the model discretization
and reduction. To preserve these energetic properties, we
employ a modelling approach using the Port-Hamiltonian
formulation where the system power-preserving intercon-
nection and the stored energy are explicitly described [23].120

The PH formalism is useful for the system stability anal-
ysis and for the control design based on the interconnec-
tion, dissipation and stored energy of the system dynam-
ics. An interesting property of PH systems is the pas-
sivity where the energy (Hamiltonian) is considered as125

a Lyapunov function. There are many control methods
developed for the PH systems as presented in [23], e.g.,
Control by Interconnection, Interconnection and Damping
Assignment Passivity-Based Control (IDA PBC). None of
these methods can explicitly deal with state and input130

constraints. MPC on the other hand can handle them suc-
cessfully. While the theory on linear MPC gained ground
over the last decades, the non linear and economic MPC
are still under active research due to theoretical and prac-
tical issues. For example, stability demonstration for the135

closed-loop nonlinear system is difficult since a Lyapunov
function is not easy to find. From the previous arguments,
while both PH formalism and MPC are established tools
in the literature, to the best of our knowledge they have
never been considered together by the control community.140

The present paper extends the work of the authors pro-
posed in [24] where a discrete-time economic MPC for
power balancing in a continuous DC microgrid is proposed.
More specifically, this work includes the following contri-
butions:145

• A PH formulation which completely describes the
power interconnection of the DC microgrid compo-
nents is developed. Moreover, the PH representation
on graphs (see also [25]) allows us to explicitly capture
the topology of the electrical circuit. It is simplified to150

the classical hybrid input-output representation of the
microgrid network associated with constraints. Using
the latter formulation we reduce the variable number
and the optimization complexity while preserving the
system topology.155

• A discrete-time model preserving the power and en-
ergy balance is derived.

• A centralized economic MPC design for battery
scheduling is developed taking into account the global
discrete time model of the system, constraints and160

electricity cost minimization.

• Extensive simulation and comparison scenarios are
implemented. The results illustrate the increasing
electricity cost profit by increasing the DERs dimen-
sions, the robustness of the control method and its165

economic efficiency with respect to other control for-
mulations.

This paper is organized as follows. Section 2 details
some basic notion on PH systems on graphs. Section 3
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introduces the DC microgrid model and the constraints.170

Next, Section 4 formulates the online constrained opti-
mization problem for reliable battery scheduling. Section
5 details the simulation result under different scenarios.
Finally, Section 6 draws the conclusions and presents the
future work.175

Notation

This subsection presents the important notations used
throughout the paper.

Table 1: Notations and fonts for the parameters and the variables.
Notation Description
(.)(t) continuous-time function (.)
˙(.)(t) time derivative of (.)(t)

(.)(j) discrete-time function (.)

(.)(t) reference value of (.)(t)
(.)(t+ τ |t) denotes the value of (.) at time instant t+ τ ,

predicted upon the information available at
time t ∈ N.

H Hamiltonian function
∂xH(x) partial derivative of H with respect to x
∇H(x) gradient of H(x)
i, v current and voltage
x state variable
P power
R resistor
qmax maximal battery charge
d duty cycle
h time step
α, β ratios between the real and reference values
B incidence matrix
Q weight matrix of the Hamiltonian
1n vector of n entries 1
In identity matrix of dimension n
0n×m matrix of all entries 0 with size of n×m
Element Font
Scalar parameter Capital letter
Scalar variable Normal letter
Vector Normal and bold letter
Matrix Capital and bold letter
Set Capital and blackboard bold letter

2. Preliminaries

In this section, we present the PH systems on graphs180

and the MPC formulation which will be further used to
express the power balancing problem.

2.1. Port-Hamiltonian systems on graphs

This subsection briefly introduces some basic definitions
and notions related to PH systems on graphs, which will185

be further used for modelling the DC network (for more
details the reader is referred to [25]).

Definition 2.1. [Directed (closed) graph, [25]] A directed
graph G = (V,E) consists of a finite set V of Nv vertices,
a finite set E of Ne directed edges, together with a mapping
from E to the set of ordered pairs of V, where no self-loops
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converter DC/DC

converter

DC/DC
converter

Three phase
utility grid

ite

vte

itb

vtb

itr
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itl vtl

VDC DC/AC
converter

SPMSM

Elevator
system

Figure 1: DC microgrid elevator system.

are allowed. The incidence matrix B ∈ RNv×Ne describes
the map from E to V such that:

Bij =

 1, if node i is a head vertex of edge j,
−1, if node i is a end vertex of edge j,

0, else.
(1)

Next, the graph notion is used to define the Kirchhoff-
Dirac (KD) structure of a DC circuit G of Nv nodes and
Ne edges.190

Definition 2.2. [KD structure on graphs, [25]] The KD
structure on graphs is defined as:

D(G) = {(i,v) ∈ RNe × RNe |
Bi = 0, ∃vp ∈ RNv such that v = −BTvp},

(2)

where B is the incidence matrix of the electrical circuit
graph G as defined in (1), vp ∈ RNv denotes the node
potential, v ∈ RNe denotes the edge voltage and i ∈ RNe

denotes the edge current.

To formulate the PH systems, Ne edge ports (i,v) as195

in Definition (2.2) are partitioned into NS energy storage
ports (iS ,vS), NR resistive ports (iR,vR) and NE external
ports (iE ,vE).

Definition 2.3. [PH systems on graphs, [25]] Consider
a state space X with its tangent space TxX, co-tangent
space T ∗

xX, and a Hamiltonian H : X → R, defining
the energy-storage. A PH system of KD structure D(G)
on X is defined by a Dirac structure D(G) ⊂ TxX ×
T ∗
xX × RNR × RNR × RNE × RNE having energy-storing

port (iS ,vS) ∈ TxX× T ∗
xX, a resistive structure

R =
{

(iR,vR) ∈ RNR × RNR
∣∣r(iR,vR) = 0, iTRvR ≤ 0

}
,
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and the external ports (iE ,vE) ∈ RNE × RNE . Generally,
the PH dynamics are described by

(−ẋ(t),∇H(x), iR(t),vR(t), iE(t),vE(t)) ∈ D(G).

