D. Pan, J. Zhang, Z. Li, and M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum Dots, Adv. Mater, vol.22, pp.734-738, 2010.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-aburto et al., Graphene quantum dots derived from carbon fibers, Nano Lett, vol.12, pp.844-849, 2012.

M. Bacon, S. J. Bradley, and T. Nann, An electroacoustic investigation of concentrated aqueous suspensions of calcium pyrophosphate, Part. Part. Syst. Charact, vol.21, pp.415-428, 2014.

Y. Li, H. Shu, X. Niu, and J. Wang, Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism, J. Phys. Chem. C, vol.119, pp.24950-24957, 2015.

S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang et al., Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state, Nano Today, vol.13, pp.10-14, 2017.

L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill et al., Chaotic dirac billiard in graphene quantum dots, Science, vol.320, pp.356-358, 2008.

L. S. Li and X. Yan, Colloidal graphene quantum dots, J. Phys. Chem. Lett, vol.1, pp.2572-2576, 2010.

S. J. Zhu, J. H. Zhang, C. Y. Qiao, S. J. Tang, Y. F. Li et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun, vol.47, pp.6858-6860, 2011.

S. Wang, I. S. Cole, D. Zhao, and Q. Li, The dual roles of functional groups in the photoluminescence of graphene quantum dots, Nanoscale, vol.8, pp.7449-7458, 2016.

X. Yan, X. Liu, and L. Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size, J. Am. Chem. Soc, vol.132, pp.5944-5945, 2010.

H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima et al., Optically tunable amino-functionalized graphene quantum dots, Adv. Mater, vol.24, pp.5333-5338, 2012.

P. Hsu and H. T. Chang, Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups, Chem. Commun, vol.48, pp.3984-3986, 2012.

S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang et al., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater, vol.22, pp.4732-4740, 2012.

T. S. Sreeprasad and V. Berry, How do the electrical properties of graphene change with its functionalization? Small, vol.9, pp.341-350, 2013.

R. Tran, S. Hu, L. Wu, Q. Chang, J. Yang et al., Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors, Appl. Surf. Sci, vol.301, pp.156-160, 2014.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang et al., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Res, vol.8, pp.355-381, 2015.

Q. Liu, B. Guo, Z. Rao, B. Zhang, and J. R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging, Nano Lett, vol.13, pp.2436-2441, 2013.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications, Small, vol.11, pp.1620-1636, 2015.

Z. Wang, H. Zeng, and L. Sui, Graphene quantum dots: Versatile photoluminescence for energy, biomedical, and environmental applications, J. Mater. Chem. C, vol.3, pp.1157-1165, 2015.

D. Iannazzo, I. Ziccarelli, and A. Pistone, Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy, J. Mater. Chem. B, vol.5, pp.6471-6489, 2017.

D. I. Son, B. W. Kwon, D. H. Park, W. Seo, Y. Yi et al., Emissive ZnO-graphene quantum dots for white-light-emitting diodes, Nat. Nanotechnol, vol.7, pp.465-471, 2012.

J. K. Kim, S. Bae, Y. Yi, M. J. Park, S. J. Kim et al., Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes, Sci. Rep, vol.5, p.11032, 2015.

M. T. Hasan, R. Gonzalez-rodriguez, C. Ryan, N. Faerder, J. L. Coffer et al., Photo-and electroluminescence from nitrogen-doped and nitrogen-sulfur codoped graphene quantum dots photoresponse of polyaniline-functionalized graphene quantum dots, Adv. Funct. Mater, vol.28, 2018.

S. K. Lai, C. M. Luk, L. Tang, K. S. Teng, and S. P. Lau, Photoresponse of polyaniline-functionalized graphene quantum dots, Nanoscale, vol.7, pp.5338-5343, 2015.

H. Tetsuka, A. Nagoya, T. Fukusumi, and T. Matsui, Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices, Adv. Mater, vol.28, pp.4632-4638, 2016.

Y. Liu and P. Wu, Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction, ACS Appl. Mater. Interfaces, vol.5, pp.3362-3369, 2013.

K. H. Koh, S. H. Noh, T. Kim, W. J. Lu, S. Yi et al., A graphene quantum dot/phthalocyanine conjugate: A synergistic catalyst for the oxygen reduction reaction, vol.7, pp.26113-26119, 2017.