2.2. Brief overview of Model Predictive Control

This subsection recalls the general formulation of MPC
(Model Predictive Control) which will be used for the en-
ergy management problem formulation within the micro-
grid (for more details the reader is referred to [18]). Let
x(t + h) = g(t,x(t),u(t)) be a discrete-time dynamical
system, where t is the time instant, h is the time step,
x(t) ∈ X(t) is the state vector, and u(t) ∈ U(t) is the con-
trol vector. We denote the predicted values of the variables
at instant t+ jh by x(j|t), u(j|t) with j ∈ N. We consider
the recursive construction of an optimal open-loop state
and control sequences:

X(t) , {x(0|t), . . . ,x(j|t), . . . ,x(Np − 1|t),x(Np|t)},
U(t) , {u(0|t), . . . ,u(j|t), . . . ,u(Np − 1|t)}

at instant t over a finite receding horizon, Np, which leads
to a feedback control policy by the effective application of
the first control action as system input:

u(t|t) =

argmin
U(t)

[
Vf (t,x(Np|t)) +

Np−1∑
j=0

Vr(t+ jh,x(j|t),u(j|t))
]

subject to

x(j + 1|t) = g(t+ jh,x(j|t),u(j|t)),
x(0|t) = x(t),

x(j + 1|t) ∈ X(t+ (j + 1)h),
u(j|t) ∈ U(t+ jh),

x(Np|t) ∈ Xf (t),

where j = 0, . . . , Np−1. Vf (t,x(t)), Vr(t,x(t),u(t)), Xf (t)200

are the final cost, the running cost and the final set, re-
spectively, which are also the tuning control parameters.

3. DC microgrid model

This section describes in detail the model of the DC mi-
crogrid elevator system illustrated in Fig. 1. The system205

is equivalently represented by the electrical DC circuit in
Fig 2 where we denote at the circuit node 1 the common
ground.

3.1. Components models and constraints

3.1.1. External grid:210

As illustrated in Fig. 2 the DC microgrid is connected
to the AC external grid which is modeled here as a control-
lable current source ie(t) ∈ R with the following physical
limitations:

ie,min ≤ ie(t) ≤ ie,max, (3)

with the upper and lower bounds ie,max, ie,min ∈ R.

3.1.2. Load unit:

The load component of the DC microgrid represents
a combination of the electromechanical elevator and an
AC/DC converter. Here, we simply model this as a power
source Pl(t) ∈ R under current, il(t) ∈ R, and voltage,
vl(t) ∈ R, constraint:

il(t)vl(t) = −Pl(t). (4)

3.1.3. Renewable source:

The DC microgrid system contains a solar panel and the
corresponding DC/DC converter. Similarly, we model the
distributed energy resource as a power source Pr(t) ∈ R
satisfying the following relation:

ir(t)vr(t) = Pr(t), (5)

with ir(t), vr(t) ∈ R the renewable source current and volt-
age as illustrated in Fig. 2.215

3.1.4. Electrical storage unit:

We consider here a lead-acid type of battery which is
modelled as two electronic “wells”, a bridge connecting
them described by R1 and an internal resistor R2 (see also
Fig. 2) [26, 27]. Therefore, hereinafter, we denote by
x(t) ∈ R2 the battery charges. The Hamiltonian repre-
senting the stored energy in the battery is given by:

H(x) = x(t)TQ1 +
1

2
x(t)TQ2x(t), (6)

with Q1 = E12 ∈ R2, Q2 = diag{C1, C2} ∈ R2×2. E is
the battery internal voltage; C1 and C2 are the battery
internal capacitances. Usually, each battery has some lim-
itations on the quantity of charged energy. Furthermore,
the battery stored charge must be greater than half its
capacity (kept in case of unexpected events):

αminxmax ≤ x(t) ≤ αmaxxmax, (7)

with xmax ∈ R2, αmin and αmax are appropriate co-
efficients such that 0 < αmin < αmax < 1. In the
one-dimension model of the battery ([28]), the maximum
charge qmax ∈ R is derived from xmax by the relation:

qmax = 1T
2 xmax. (8)

Furthermore, the battery charge/ discharge current (equal
to the current of internal resistor ib,R2(t)) respects some
limitation range given by the manufacturer.

ib,min ≤ ib,R2(t) ≤ ib,max, (9)

with ib,min, ib,max ∈ R. Since this limitation of the bat-
tery current is valid for both charge and discharge modes
of the battery operation, ib,min is considered negative, and
ib,max is considered positive. Moreover, the maximum dis-220

charge current is usually greater than the maximum charge
current, i.e., −ib,min > ib,max.
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Figure 2: Electrical circuit of the DC microgrid.

Using the classical physics theory, the Ohm’s law, we
derive the current and voltage relation for the battery re-
sistors:

RbibR(t) + vbR(t) = 0, (10)

with

ibR(t) =

[
ib,R1(t)
ib,R2(t)

]
, vbR(t) =

[
vb,R1(t)
vb,R2(t)

]
∈ R2, (11)

and Rb = diag{R1, R2} ∈ R2×2 a positive diagonal matrix
(see also Fig. 2).

3.1.5. The DC/DC converter:225

As illustrated in Fig. 2, the battery has an associated
DC/DC converter which is assumed to be an ideal trans-
former described by the following relations:{

d(t)ic1(t) = −ic2(t),

vc1(t) = d(t)vc2(t),
(12)

where d(t) ∈ R represents the positive duty cycle:

d(t) > 0. (13)

While in the rest of the paper we assume no loss at
charge/discharge in the DC/DC converter for simplicity,
non zero charge/discharge losses can be taken into account
by the resistor series connections to the two sides of the
converter in Fig. 2 with appropriate values. These addi-230

tional resistors are, then, fused with the resistors of the
battery or the DC bus. Consequently, with suitable resis-
tor values of the battery and/or the DC bus, the electrical
circuit of the DC microgrid in Fig. 2 is still valid.

3.1.6. Transmission lines and resistor network:235

The DC bus, i.e., the transmission lines, are illustrated
in the electrical circuit of Fig. 2. It is modeled, in gen-
eral, as a capacitor connected in parallel with the power
units ([29]). In a large DC microgrid, the capacitor, induc-
tor and resistor cannot be neglected [30]. However, in the
forthcoming scheduling problem, the DC bus dynamics is

stabilized, that is, its capacitors and inductors are elimi-
nated. Thus, the DC bus model is reduced to a resistor
network (see [31]). Using the classical physics theory, the
Ohm’s law, we derive the current and voltage relation for
the resistor network:

RtitR(t) + vtR(t) = 0, (14)

with

itR(t) = [it,bl(t) it,be(t) it,er(t) ib,rl(t)]
T ∈ R4,

vtR(t) = [vt,bl(t) vt,be(t) vt,er(t) vt,rl(t)]
T ∈ R4,

(15)
and Rt = diag{Rbl, Rbe, Rer, Rlr} ∈ R4×4 a positive diag-
onal matrix (see also Fig. 2).

Next, using the definition of the KD structure in (2) we
present the interconnections of the DC microgrid network
through a closed graph.240

3.2. DC microgrid network

The microgrid network includes all the elements enumer-
ated above, the battery charges, the load, the renewable
source, the external grid, the DC/DC converter and the
resistor network of the DC bus.245
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Figure 3: Directed graph corresponding to the DC microgrid circuit.
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The edge current and voltage vectors, i(t),v(t) ∈ R13,
are denoted by:{

i(t) = [−ẋT (t) ic1(t) iTE(t) iTbR(t) iTtR(t)]T ,
v(t) = [∇HT (t) vc1(t) vT

E(t) vT
bR(t) vT

tR(t)]T ,
(16)

where{
iE(t) = [ic2(t) il(t) ie(t) ir(t)]T ∈ R4,
vE(t) = [vc2(t) vl(t) ve(t) vr(t)]T ∈ R4,

(17)

gathers the currents and voltages of the load, the external
grid and the renewable source, respectively. As illustrated
in Fig. 2, we consider node 1 as the circuit “ground” node
of the DC microgrid hence, its potential is set to zero:

vp1(t) = 0, (18)

and used as reference for measuring the potential at
the other nodes in the circuit denoted by vp(t) =
[vp1(t) vT

p2(t)]T with vp2(t) ∈ R7. From the Definition 2.2,
the Kirchhoff-Dirac structure of the microgrid network is
described as: {

v(t) = −BTvp(t),

0 = Bi(t),
(19)

where B ∈ R8×13 is the incidence matrix defined in (1):

B =

[
1T
7 0

−I7 B22

]
, (20)

with B22 ∈ R7×6 describing the interconnection of the
resistor network:

B22 =



1 −1 0 0 0 0
−1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 1 0 0
0 0 −1 0 0 −1
0 0 0 −1 1 0
0 0 0 0 −1 1


. (21)

By considering the incidence matrix form in (20), we
simplify the algebraic equations in (19) and eliminate the
node potential vector, vp(t). Let the edge current and
voltage vectors, i(t) and v(t), defined in (16) be partitioned
into the vectors i1(t) ∈ R7, i2(t) ∈ R6, v1(t) ∈ R7 and
v2(t) ∈ R6 such as:

i1(t) = [ −ẋT (t) ic1(t) iTE(t) ]T ,

v1(t) = [ ∇HT (t) vc1(t) vT
E(t) ]T ,

i2(t) = [ iTbR(t) iTtR(t) ]T ,

v2(t) = [ vT
bR(t) vT

tR(t) ]T .

(22)

Note that i1(t), v1(t) describe the currents and voltages
of the battery capacitors, the energy sources and the con-
verter. Next, i2(t), v2(t) describe the currents and volt-
ages of the circuit resistors. From (18), (19)-(22), the mi-
crogrid network described in (19)-(21) is rewritten as:[

i1(t)
v2(t)

]
=

[
0 B22

−BT
22 0

] [
v1(t)
i2(t)

]
, (23)

where i1(t), v1(t), i2(t), v2(t) are defined in (22).
Note that the equations (23) imply the power-preserving
property of the microgrid network thanks to the skew-
symmetric form of the interconnection matrix.

Remark 3.1. As we can see in (21), matrix B22 has the
following form:

B22 =

[
Bb 03×4

04×2 Bt

]
, (24)

where the matrices Bb ∈ R3×2 and Bt ∈ R4×4 represent250

the structure of the battery and the transmission lines.
Thus, for describing the structure of a more complex mi-
crogrid where many electricity storage units and power
sources are used, we independently add other blocks Bb

and modify matrix Bt with corresponding sizes.255

Next, we introduce the microgrid dynamics which char-
acterizes the centralized system.

3.3. Global DC microgrid model

Combining the above relations (4)-(6), (10), (12), (14),
(22) and (23) we formulate the global microgrid model:[

i1(t)

v2(t)

]
=

[
0 B22

−BT
22 0

][
v1(t)

i2(t)

]
, (25a)[

vc1(t)

ic2(t)

]
=

[
0 −d(t)

d(t) 0

][
ic1(t)

vc2(t)

]
, (25b)

ir(t)vr(t) = Pr(t), (25c)

il(t)vl(t) =− Pl(t), (25d)

vbR(t) =−RbibR(t), (25e)

vtR(t) =−RtitR(t), (25f)

where i1(t), v1(t) ∈ R7 gather the current and voltage
variables of the microgrid components, i2(t), v2(t) ∈ R6

260

gather the current and voltage variables of the resistors
of the battery and of the transmission lines (see also
(22)). Also, in (25), ic1(t), ic2(t), vc1(t), vc2(t) ∈ R
are the current and voltage variables at the two sides of
the DC/DC converter (see also (12)), ir(t), vr(t) ∈ R are265

the current and voltage variables of the renewable source,
il(t), vl(t) ∈ R are the current and voltage variables of the
load (i.e., the electro-mechanical elevator). Furthermore,
d(t) ∈ R is the converter duty cycle, B22 ∈ R7×6 is the
structure matrix defined in (21). Next, ibR(t), vbR(t) ∈ R2

270

are the current and voltage variables of the battery re-
sistors in (11), itR(t), vtR(t) ∈ R4 are the current and
voltage variables of the transmission line resistors in (15).
Rb ∈ R2×2, Rt ∈ R4×4 are the resistive matrices of the
battery and of the transmission lines in (11) and (15), re-275

spectively.

Remark 3.2. The transmission line resistances Rt in
(14) can be easily measured. The battery parameters Rb,
Q1 and Q2 in (10) and (6) can be off-line determined
through experimental identification [26].280
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Remark 3.3. The internal battery variables can be esti-
mated using observers. Indeed, from (10)-(11) and (21)-
(23), we derive the battery dynamics:

ẋ1(t) = − 1

R1C1
x1(t) +

1

R1C2
x2(t),

ẋ2(t) =
1

R1C1
x1(t)− 1

R1C2
x2(t) + ic1(t),

vc1(t) = E +
1

C2
x2(t) +R2ic1(t).

(26)

It is easy to verify that system (26) is observable (i.e., the
observability matrix is full rank). This implies that, by
using the battery current and voltage measurement with a
suitable observer, we can estimate the battery charges, and
thus, the other variables.285

3.4. Reference profiles

All the elements of the electrical system are character-
ized by certain profiles of reference. The following data
profiles are taken from the industrial partner Sodimas (an
elevator company from France) and illustrated in Fig. 4.290

Taking into account the available statistical measurements
of electricity consumption we consider the reference power
of the consumer denoted by Pl(t). Furthermore, we de-
note by Pr(t) the power profile of the renewable source
estimated from meteorological data. Lastly, by using ex-295

isting historical data of electricity market, we denote the
predicted electricity price profile by price(t). Moreover, we
assume that the selling and buying prices are the same.
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Figure 4: Profiles of load, renewable power and electricity price.

Having the centralized model, constraints and param-
eter profiles of the microgrid system we formulate in the300

forthcoming section the global optimal power balancing
problem.

4. Battery scheduling by optimization-based con-
trol

In this section, the previously developed dynamics, con-305

straints and profiles will be used in a discrete-time con-
strained optimization problem. Hence, we will first intro-
duce the global discrete-time model of the DC microgrid

which preserves the energy conservation properties of the
continuous time model formulated in (6), (11), (15), (17),310

(21)-(22) and (25). The ultimate goal is to provide an ef-
ficient scheduling for the electrical storage such that cost
and constraints are satisfied.

4.1. Energy-preserving discrete-time model

In general, when discretizing a continuous time system,
the energy conservation property should always be taken
into account. For a nonlinear PH system as in (6), (11),
(15), (17), (21)-(22) and (25) this property can be ensured
by preserving the KD structure (2) and the energy flowing
through the storage ports (see also Fig. 5). Let (.)(j)
be the discrete value of variable (.)(t) at time instant t =
t0 + (j − 1)h with the time step h and the initial time
instant t0. We define the discrete-time interconnection of
the microgrid network illustrated in (23):[

i1(j)

v2(j)

]
=

[
0 B22

−BT
22 0

] [
v1(j)

i2(j)

]
, (27a)

[
vc1(j)

ic2(j)

]
=

[
0 −d(j)

d(j) 0

][
ic1(j)

vc2(j)

]
, (27b)

The discretizations of the load and of the renewable source
are defined as:

il(j)vl(j) =− Pl(j), (28a)

ir(j)vr(j) = Pr(j), (28b)

where the discrete-time power profiles, Pl(j), Pr(j), are
the average values of the reference continuous-time power
profiles, Pl(t), Pr(t) such that:

Pl(j) =
jh∫

(j−1)h

Pl(t)

h
dt,

Pr(j) =
jh∫

(j−1)h

Pr(t)

h
dt,

(29)

The discrete-time Ohm’s law for the battery and transmis-
sion lines resistors are defined as:

vbR(j) =−RbibR(j), (30a)

vtR(j) =−RtitR(j), (30b)

where the resistive matrices, Rb ∈ R2×2, Rt ∈ R4×4, are315

defined in (10) and (14).
Note that discretizations of the current and voltage vec-

tors, i1(t), i2(t), v1(t), v2(t) defined in (22) imply:

i1(j) = [ −ẋT (j) ic1(j) iTE(j) ]T ,

v1(j) = [ ∇HT (j) vc1(j) vT
E(j) ]T ,

i2(j) = [ iTbR(j) iTtR(j) ]T ,

v2(j) = [ vT
bR(j) vT

tR(j) ]T ,

(31)
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Figure 5: Time discretization process.

where −ẋ(j), ∇H(j) ∈ R2 are the discrete vectors of the
charge time derivative, −ẋ, and of the Hamiltonian gradi-
ent vector, ∇H(x).

Now, we discuss about the discretization of the en-
ergy storage characterized by the flow and effort variables,
−ẋ(j), ∇H(j). From (6) we note that the Hamiltonian,
H(x), is a quadratic function. Thus, we choose the follow-
ing discrete-time scheme for the energy storage flow and
effort variables, −ẋ(j), ∇H(j), as:

−ẋ(j) = −x(j)− x(j − 1)

h
,

∇H(j) = Q1 + Q2
x(j) + x(j − 1)

2
,

(32)

Remind that these variables represent the currents and320

the voltages of the energy storage elements in the battery.
The discrete-time model of the microgrid defined by (27)-
(32) preserves the energy balance equation as presented in
Proposition 4.1 in [24].

Remark 4.1. With other electricity storage units, the325

Hamiltonian H(x) may have complex forms. However,
there still exist different time-discretization methods guar-
anteeing the power-preserving and energy conservation
properties of the microgrid [32, 33].

Next, we formulate the optimization problem for the on-330

line scheduling of the battery operation with the twin goals
of minimizing the price of the acquired electricity while in
the same time respecting the constraints introduced ear-
lier.

4.2. Scheduling formulation335

As illustrated in Fig. 6 and also delineated in the dis-
cretized microgrid model (27) - (32), two control variables
can be considered: the duty cycle d(t) and the exter-
nal grid current ie(t). Also, Fig. 6 illustrates the two-
levels control scheme of the DC microgrid system. The340

lower level (corresponding to fast time scale) aims to keep
the load voltage vl(t) constant, and the higher level (cor-
responding to slow time scale) deals with the optimal

scheduling of the battery operation. In this work, we con-
centrate only on the latter problem, and the other is as-345

sumed to be achieved in the much faster time scale (e.g.,
[30, 31]) by using the duty cycle d(t). Hence, at the lower
level, we assume that the load voltage is forced to a desired
value vref ∈ R, that is, vl(t) = vref , and at the higher level
we consider that the only control variable is the external350

grid current, ie(t).
Hereinafter, we aim to minimize the electricity cost by

an efficient scheduling of the power production and con-
sumption with a storage unit serving as a filtering element.
Due to the nature of the cost function (price dependent),355

the forthcoming approach can be classified as economic
MPC.

By solving the following optimization problem over a
finite prediction horizon N an open-loop optimal control
sequence ie(t) = {ie(0|t), . . . , ie(j|t), . . . , ie(N−1|t)} is ob-
tained at time instant t. It reacts to perturbations by
incorporating feedback in the open-loop control problem,
i.e., the first control action is applied as the system input:

ie(0|t) = argmin
ie(t)

N∑
j=1

γ.price(j|t) · ie(j|t) · ve(j|t), (33)

subject to:{
discrete-time dynamic (27)-(32),
constraints (3), (7), (9), (13),

(34)

with j = 1, . . . , N . Hence, by using the electricity price,
price(t) in the (33) we penalize buying and encourage sell-
ing1.360

1The selling and buying prices of the electricity are generally not
the same. When taking into account different prices in the presented
DC microgrid model leads to a Mixed-Integer Nonlinear Program-
ming (MINLP) for the scheduling control formulation due to the
dependence of the electricity price profile on the external grid cur-
rent sign [21]. This implies the use of an integer variable indicating
the external grid current sign in the cost function to enable switching
between the buying or selling price. Some existing methods to deal
with such MINLP problem may be found in the literature [34, 35].
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control

Figure 6: Scheduling control in the global control problem.

The profiles introduced in Section 3.4 appear as param-
eters here (e.g., the electricity price profile, price(t), the
load electrical power, P̄l(t), and the renewable electrical
power, P̄r(t)). Therefore, the cost (33) is variable due to
the variation in the energy price, but otherwise is linear365

with respect to the input variable. We can see that the
dynamics (25) and the constraints (3), (7), (9), (13) are
overall nonlinear. Thus, the optimization problem is non-
linear both in cost and in constraints (as seen in (33)-(33)).
The nonlinearity mainly comes from the transmission line370

resistor network and the high order battery model. They
are important to evaluate the available stored electricity
and the energy dissipation cost, thus, they can not be ig-
nored by the MPC mechanism. Still, there are specialized
solvers (like IPOPT, [36]) which can handle relatively large375

prediction horizons.

Note that the increase of the prediction horizon length
N in (33) entails that the optimization problem minimizes
the cost along the entire horizon. It may, however, be
the case that the cost function is affected by uncertainties380

such that the cost values subsequent to the present values
along the prediction horizon are less reliable. A solution is
to vary the weight γ ∈ (0, 1) from (33) associated to each
cost value over the prediction horizon (i.e., varying γ we
may assign less importance to the cost values which are385

further in the future [37]).

We can see that, in the slow time scale, the power bal-
ance implies a zero sum of the components power which
is guaranteed by the power-preserving discretization of the
system dynamics as presented in Section 4.1. However, the390

power balance problem is more challenging when consider-
ing the components constraints. Therefore, the microgrid
power balance is satisfied if the constrained optimization
problem (33)-(34) is feasible at all time. In other words,
the power balance equation is one of the constraints of the395

MPC problem. Hence, whenever the MCP is feasible (i.e.,
returns an optimal solution), it means that the constraint
was verified, hence ensuring the power balance within the
grid. Note that correctly design MPC can be guaranteed

to be recursive feasible and that practically, in our simu-400

lations, we did not encountered infeasibility or numerical
issues.

This work employs a centralized MPC which is gener-
ally not robust to failure (renewable generator fault, trans-
mission lines faults and the like). Therefore, distributed405

MPC [38] is a promising approach for complex microgrids.
However, most of the applications for such systems are for
tracking objective with convex cost functions. For non-
linear costs (e.g., electricity cost), the global optimality is
more difficult to ensure.410

5. Simulation results

This section presents simulation and comparison results
under different scenarios for the operation and control of
the DC microgrid elevator system illustrated in Fig. 1
and equivalently represented by the electrical DC circuit415

in Fig. 2.

The forthcoming simulations use the reference profiles
described in Section 4 and the battery parameters pre-
sented in (6)-(9) with the numerical data given by the
industrial partner Sodimas. They are illustrated in Fig. 4420

and Table 2.

We first provide results for nominal and the uncertainty-
affected electrical power of load and renewable unit. Next,
comparisons with other microgrid models and approaches
are considered. For further use, we define SoC (States
of Charge) criteria which characterize the battery state
x ∈ R2, given in (6):

SoC1 =
x1

x1,max
, SoC2 =

x2
x2,max

, (35a)

SoC =
x1 + x2

x1,max + x2,max
. (35b)

where x1,max, x2,max and qmax are the maximal charges
defined in (7) - (8).
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Remark 5.1. We are aware that the battery’s capacity
may be affected by multiple variables: temperature, age,425

even discharge current. Thus, the SoC may in fact depend
nonlinearly on the current, but we consider the linear rela-
tion given in equation (26) and (35) a fair approximation
[26].

Table 2: Numerical data for the microgrid components
Name Notation Value

Battery parameters Q1 [V ] [ 13 13 ]T

Q2 [V/C] diag {0.3036, 0.2024}
Battery constraints xmax [Ah] [ 73.2 109.8 ]T

ib,min [A] -20
ib,max [A] 20

Grid constraints ie,min [A] -8
ie,max [A] 8

Bus voltage reference vref [V ] 380
Resistors R1 [Ω] 0.012

R2 [Ω] 0.015
Rbl [Ω] 0.31
Rbe [Ω] 0.29
Rer [Ω] 0.23
Rrl [Ω] 0.19

Scheduling time step h [hour] 0.5
Prediction horizon N 48
Weighting parameter γ ∈ (0, 1) 0.5

The numerical optimization problem is solved by using430

Yalmip ([39]) and IPOPT ([40]) in Matlab 2013a. The con-
strained closed-loop dynamics implementation are done by
using the fsolve function in Matlab 2013a with a fixed
sampled time of 36 seconds over a horizon of 24 hours.
Note that this sampling time corresponds to the discretiza-435

tion of the continuous nonlinear dynamics. The update of
the power profiles happens every 30 minutes, which is de-
scribed by setting the value of the scheduling time step, h,
at 0.5 hours as detailed in Table 2.

Considering the numerical data in Table 2 and the ref-440

erence profiles in Fig 4 some remarks are in order:

Remark 5.2. For this particular DC microgrid system
the maximum supplied power (the sum of the PV and the
battery) is always less than the load power2. This means
that with the numerical data we have at our disposal the
microgrid cannot operate in islanded mode, i.e., discon-
nected from the external grid. Also, the maximum amount
of power provided by the external grid is greater than the
load power. These statements are summarized by the fol-
lowing expressions:

vb,maxib,max + Pr(t) < Pl(t) < vref ie,max, ∀t, (36)

where vb,max, the maximum voltage of the battery (see Fig.
2), satisfies:

vb,max = [1 0] (Q1 + Q2xmax) +R2ib,max,

with the battery resistor R2 given in Table 2.

2This provides further justification for the use of the PV model
(5).

Remark 5.3. In the grid-connected operation of the DC
microgrid, the voltages of the DC bus and of the battery
are always positive, i.e., vc2(t) > 0, vc1(t) > 0. Thus, the445

duty cycle is positive according to (12).

Therefore, in this particular case, the constraints of the
external grid current (3) and of the duty cycle (13) can be
ignored.

5.1. Nominal scenario450

Fig. 9 illustrates in the nominal scenario the battery
charges x(t) along the simulation horizon (i.e., 24h). From
7 to 9 o’clock, the first charge (SoC1) attains the maximal
limit but the second (SoC2) and total one (SoC) do not.
It means that the battery can still be charged but with455

a smaller current. Also, since the battery charges respect
their constraints, we can conclude that the load power
demand is always satisfied.

Fig. 7 describes the actual electrical power charged/
discharged by the DC components. Note that their pos-460

itive signs indicate that the power is supplied to the mi-
crogrid. Also, it can be observed that when the electricity
price is cheap, the battery is charged. Conversely, it is
discharged during the high load and expensive electricity
price intervals. Furthermore, to minimize the cost, the465

battery is discharged completely to half its maximum ca-
pacity at the end of the day in preparation for the next
day.

Increasing the battery capacity has a diminishing effect
on the overall cost reduction. We tested this assumption470

in simulation as illustrated in Fig. 8. Above a capacity
of 13 times the initial capacity value qmax as described by
(8) there is no discernible improvement. This is justified
by the fact that there is enough capacity to reduce at min-
imum the external grid demand. In fact this may change475

with the length of the prediction horizon or with a varying
electricity price (where it makes sense for the battery to
arbitrate the fluctuations).

Furthermore, increasing the solar panel power has a di-
minishing effect on the overall cost reduction. We tested480

this assumption in simulation as illustrated in Fig. 10.
Above an amount of photovoltaic power of 3 times the ini-
tial profile Pr(t) described in Fig. 4, the electricity cost
is negative. This is justified by the fact that the solar
power is enough to satisfy the load demand and to sell the485

electricity to the external grid. However, even if this situ-
ation happens, we can not ensure the isolated mode of the
microgrid.

5.2. Uncertainty-affected scenario

In order to investigate how the economic MPC ap-490

proach reacts to uncertainties we consider in the following
6 uncertainty-affected scenarios:

• Scenario 1: perturbation-affected power profiles of the
load and renewable source, Pl(t) and Pr(t),
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Figure 7: Nominal scenario: actual electrical power charge/discharge by the DC components.
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Figure 9: Nominal scenario: battery state of charges (SoC1, SoC2,
SoC as defined in (35)) and discharge current.

• Scenario 2: proportional uncertainties-affected power495

profiles of the load and renewable source, Pl(t) and
Pr(t),

• Scenario 3: proportional uncertainties of the battery
voltages, Q1 ∈ R2,

• Scenario 4: proportional uncertainties of the battery500

capacitors, Q2 ∈ R2×2,

• Scenario 5: proportional uncertainties of the resistors.
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Figure 10: Nominal scenario: cost and solar panel power relation.

• Scenario 6: intermittent power profile of the renew-
able source.

Scenario 1: The perturbation is assumed to be bounded
in a symmetrical tube. More precisely, the electrical power
of load and renewable source are within some uncertainty
ranges:

Pl(t) ∈ Pl(t) [1− εlmin, 1 + εlmax] , (37a)

Pr(t) ∈ Pr(t) [1− εrmin, 1 + εrmax] , (37b)

where ε(.) are positive numbers taken here as εlmin =505

εlmax, εrmin = εrmax with the values set to 0.2.
The battery state of charge and components electrical

power are presented in Figs. 12 and 11. Fig. 12 illustrates
the battery state of charge (for the situations considered
in (37)) with bounded uncertainty affecting the electrical510

power load and renewable. We can observe that the bat-
tery charge respects the imposed constraints and the load
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Figure 11: (a) Scenario 1: actual electrical power charged/discharged by the DC components under perturbation scenario. (b) Zoom for the
subfigure (a).

power demand is always satisfied. Note that this result is
not significantly different from the nominal case in Fig. 9.
This is due to the fact that we consider a uniformly dis-515

tribute noise as specified by (37), and thus, the variations
cancel each other.

Furthermore, Fig. 11 describes the components, actual
provided electrical power under the uncertainty-affected
scenario. Since the current (and power) of the external520

grid is fixed, most of the fluctuation of the microgrid elec-
trical power is absorbed by the battery.
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Figure 12: Scenario 1: battery state of charges (SoC1, SoC2,SoC as
defined in (35)) and discharge current (perturbation scenario).

Scenario 2: The actual renewable power profile is pro-
portional to the reference profile:

Pr(t) = αPr(t), ∀t, (38)

where α is positive with its value chosen in the set
{0.8, 1, 1.2, 1.4}. The battery charge profiles with these
values of α are illustrated in Fig. 13. In the morning
(from 0h to 8h), since there is no renewable power, the pro-525

portional uncertainty has no effect on the battery charge
policy. During the sunny period, since the power sup-
plied by the external grid is fixed during a prediction time
step (i.e., 30 minutes), the difference between the amounts
of uncertainty-affected and predicted power will be sup-530

ported by the battery.
Scenario 3: The battery voltage parameter, Q1, in (6)

is proportional to the reference value, Q1:

Q1 = β1Q1, (39)

where β1 is positive with its value chosen in the set
{0.8, 1, 1.2}. SoC1 values of the battery, as defined in
(35a), are illustrated in Fig. 14 for the β1 parameters.
When the power balance of the microgrid is guaranteed,535

the charged power of the battery is equal to the supplied
power of the other components (external grid, renewable
source, load). With the same charged power, when β1
increases, the battery voltage increases, and thus, the bat-
tery current decreases. Therefore, the battery is charged540
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Figure 13: Scenario 2: battery charge defined in (35b) with propor-
tional uncertainties of the renewable power as in (38).

slower as shown in Fig. 14 between 0h and 8h. The con-
trary situation happens when the battery is discharged
between 8h and 17h. Moreover, if the real battery voltage
parameter is too small w.r.t the reference value, the bat-
tery charge passes the limits which is not predicted in the545

scheduling controller.
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Figure 14: Scenario 3: SoC1 of the battery, as defined in (35a),
with proportional uncertainties of the battery voltage parameter as
in (39).

Scenario 4: The uncertainty of the battery capacity pa-
rameter, Q2, in (6) is proportional to the reference value,
Q2:

Q2 =
1

β2
Q2, (40)

where β2 is positive with its value chosen in the set
{0.01, 0.1, 1, 1.5}. Note that Q−1

2 characterizes the capac-
ities of the capacitors in the battery model (see figure 2).
Thus, from the electrical meaning of the ratio, we use here550

1/β2 instead of β2. SoC1 of the battery, as defined in (35a),
is illustrated in Fig. 15 for the various parameters β2. Note
that β2 > 1 implies that the actual battery capacitors (see
also Fig. 2) are greater than the reference values. We see
that with the same charge, increasing the capacities of the555

battery capacitors decreases the battery voltage. This in-
creases the battery charge/discharge current. Therefore,

the battery state of charge, SoC, increases when increas-
ing β2 in the charge case, and decreases in the discharge
case. Consequently, if the real battery capacity parameter560

is too high w.r.t the reference value, the battery charges,
x1(t), x2(t), may trespass the limits.
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Figure 15: Scenario 4: Soc1 of the battery, as defined in (35a), with
proportional uncertainties of the battery capacity parameter as in
(40).
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Figure 16: Scenario 5: SoC1 of the battery, as defined in (35a), with
proportional uncertainties of the resistors as in (41).

Scenario 5: The resistor matrices Rb and Rt in (10)
and (14) are proportional to the reference values, Rb and
Rt:

Rb = βrRb, Rt = βrRb, (41)

where βr is positive with its value chosen in the set
{0.5, 1, 1.5}. SoC1 of the battery, as defined in (35a),
is illustrated in Fig. 16, for the various parameters βr.565

βr > 1 implies that the resistor R1 between the two in-
ternal charges of the battery is greater than the reference
value. Therefore, the current through R1 is smaller than
this current in the nominal case. Thus, the charge from
the first battery charge x1(t) to the second charge x2(t)570

flows more slowly, and x1(t) increases faster in the charge
case.

Scenario 6: The solar power is cut-out for a duration of
30 minutes at 8 o’clock and 10 o’clock. The battery state of
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Figure 17: Scenario 6: battery SoC in (35b) and electrical power of the DC microgrid components under the intermittent renewable power.

charge and the electrical power of the DC microgrid com-575

ponents are illustrated in Fig. 17. In this scenario, since
the scheduling control does not predict this intermittent
power period, the battery will support the missing power
from the renewable source. Then, the battery recharges
from the external grid after these periods. The electricity580

cost of this scenario is illustrated in Table 3. We observe
that it is higher than the electricity cost of the nominal
scenario since more electricity must be purchased from the
external grid when the renewable source is cut-out.

Table 3: Electricity cost [Euros] in two scenarios: nominal and in-
termittent photovoltaic power.

Scenario Cost [Euros]
Nominal 0.7989
Intermittent photovoltaic power 0.8480
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Figure 18: Scenario 6: electricity cost with different time moments
of the cut-out photovoltaic power.

In another scenario, the renewable power is cut-out one585

time a day during 24 minutes at different time moments.

Fig. 18 illustrates the electricity cost of the DC micro-
grid during a day with these cut-out power moments. We
see that the cost is maximal when the renewable power
is cut-out at 10 o’clock. This is due to the fact that the590

solar panel generates the maximal power at this moment
in the expensive electricity period. When it is cut-out, the
battery supports this maximal missing power and is max-
imally recharged from the external grid later. Thus, the
electricity cost for the day when the photovoltaic power is595

cut-out at 10 o’clock is the most expensive with respect to
other cut-out time moments.

The above simulation scenarios validate the robustness
of the proposed control approach with different types of
uncertainty. Next, the microgrid model used in this control600

approach is compared with other models.

6. Comparison with other models and control
strategies

Now, we apply the presented economic MPC using two
others models and a rule-based approach for the DC micro-605

grid. Then, we compare the economic efficiencies of these
methods with the control laws designed in the previous
sections.

6.1. Reduced model with explicit Euler discretization
scheme610

The reduced model considered here is similar to the
microgrid models in [8, 28]. In these works, the au-
thors consider constant battery dissipation and addition-
ally take into account the battery self-discharging phe-
nomenon. However, these issues do not lead to important615

differences of the battery behavior.
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Figure 19: Electrical circuit of the DC microgrid reduced model.

This model can be obtained from the model presented
in Section 3 by reducing the resistors of the battery, R1,
and of the transmission lines, Rt in (14):

R1 ≈ 0, Rt ≈ 0, (42)

and by assuming that the battery charge does not modify
the battery voltage, that is:

Q2qmax12 << Q1, (43)

where Q1, Q2 are the weight matrices defined in (6), and
qmax is the battery capacity defined in (7). Consequently,
the battery is modeled as a series electrical circuit of a
voltage source Emin and a resistor R2 as in Fig. 19. There
is only one state variable xr(t) = x1(t) +x2(t) which leads
to the following energy function of the battery:

Hr(xr) = Eminxr(t). (44)

Considering the assumptions (42)-(44), we obtain the
following continuous-time dynamics of the DC microgrid.

Proposition 6.1. The reduced microgrid model associated
with the low level control (see Fig. 6) admits the following
dynamics:

ẋr(t) =
2Pb(t)

Emin +
√
E2

min + 4R2Pb(t)
, (45)

where Pb(t) ∈ R is the battery charged power which is equal
to the sum of the power from the external grid, the renew-
able source and the load:

Pb(t) = vref ie(t) + Pr(t)− Pl(t). (46)

The energy charging efficiency is, then, derived as:

η(Pb) =
2

1 +

√
1 +

4R2

E2
min

Pb(t)

. (47)

Proof. See Appendix A for details.

Then, the discrete-time microgrid dynamics is obtained
using the explicit Euler scheme:

xr(j + 1) = xr(j) +
2hPb(j)

Emin +
√
E2

min + 4R2Pb(j)
, (48)

where h is the time step, and

Pb(j) = vref ie(j) + Pr(j)− Pl(j). (49)

We can observe that this microgrid model (48)-(49) sim-620

plifies the complexity of the optimization problem given in
(33)-(34). However, it ignores the internal resistance be-
tween different sub-storage parts of the battery. Thus,
the directly available battery charge in the control pre-
diction is higher than the actual one. Another limit of625

this reduced battery model relates to the description of
the energy efficiency. This efficiency is obviously smaller
than 1 due to the voltage drop and the electricity loss
[41]. Moreover, both of these elements depend on differ-
ent factors such as the battery State-of-Charge (SoC) and630

the charging/discharging rate. From Proposition 6.1, we
note that the simplified model takes into account the volt-
age drop with the dependence on the charging/discharging
rate. However, the influence of the SoC level is ignored,
which may lead to an important overestimation of the en-635

ergy amount in the battery, and thus, lead to less energy
supplied to the load.

6.2. Detailed model with the explicit Euler discretization
scheme

To obtain this model, we discretize the continuous-time
model of the DC microgrid in Section 3 using the explicit
Euler scheme (details of the explicit Euler method can be
found in [42]). In this scheme, the discretization of the
microgrid network, the power sources, the resistors defined
in (27)-(31) are similar, but the discretization of the energy
storage element is different from (32), that is: −ẋ(j) = −x(j)− x(j − 1)

h
,

∇H(j) = Q1 + Q2x(j − 1).
(50)

Note that this Euler discretization scheme does not pre-
serve the energy balance (see also (??)) since:

H(x(j))−H(x(j − 1)) >
jh∫

(j−1)h

[Pl(t) + Pr(t)]dt+

+ie(j)ve(j)h− iTbR(j)RbibR(j)h− iTtR(j)RtitR(j)h.

6.3. Rule-based control approach640

The rule-based control formulates explicit control laws
for the microgrid based on the current battery State of
Charge, SoC, required power of the load and the supplied
power of the renewable source [1, 29]. Let id(t) be the nec-
essary values of the battery charge current to guarantee the645

power balance of the microgrid without the external grid,
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i.e., ie(t) = 0, SoC(t) be the battery state of charge given
as in (35b), ib,min, ib,max be the minimum and maximum
battery charge current given in (9). Since for each exter-
nal grid current, ie(t), there exists only one battery charge650

current, ic1(t), such that the microgrid power is balanced,
we can alternatively choose ic1(t) as the control variable.
Based on [1, 29], the control variable ic1(t) is given in Ta-
ble 4. Thus, we note that the rule-based control does not
take into account the prediction of the renewable power,655

the load power and the electricity price.

Table 4: Rule-based control laws, ic1(t).

id(t)\SoC(t) 0.5qmax (0.5qmax, qmax) qmax

(−∞, ib,min) 0 ib,min ib,min

(ib,min, 0) 0 id(t) id(t)
(0, ib,max) id(t) id(t) 0
(ib,max,+∞) ib,max ib,max 0

6.4. Simulation results

In the forthcoming simulation scenarios, we consider the
four following controllers:

• Controller 1: solves the optimization problem pro-660

vided in (33)-(34) using the detailed model with the
energy-preserving discretization scheme given in (27)-
(32),

• Controller 2: solves the optimization problem pro-
vided in (33)-(34) using the detailed model with665

the explicit Euler discretization scheme (27)-(31) and
(50),

• Controller 3: solves the optimization problem pro-
vided in (33)-(34) using the reduced model with the
explicit Euler discretization scheme (48)-(49),670

• Controller 4: implements the rule-based control ap-
proach from Table 4.

The simulations are implemented with different battery
current limits, that is, ib,max = −ib,min ∈ {5, 10, 20} [A].
The electricity costs corresponding to these scenarios are675

illustrated in Table 5.

Table 5: Electricity cost [Euros] with different battery current limits
and different control formulations.

ib,max [A]\Controller 1 2 3 4
5 0.8134 0.8246 0.8582 0.8653

10 0.7992 0.7992 0.8022 0.9126
20 0.7989 0.7987 0.7962 0.9479

When the maximum battery current is 20A, the elec-
tricity cost of Controller 1, 2, and 3 are nearly the same.
This is due to the fact that the battery is charged and
discharged during the same period with the same charge680

(see also Fig. 20). Controller 4 leads to a higher cost since
it discharges when the electricity price is cheap. Thus,
during the expensive electricity price period (from 9 to 18
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Figure 20: Battery charges corresponding to different controllers
with ib,max = 20A.

o’clock), it is empty, and the external grid supplies the
power to the load (see also Fig. 20). Moreover, the bat-685

tery is recharged at the end of day with the electricity
purchased from the external grid.

When the maximum battery current is 5A, with these
four controllers, the battery is not fully charged during
the day (see also Fig. 21). This is due to the fact that it690

has to be discharged when the electricity price is expensive
(Controllers 1, 2 and 3) or when there is a load demand
(Controller 4). Not in the least, before it is discharged (9
o’clock for Controllers 1, 2 and 3, 6 o’clock for Controller
4), the maximum battery currents are too small to fully695

charge the battery.
Furthermore, in these scenarios (corresponding to

ib,max = 5 A), the electricity cost of Controller 1 is smaller
than the costs of Controllers 2, 3 and 4. This is due to two
following reasons. First, the battery discharge of Con-700

trollers 2, 3 and 4 is smaller than the discharge of Con-
troller 1 during the expensive electricity price period (from
9 to 18 o’clock). Thus, more electricity is purchased from
the external grid to satisfy the load demand. Second, with
Controllers 2, 3 and 4, the battery charges at the end of705

the day.

7. Conclusion

This paper introduced an efficient power scheduling for
a DC microgrid using a combination of economic Model
Predictive Control and Port-Hamiltonian formulations.710

Firstly, a detailed model of the DC microgrid system
was presented. Its dynamics were described using Port-
Hamiltonian formulations on graphs to preserve the en-
ergy and power conservation properties and to capture
the microgrid topology. Next, a nonlinear constrained715
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Figure 21: Battery charges corresponding to different controllers
with ib,max = 5 A.

optimization problem was formulated for power schedul-
ing taking into account the microgrid dynamics, operating
constraints and predictions of the load demand, of the re-
newable power and of the electricity price. The proposed
control approach was validated through simulation results720

which investigated the control robustness and illustrated
the economic efficiency of the controller with respect to
other standard methods.

As future work, we envision several directions of im-
provement for the constrained optimization-based control725

scheme: i) stability by considering the properties and spe-
cific form of the Port Hamiltonian formulations; ii) robust-
ness by taking explicitly in consideration the disturbances;
iii) low level control for the converter and the DC bus using
tracking Model Predictive Control.730
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Appendix A. Proof of Proposition 6.1735

This section introduces the proof for Proposition 6.1.
Using the Kirchhoff’s laws for the electrical circuit in Fig
. 19 we obtain:

ic2(t) + il(t) + ie(t) + ir(t) = 0,

vc2(t) = vl(t) = ve(t) = vr(t),

ẋr(t) = ib,R2(t) = ic1(t),

Emin − vb,R2(t)− vc1(t) = 0.

(A.1)

Thanks to the low control level, the DC bus voltage is
equal to the reference value vref . Let the power of the
external grid, battery unit, renewable source and load be
denoted by: 

Pe(t) = ie(t)ve(t),

Pb(t) = −ic2(t)vc2(t),

Pl(t) = −il(t)vl(t),
Pr(t) = ir(t)vr(t).

(A.2)

From (12) and (A.1)-(A.2), we derive the following equa-
tion of the duty cycle:

v2refd(t)2 − Eminvrefd(t)−R2Pb(t) = 0. (A.3)

There are two roots for the previous equation:

d(t) =
Emin ±

√
E2

min + 4R2Pb(t)

2vref
. (A.4)

In the case Pb(t) > 0, since the duty cycle d(t) is positive,

d(t) =
Emin +

√
E2

min + 4R2Pb(t)

2vref
. (A.5)

In the case Pb(t) < 0, two roots of (A.4) are positive,
but with (A.5) the dissipated energy is smaller. Using this
formulation of the duty cycle with (12) and (A.1)-(A.2), we
obtain the microgrid dynamics (45)-(46), and the energy
efficiency (47).740

References

[1] C. Yin, H. Wu, F. Locment, M. Sechilariu, Energy management
of DC microgrid based on photovoltaic combined with diesel
generator and supercapacitor, Energy Conversion and Manage-
ment 132 (2017) 14–27.745

[2] J. Barreiro-Gomez, C. Ocampo-Martinez, F. D. Bianchi,
N. Quijano, Data-driven decentralized algorithm for wind
farm control with population-games assistance, Energies 12 (6)
(2019) 1–14.

[3] S. Siniscalchi-Minna, F. Bianchi, M. D. Prada-Gil, C. Ocampo-750

Martinez, A wind farm control strategy for power reserve max-
imization, Renewable Energy 131 (2019) 37–44.

[4] A. Conejo, R. Sioshansi, Rethinking restructured electricity
market design: Lessons learned and future needs, International
Journal of Electrical Power & Energy Systems 98 (2018) 520–755

530.
[5] A. Iovine, T. Rigaut, G. Damm, E. D. Santis, M. D. D.

Benedetto, Power management for a dc microgrid integrating re-
newables and storages, Control Engineering Practice 85 (2019)
59 – 79.760

[6] Peng Kou, D. Liang, L. Gao, Distributed Coordination of Mul-
tiple PMSGs in an Islanded DC Microgrid for Load Sharing,
IEEE Transactions on Energy Conversion 32 (2) (2017) 471 –
485.

[7] P. Kou, D. Liang, J. Wang, L. Gao, Stable and optimal load765

sharing of multiple PMSGs in an islanded DC microgrid, IEEE
Transactions on Energy Conversion 33 (1) (2018) 260 – 271.

[8] A. Parisio, E. Rikos, L. Glielmo, Stochastic model predictive
control for economic/environmental operation management of
microgrids: an experimental case study, Journal of Process Con-770

trol 43 (2016) 24–37.

17



[9] C. Touretzky, M. Baldea, A hierarchical scheduling and control
strategy for thermal energystorage systems, Energy and Build-
ings 110 (8) (2016) 94–107.
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