H. Sun, N. Gao, L. Wu, J. Ren, W. Wei et al., Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions, Chem. Eur. J, vol.19, pp.13362-13368, 2013.

L. Lin, M. Rong, S. Lu, X. Song, Y. Zhong et al., A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution, Nanoscale, vol.7, pp.1872-1878, 2015.

R. Liu, R. Yang, C. Qu, H. Mao, Y. Hu et al., Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum, Sens. Actuators B Chem, pp.644-651, 2017.

E. Blanco, G. Blanco, J. M. Gonzalez-leal, M. C. Barrera, and M. Dominguez, Ramirez-del-Solar, M. Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence, J. Nanopart. Res, vol.17, 2015.

G. S. Kumar, R. Roy, D. Sen, U. K. Ghorai, R. Thapa et al., Amino-functionalized graphene quantum dots: Origin of tunable heterogeneous photoluminescence, Nanoscale, vol.6, pp.3384-3391, 2014.

F. Jiang, D. Chen, R. Li, Y. Wang, G. Zheng et al., Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties, Nanoscale, vol.5, pp.1137-1142, 2013.

C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang et al., One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide, J. Mater. Chem. B, vol.1, pp.39-42, 2013.

H. Tetsuka, A. Nagoya, and R. Asahi, Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber-clay hybrids for white-light emitting diodes, J. Mater. Chem. C, vol.3, pp.3536-3541, 2015.

Q. Xu, H. Huang, L. Wang, Z. Chen, M. Wu et al., Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration, Nanoscale, vol.5, pp.12098-12103, 2013.

N. Kuo, Y. Chen, C. Wu, C. Huang, Y. Chan et al., One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes, Sci. Rep, vol.6, 2016.

Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang et al., Highly efficient photoluminescent graphene oxide with tunable surface properties, Chem. Commun, vol.46, pp.7319-7321, 2010.

W. Kwon, Y. Kim, C. Lee, M. Lee, H. C. Choi et al., Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite, Nano Lett, vol.14, pp.1306-1311, 2014.

S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS Nano, vol.7, pp.1239-1245, 2013.

Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou et al., Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation, RSC Adv, vol.3, pp.14571-14579, 2013.

Y. Qiu, Z. Wang, A. C. Owens, I. Kulaots, Y. Chen et al., Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology, Nanoscale, vol.6, pp.11744-11755, 2014.

S. Zhao, M. Lan, X. Zhu, H. Xue, T. Ng et al., Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging, ACS Appl. Mater. Interfaces, vol.7, pp.17054-17060, 2015.

Y. Chong, C. Ge, G. Fang, X. Tian, X. Ma et al., Crossover between anti-and pro-oxidant activities of graphene quantum dots in the absence or presence of light, ACS Nano, vol.10, pp.8690-8699, 2016.

V. Ruiz, L. Yate, I. Garcia, G. Cabanero, and H. Grande, Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration, vol.116, pp.366-374, 2017.

D. Li, X. Na, H. Wang, Y. Xie, S. Cong et al., Fluorescent carbon dots derived from maillard reaction products: Their properties, biodistribution, cytotoxicity, and antioxidant activity, J. Agric. Food. Chem, vol.66, pp.1569-1575, 2018.

L. Zhang, H. Li, X. Lai, X. Liao, J. Wang et al., Functionalized graphene as an effective antioxidant in natural rubber, Compos. Part A, vol.107, pp.47-54, 2018.

L. Nilewski, K. Mendoza, A. S. Jalilov, V. Berka, G. Wu et al., Highly oxidized graphene quantum dots from coal as efficient antioxidants, ACS Appl. Mater. Interfaces, vol.11, pp.16815-16821, 2019.

A. Senocak, A. Karadag, Y. Yerli, O. Andac, and E. Sahin, Two novel bimetallic cyano-bridged coordination polymers containing the 2,2 -(ethylenedioxy)bis(ethylamine): Syntheses, structural, thermal and magnetic properties, J. Inorg. Organomet. Polym, vol.20, pp.628-635, 2010.

S. Kedy, N. Almhna, and F. Kandil, Synthesis and characterization of new macrocyclic Schiff bases by the reaction of 1,7-Bis(6-methoxy-2-formylphenyl)-1,7-dioxaheptane and their use in solvent extraction of metals, Arab. J. Chem, vol.8, pp.93-99, 2015.

A. Karadag, A. K. Gözüaçik, V. T. Yilmaz, Y. Yerli, and E. Sahin, Coordination versatility of 2,2 -(ethylenedioxy)bis (ethylamine) in new mono-and polynuclear metal(II) complexes of saccharinate: Synthesis, characterization and crystal structures, Polyhedron, vol.78, pp.24-30, 2014.

M. V. Berridge, A. S. Tan, and K. D. Mccoy, The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts, Biochemistry, vol.4, pp.14-19, 1996.

E. A. Decker and B. Welch, Role of ferritin as a lipid oxidation catalyst in muscle food, J. Agric. Food Chem, vol.38, pp.674-677, 1990.

L. Canabady-rochelle, C. Harscoat-schiavo, V. Kessler, F. Fournier, and J. Girardet, Determination of reducing power and chelating ability of antioxidant peptides: Revisited Methods. Food Chem, vol.183, pp.129-135, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01620278

L. Canabady-rochelle, K. Selmeczi, S. Collin, A. Pacs, L. Muhr et al., SPR Screening of metal chelating peptides for their antioxidant properties, Food Chem, vol.239, pp.478-485, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01620268

A. Barges, G. Cravotto, E. Gianolio, and F. Fedeli, How to determine free Gd and free ligand in solution of Gd chelates. A technical note, Contrast Media Mol. Imaging, vol.1, pp.184-188, 2006.

H. Wu, C. Shiau, H. Chen, and T. Chiou, Antioxidant activities of carnosine, anserine, some free amino acids and their combination, J. Food Drug Anal, vol.11, pp.148-153, 2003.

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic, Biol. Med, vol.26, pp.1231-1237, 1999.

L. Sadat, C. Cakir-kiefer, M. N'negue, J. Gaillard, J. Girardet et al., Isolation and identification of antioxidative peptides from bovine ?-lactalbumin, Int. Dairy J, vol.21, pp.214-221, 2011.

G. Yen and H. Chen, Antioxidant activity of various tea extracts in relation to their antimutagenicity, J. Agric. Food Chem, vol.43, pp.27-32, 1995.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide, vol.2, pp.1168-1173, 2012.

C. Hontoria, A. J. Lopez-peinado, D. De, J. Lopez-gonzalez, M. L. Rojas-cervantes et al., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, vol.33, pp.1585-1592, 1995.

K. H. Lee, S. W. Han, K. Y. Kwon, and J. Park, Systematic analysis of palladium-graphene nanocomposites and their catalytic applications in Sonogashira reaction, J. Colloid Interface Sci, vol.403, pp.127-133, 2013.

P. Mandal and A. P. Chattopadhyay, Excellent catalytic activity of magnetically recoverable Fe 3 O 4 -graphene oxide nanocomposites prepared by a simple method, Dalton Trans, vol.44, pp.11444-11456, 2015.

M. Kehrer, J. Duchoslav, A. Hinterreiter, M. Cobet, A. Mehic et al., XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Process. Polym, vol.16, 2019.

K. Habiba, V. I. Makarov, J. Avalos, M. J. Guinel, B. R. Weiner et al., Luminescent graphene quantum dots fabricated by pulsed laser synthesis, Carbon, vol.64, pp.341-350, 2013.

L. Cao, W. Wang, M. J. Meziani, F. Lu, H. Wang et al., Carbon dots for multiphoton bioimaging, J. Am. Chem. Soc, vol.129, pp.11318-11319, 2007.

F. Liu, M. Jang, H. D. Ha, J. Kim, Y. Cho et al., Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence, Adv. Mater, vol.25, pp.3657-3662, 2013.

Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang et al., The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses, Biomaterials, vol.31, pp.1085-1092, 2010.

H. Bosshart and M. Heinzelmann, THP-1 cells as a model for human monocytes, Ann. Transl. Med, 2016.

C. Ronzani, R. Safar, R. Diab, J. Chevrier, J. Paoli et al., Viability and gene expression responses to polymeric nanoparticles in human and rat cells, Cell Biol. Toxicol, vol.30, pp.137-146, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01274268

K. Jomova, S. Baros, and M. Valko, Redox active metal-induced oxidative stress in biological systems, Transit. Met. Chem, vol.37, pp.127-134, 2012.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI