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Abstract. Shortcuts to adiabaticity have been put forward for accelerating slow

adiabatic passages in various quantum systems with tremendous applications for

performing quantum information processing tasks. In this paper, we propose a hybrid

protocol to achieve stimulated Raman exact passage (STIREP) by combing invariant-

based inverse engineering, optimal control, and composite pulse approaches. We first

derive the general solution and their corresponding pulse shapes by invariant-based

inverse engineering. Counterintuitive and optimal (intuitive) pulse sequences are

formulated in this context and incorporated into composite sequences. Such composite

stimulated Raman exact passage not only features robustness against the fluctuation

of laser intensity, but also reduces the operation time and energy cost.

1. INTRODUCTION

Coherent manipulation and preparation for quantum states with high fidelity are

requisite with many applications ranging from quantum information processing to

control of chemical interaction [1–5]. Among all techniques, resonant pulses, rapid
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adiabatic passage (RAP), stimulated Raman adiabatic passage (STIRAP) and their

variants provide the full population transfer in quantum two- or three-level systems

with different advantage and disadvantage [6–11]. Resonant pulses are usually fast but

sensitive to the parameter variations, while adiabatic passages are in principle robust but

slow and inaccurate. To remedy this, different approaches, as shortcuts to adiabaticity

(STA), optimal control and composite pulses [12–17], have been proposed to combine

the best of the two worlds. Some techniques, sharing the concept of STA [18,19] include

the counter-diabatic driving, fast-forward scaling, inverse engineering based on Lewis-

Riesenfeld dynamical invariant, and single-shot shaped pulses [20, 21], also combined

with optimal control [22].

Quantum two- or three-level systems are ubiquitous in atom, molecular, optical

physics and solid-state devices. Particular systems might require specific techniques

for population transfer in presence of different types of inevitable systematic errors or

noise. These processes have been widely studied, and there are substantial theoretical

discussions and experimental demonstrations of its efficiency for producing complete

population transfer. In STIRAP, the Stokes pulse drives the transition between

the initially unpopulated levels |2〉 and |3〉. It coherently prepares the system and

precedes the overlapped pump pulse partially (driving the transition between the

initially populated level |1〉 and the intermediate level |2〉). Such a sequence is termed

counterintuitive. Population transfer from level |1〉 to level |3〉 is approximately achieved

by adiabatic passage along a single instantaneous dressed (dark) state. Transient

population arising in the intermediate state |2〉 during the adiabatic transfer is small

or even negligible. This technique has quickly attracted considerable attention as a

promising control tool for quantum information processing (QIP) [23–26]. QIP demands

very high fidelity of operations with the permissible error at most 10−4, which is

difficult to achieve with the standard STIRAP. Because, due to its adiabatic nature, it

approaches unit efficiency only asymptotically as the temporal pulse areas increase. For

usual Gaussian shape pulse, the necessary area for the 10−4 benchmark is so large that it

may break various restrictions in a real experiment. Nevertheless, the adiabatic process

is slow and therefore likely to be affected by decoherence, dissipation or systematic error

and do not lead to an exact transfer. In order to solve these problems, several scenarios

have been proposed to speed up STIRAP with an ultrahigh fidelity [27–32].

Motivated by the current experimental demonstration of composite Stimulated

Raman adiabatic passage in a rare-earth doped solid [33], we hybridize the composite

method with pulses designed by invariant-based inverse engineering, including exact

counterintuitive or optimal (intuitive) sequences, to derive an exact, fast and robust

technique. The inverse engineering approach based on the Lewis-Riesenfeld theory

allows one to define dynamical invariant and eigenmodes on which the dynamics can be

decomposed [34]. We connect the exact single-mode dynamics to the (approximate)

adiabatic passage along a dark state resulting from counterintuitive pulse sequence

(STIRAP). We derive from a multi-mode decomposition with a parametrization linear

in time a dynamics featuring a counterintuitive pulse sequence, which is shown to be
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Figure 1. (a) Schematic view of Λ-type three-level system for resonant STIRAP.

(b-d) The Rabi frequencies Ωp,s present the pump (dash-dotted blue line) and Stokes

(solid red line) pulses for different composite schemes of three pulse pairs: Gaussian,

area-optimal and linear multimode pulses. The latter two sequences define examples

of composite intuitive and counterintuitive STIREP, respectively.

the opposite sequence with the same pulse shapes of the area-optimal sequence. This

linear multi-mode driving and the area-optimal pulses are implemented in composite

sequences. We find that the invariant-based composite STIREP takes less and less time

compared to composite STIRAP for more and more sequences.

In Sec. 2, we define the system, and review the technique to design pulses by the

inverse engineering approach based on the Lewis-Riesenfeld dynamical invariant, for

completeness. In Sec. 3, we derive explicit solutions for pulses that are optimal with

respect to energy (or equivalently to time for bounded pulses) or to pulse area. Section

4 is devoted to the comparison of three composite protocols. Discussion in Sec. IV

concludes the paper.

2. INVARIANT DYNAMICS

2.1. Model and Hamiltonian

The traditional STIRAP process is controlled by two counterintuitive Gaussian pulses,

as shown in Fig. 1(a). The pump pulse connects the ground initial state |1〉 and excited

state |2〉 at frequency ωp. The Stokes pulse links the intermediate state |2〉 and final

target state |3〉 at frequency ωs. The energies ~ω1, ~ω2 and ~ω3 correspond to the

discrete states |1〉, |2〉 and |3〉, respectively. The corresponding Hamiltonian, in the

rotating-wave approximation at resonance, ω1 + ωp = ω2 = ω3 + ωs, reads

H0(t) =
~
2

 0 Ωp(t) 0

Ωp(t) 0 Ωs(t)

0 Ωs(t) 0

 , (1)
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where Ωp(t) and Ωs(t) denote the pump and Stokes Rabi frequencies, respectively,

considered real functions.

2.2. The invariant

The Lewis-Riesenfeld theory [34] allows one to expand exactly the solution |ψ(t)〉 on

dynamical modes |φn(t)〉, which are defined as eigenvectors of the dynamical invariant

I(t), I(t)|φn(t)〉 = λn|φn(t)〉, defined as:

〈ψ(t)|I(t)|ψ(t)〉 = const., (2)

or equivalently as

dI/dt ≡ ∂I(t)/∂t+ (1/i~)[I(t), H(t)] = 0. (3)

Its eigenvalues are real and time independent and the eigenvectors form a complete

orthonormal basis, which allows an expansion of the solution as a superposition of the

dynamical modes:

|ψ(t)〉 =
∑
n

Cne
iξn|φn(t)〉 (4)

with time independent coefficients Cn and the Lewis-Riesenfeld phases (determined from

the initial time ti):

ξn(t) =
1

~

∫ t

ti

〈φn(t′)|i~∂/∂t′ −H(t′)|φn(t′)〉dt′. (5)

The Hamiltonian (1) features SU(2) dynamical symmetry:

H =
~
2

(Ωp(t)K1 + Ωs(t)K2) , (6)

where K1, K2, and K3 are the spin 1 angular-momentum operators:

K1 =

 0 1 0

1 0 0

0 0 0

 , K2 =

 0 0 0

0 0 1

0 1 0

 , K3 =

 0 0 −i
0 0 0

i 0 0

 (7)

satisfying the commutation relations

[K1, K2] = iK3, [K2, K3] = iK1, [K3, K1] = iK2. (8)

The dynamical invariant is also taken as an element of this algebra

I(t) =
∑
i

αi(t)Ki, (9)

from which, using the definition of the invariant and denoting |α(t)〉 =

[α1(t), α2(t), α3(t)]
T (where the superscript T denotes the transpose), we derive

i~
d

dt
|α(t)〉 = B(t)|α(t)〉 (10)

with the Hermitian matrix

B(t) =
~
2

 0 0 iΩs(t)

0 0 −iΩp(t)

−iΩs(t) iΩp(t) 0

 (11)
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and (from the unitarity of the propagator):

〈α(t)|α(t)〉 =
∑
i

α2
i (t) = const = 〈α(ti)|α(ti)〉. (12)

To parameterize the three angles αi’s of the expansion (9), we need two (time-dependent)

angles ϕ, θ and a constant α0 in order to satisfy (12), α2
1 + α2

2 + α2
3 = α2

0:

α1 = α0 sin θ cosϕ, α2 = α0 cos θ cosϕ, α3 = α0 sinϕ. (13)

Equation (10) allows one to link the pulses to the angles:

Ωp/2 = ϕ̇ cos θ + θ̇ sin θ cotanϕ, Ωs/2 = −ϕ̇ sin θ + θ̇ cos θ cotanϕ. (14)

The invariant I(t) reads with the parametrization (13):

I(t) = α0

 0 sin θ cosϕ −i sinϕ

sin θ cosϕ 0 cos θ cosϕ

i sinϕ cos θ cosϕ 0

 , (15)

giving the orthonormal dynamical modes and the associated phases (for the eigenvalues

λ0 = 0 and λ± = ±α0, respectively)

|φ0(t)〉 =

 cosϕ cos θ

−i sinϕ

− cosϕ sin θ

 , ξ̇0 = 0, (16)

|φ±(t)〉 =
1√
2

 cos θ sinϕ± i sin θ

i cosϕ

− sin θ sinϕ± i cos θ

 , ξ̇± = ∓ θ̇

sinϕ
. (17)

2.3. Single-mode driving: From adiabatic to exact passage

Adiabatic passage assumes a slow evolution of the parameters such that the dynamics

projects approximately along a single adiabatic (dark) state,

|φD(t)〉 =

 cos θ

0

− sin θ

 , (18)

where θ is the mixing angle, tan θ = Ωp/Ωs, which connects the initial with the final

states. We notice that |φD(t)〉 is a particular case of the single-mode state (16) with

ϕ = 0. The initial state |1〉 can in principle connect to the dark state in a counterintuitive

sequence, i.e. when the Stokes precedes the pump pulse (i.e. θ going from 0 to π/2),

but the dynamics cannot permanently project exclusively on it since the dark state is

connected to the other bright states through the non-adiabatic coupling θ̇ in adiabatic

frame. This non-adiabatic coupling can be made small for a slow variation of the

parameters, which defines the adiabatic passage. The Lewis-Riesenfeld theory allows

one to derive an alternative dynamical basis, on which one can project at all times the

dynamics exactly from the initial condition.
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One can define a single-invariant-mode driving, or in short a single-mode driving,

by imposing at the initial time θ(ti) = 0 and ϕ(ti) = 0, which then drives the dynamics

into the target state, by imposing the final boundary θ(tf ) = π/2 and ϕ(tf ) = 0 at time

tf . These boundaries have to be taken into account in the definition of the pulses (14) to

ensure the desired dynamics. Imposing the complete dynamics occurring along the dark

state would imply ϕ = 0 at all time, which would correspond to infinite pulse amplitudes

from Eqs. (14). Single-mode dynamics thus needs ϕ 6= 0 during the dynamics. This

single-mode dynamics can be interpreted as an exact passage as opposed to the adiabatic

(i.e. approximate) passage along a single adiabatic state. In addition to producing an

exact passage, such dynamics can also feature certain optimization criteria or specific

properties as studied below by an appropriate time parametrization of the angles θ(t)

and ϕ(t).

2.4. Multi-mode driving

One can more generally derive multi-mode solutions [29]. We analyze for instance a

three-mode solution, still using θ(ti) = 0, and denoting the initial boundary ϕ(ti) = ε,

according to (4):

|ψ(t)〉 = c0|φ0(t)〉+ c+e
iξ+(t)|φ+(t)〉+ c−e

iξ−(t)|φ−(t)〉 (19)

with

c0 = 〈φ0(ti)|1〉 = cos ε, (20)

c+ = 〈φ+(ti)|1〉 = sin ε/
√

2, (21)

c− = 〈φ−(ti)|1〉 = sin ε/
√

2, (22)

and the Lewis-Riesenfeld phase ξ0 = 0. For simplicity we consider a constant ϕ and the

linear parametrization with t ∈ [ti ≡ 0, tf ≡ T ] and θ(T ) = π/2:

ϕ(t) = ε, θ(t) =
π

2T
t, (23)

giving the phase ξ±(t) = ∓ξ(t) with ξ(t) = θ(t)/ sin ε and at final time:

〈3|ψ(T )〉 = −(cos2 ε+ cos ξ(T ) sin2 ε). (24)

The complete population transfer is then finally achieved when cos ξ(T ) = cos( π
2 sin ε

) =

1, i.e.

sin ε =
1

4k
, k = ±1,±2,±3, · · · (25)

The resulting pulses, derived from (14),

Ωp(t) =
π

T

√
16k2 − 1 sin

( π

2T
t
)
, Ωs(t) =

π

T

√
16k2 − 1 cos

( π

2T
t
)

(26)

feature a counterintuitive sequence. The smallest pulses energy required for the complete

transfer in this case is for k = ±1. We refer this dynamics to as a linear multi-mode

driving.
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Alternatively, for a given peak Rabi frequency Ω0, the fields (for k = ±1) can be

written as

Ωp(t) = Ω0 sin

(
πt

2Tmulti

)
, Ωs(t) = Ω0 cos

(
πt

2Tmulti

)
, (27)

with the transfer time

Tmulti =
√

15π/Ω0. (28)

One can emphasize that the derived sequence “sin / cos” (for the pump and Stokes,

respectively) is counterintuitive, and is the opposite sequence with the same pulse shapes

of the optimal pulses (with respect to energy) “cos / sin” derived below in Section 3. This

is of interest because counterintuitive sequences are known as featuring a relatively low

transient population in the excited state, which is usually a lossy state, and a certain

degree of robustness.

As shown below numerically, such multi-mode driving provides a fast and robust

protocol. It can be explained by a combined resonant and adiabatic process, see

Appendix A.

3. OPTIMAL PULSES

In the resonantly driven three-level system (1), the optimal pulses leading to the transfer

have been already addressed [35]. Here we rederive them adding explicit formula. We

denote up ≡ Ωp/2, us ≡ Ωs/2, ti ≡ 0 and tf ≡ T , the total duration of the process, i.e.

the transfer time. Optimality can be analyzed in term of pulse energy (defined through

up and us for simplicity)

E = ~
∫ T

0

[u2p(t) + u2s(t)] dt, (29)

or in term of generalized pulse area

A =

∫ T

0

√
u2p(t) + u2s(t) dt. (30)

By using Pontryagin’s maximum principle, see Appendix B, we obtain for the

energy-optimal pulses

Ωp(t) =

√
3π

T
cos

(
πt

2T

)
, Ωs(t) =

√
3π

T
sin

(
πt

2T

)
, (31)

satisfying the boundary Ω2
p + Ω2

s = Ω2
0, with transfer time

E = ~
3π2

4T
. (32)

One can remark that minimizing the cost E is equivalent to minimizing the transfer

time for bounded controls, u2p + u2s ≤ const. Denoting Ω0 the peak of the pump and

Stokes Rabi frequency,

Ωp(t) = Ω0 cos

(
πt

2Tmin

)
, Ωs(t) = Ω0 sin

(
πt

2Tmin

)
, (33)
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we get for the optimal time:

Tmin =
√

3π/Ω0, (34)

which is
√

5 times smaller than the linear multi-mode transfer time. These pulses (33)

represent time-optimal pulses.

As emphasized in Sec 2.4, the derived intuitive sequence cos / sin is the opposite

sequence with the same pulse shapes of the linear multi-mode driving.

If one considers the minimization of the effective pulse area (30), defining the area-

optimal pulses, one can remark that this quantity is time-reparametrization invariant

as it leads to the same trajectory in the (θ, ϕ) space for any time-reparametrization,

which is given by Eq. (B.15). The energy-optimal pulses (B.25) feature an example of

area-optimal pulse with which one can determine the resulting optimal area:

A =

√
3π

2
. (35)

Another convenient parametrization, symmetric around t = T/2 (i.e. such that

ϕ(T − t) = ϕ(t)), such that ϕ(T/2) = π/3, is given by

ϕ(t) =

{
0 if t ≤ 0 or t ≥ T

π
3
e−αt(t−T )/T2−1

eα/4−1 otherwise.
(36)

Using the (dimensionless) quantity α such that α � 1 allows to start and end the

process with pulses close to zero. One can choose for instance α = 36. An alternative

parametrization, leading to smooth pulses, which start and end exactly at zero, is given

by

ϕ(t) =

{
0 if t ≤ 0 or t ≥ T

π
3
e4β exp( βT 2

t(t−T )) otherwise.
(37)

The (dimensionless) quantity β measures the width of the pulse. The value β = 2 leads

to pulses close to the ones obtained with parametrization (36) and α = 36.

For comparison, the completely overlapping fields Ωp(t) = Ωs(t) = Ω0/
√

2, also

satisfying the boundary Ω2
p + Ω2

s = Ω2
0, leads to complete population transfer, for the

duration

Tπ = 2π/Ω0, (38)

with the pulse energy E = ~π2/Tπ and pulse area A = π. Alternatively, the

successive pulses (without overlap), Ωp(t) = Ω0/
√

2 (for 0 ≤ t ≤ T/2, 0 otherwise)

and Ωs(t) = Ω0/
√

2 (for T/2 ≤ t ≤ T, 0 otherwise) also leads to the complete transfer

for the same pulse area A = π, with the transfer time T = 2
√

2π/Ω0. As a consequence,

one can remark that all these pulses of small pulse area (π or less for the optimal one)

feature intuitive sequences (or fully overlapping pulses), with a relatively large transient

population in the excited state
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4. COMPOSITE PROTOCOLS

The implementation of the previously defined optimal pulses induces a dynamics

sensitive to systematic errors. Composite pulses are designed to solve this issue. They

use a sequence of pulses with appropriate phases, Ωp(t)→ Ωp(t)e
iµ and Ωs(t)→ Ωs(t)e

iν ,

to control the dynamics in a robust way [16, 17]. These relative phases convert the

propagator U(t) of the STIRAP dynamics associated to the Hamiltonian (1) into

Uµ,ν = ψUψ∗, ψ =

 eiµ 0 0

0 1 0

0 0 e−iν

 . (39)

The composite STIRAP derived in [17] implements a high order fidelity, which is robust

to variation of systematic errors, with universal phases, i.e. independent of the specific

pulse shape, delay, and area. The dynamics with a sequence of N STIRAP’s (with N

an odd number) is represented by the propagator

U (N)(t) = UkN ,qN ŨµN−1,νN−1
· · ·Uµ3,ν3Ũµ2,ν2Uµ1,ν1 , (40)

where Ũ is a backward STIRAP propagator from state |3〉 to state |1〉, i.e. with the

exchange of the order of the pump and Stokes pulses. In this section we compare the

implementation of the composite STIRAP for three different pulse shapes: the Gaussian,

area-optimal and linear multimode pulses, as illustrated in Fig. 1 (b-d).

Protocol 1. The Gaussian pulses are the most widely used form in STIRAP, see

Fig. 1(b). They can be written as

Ωp(t) = Ω0e
−(t− τ

2
)2/σ2

, Ωs(t) = Ω0e
−(t+ τ

2
)2/σ2

, (41)

where τ is the delay, the σ is the pulse width and Ω0 is the peak amplitude of both

Rabi frequencies. A positive delay defines a so-called counterintuitive sequence, since

the Stokes precedes the pump pulse. We emphasize that such counterintuitive sequence

is of importance compared to an intuitive sequence when the upper state is lossy, since

it leads to much less transient population in this state. The fidelities corresponding to

the change of the pulse amplitude from Ω0 to Ω0(1 + η), via a systematic error η, is

shown in Fig. 2 (solid red lines). We can see that the fidelities get better with respect

to the systematic error η for a larger sequence number N . However, the Gaussian

pulses feature a large area and a large energy compared to the other invariant-based

and optimal pulses as analyzed below.

Protocol 2. We use the parametrization (36) with the geodesic (B.20), (B.23),

designed to minimize the pulse area (30). Setting the same peak Rabi frequency as for

the Gaussian pulses of Protocol 1, we obtain the transfer time Tarea ≈ 2.8µs for the

peak Rabi frequency Ω0 = 4MHz. With the area-optimal pulses shown in Fig. 1(c), the

fidelities versus the variation of the systematic errors for different N are shown in Fig.

2 (dotted black line).

Protocol 3. In this protocol, we consider the counterintuitive linear multimode

driving pulse sequence (26) with k = 1, i.e. of minimum energy, see Fig. 1(d). The
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Figure 2. Fidelity versus the variation of pump and Stokes pulses from Ωs,p to

Ωs,p(1 + η) for Gaussian (solid red line), area-optimal (dotted black line) and linear-

multimode (dashed blue line) pulses, for a single pulse pair (N = 1) and the sequences

N = 3, N = 5. Parameters are as follows for: τ = 2µs, σ = 2µs (leading to a transfer

time for Gaussian pulses that we can estimate as TGaussian = 16µs), Tarea = 2.8µs,

Tmulti = 3µs, Ω0 = 4 MHz.

energy associated to these pulses is E = 15π2~/(4T ), for a given interaction time T . We

obtain Tmulti ≈ 3µs for Ω0 = 4MHz. The fidelities versus variation of systematic errors

are shown in Fig. 2 (dashed blue line). Even though, as expected, the robustness of

area-optimal pulses is worse than the other two protocols for a single pulse, it becomes

comparable already for a sequence number N = 5.
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Figure 3. (a) Time transfer and (b) energy (denoted Ē ≡ E ) for Gaussian (solid red

line), area-optimal (dotted black line) and linear multimode pulses (dashed blue line)

with (N = 1, 2, · · · 7).

5. DISCUSSION AND CONCLUSION

We can compare the transfer time and the energy of the studied protocols for area-

optimal, Gaussian and linear multimode pulses at the same peak Rabi frequency (see

Fig. 3). They are all robust to systematic errors and feature all a high fidelity that can

satisfy the quantum information processing constraint [30].

The transfer times of composite STIRAP and composite STIREP are shown in Fig.

3(a) for different sequence numbers. We can conclude that the area-optimal pulses and

linear multimode pulses, even if they are not designed for optimizing the time transfer,

are much shorter than the Gaussian shape pulses. The more sequence we use in the

dynamics, the more time we can save. The linear multimode pulses are only a little

longer than the area-optimal pulses. We remark that, obviously, we could save even

more time by using the time-optimal pulses (33). We can notice that the area-optimal

pulses need less energy than the linear multimode pulses, see Fig. 3(b), as expected

for intuitive compared to counterintuitive sequences. It means we can combine the

area-optimal pulses and composite pulses into a hybrid protocol which features pulses

starting and ending at zero, a short transfer time and a low energy cost (but at the price

of high transient population in the upper state, see below).

STIRAP was initially developed for controlling atomic and molecular systems, in
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which the dark state (18) plays a major role to transfer population over a dissipative

intermediate state, rendering the dynamics insensitive to the loss from it (in the

adiabatic limit). In order to quantify it, we calculate the time area of transient

population in the excited state as Pe =
∫ T
0

sin2 ϕ(t)dt for a single pulse pair. Such

area Pe ≈ 0.264 for the (counterintuitive) linear multimode driving pulse is twice larger

than the one, 0.138, for (counterintuitive) Gaussian pulse, but twice lower than the one,

0.494, for the (intuitive) area-optimal protocol. Therefore, the linear multimode pulses

should find applications in quantum information processing when the upper state is

relatively weakly lossy or the process times are sufficiently short.

We have used single- and two-photon resonances in the derived hybrid protocols

since they are based on the search of optimal pulse sequences already for a single shot.

Detuned excitation corresponding to lower coupling strength would not lead to optimal

sequences. In a system featuring large inhomogeneous broadening as in rare-earth doped

solids, the use of composite detuned sequences has been shown to be more efficient and

more robust [33] since resonant sequence is sensitive to single-photon inhomogeneous

broadening. It would be of interest to reconsider the problem of optimality in Λ systems

including this additional effect (through a Lindblad equation with the density matrix

formalism) and a single-photon detuning.

Last but not least, recent experiments on STA for speeding up STIRAP demonstrate

that our hybrid protocols should be implementable for fast and robust state preparation

and also for producing quantum gates with various systems such as cold atoms,

superconducting circuits and solid-state spins [37–39].
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Appendix A. Connection between multi-mode driving and resonant pulses

In this appendix, one interprets the linear multi-mode driving, which provides fast and

robust state transfer, in term of a resonantly driven spin-1 particle. To this end, we

transform the Hamiltonian (1) into the adiabatic frame

Had = A†(t)H(t)A(t)− i~A†(t) ∂
∂t
A(t), (A.1)
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where

A(t) =

 sin θ/
√

2 cos θ sin θ/
√

2

1/
√

2 0 −1/
√

2

cos θ/
√

2 − sin θ cos θ/
√

2

 .

The transformed Hamiltonian becomes

Had = ΩJz + θ̇Jy, (A.2)

where Ω =
√

Ω2
s(t) + Ω2

p(t)/2, and the matrix elements for spin-1 particle are

Jx =
~√
2

 0 1 0

1 0 1

0 1 0

 , Jy =
~√
2

 0 −i 0

i 0 −i
0 i 0

 , Jz = ~

 1 0 0

0 0 0

0 0 −1

 .

The time evolution in the adiabatic frame is analogous to the rotation of a spin-1

system around an effective magnetic field given by Ω̂0 = ΩJz + θ̇Jy, with the amplitude

Ω0 =
√

Ω2 + θ̇2. The state vector is initially oriented along the Jz, corresponding to

the dark state |φD(t)〉. In the adiabatic limit θ̇ � 1, the precession axis is Ω̂0 = Jz, so

the state vector does not precess, and the state evolution will be along the dark state

without any transition. Regarding the multi-mode driving, we substitute the pulses (26)

and have

Ω =
π

2T

√
16k2 − 1, θ̇ =

π

2T
. (A.3)

In this case, the state vector starts to precess when θ̇ > 0 and Ω̂0 6= Jz, resulting in the

nonadiabatic evolution. The resonant condition, Ω0T = 2kπ, which is fulfilled, allows

the state vector to be driven back to the target dark state, that is, the ideal target state

|φD(T )〉. Therefore, the linear multi-mode driving can be interpreted by a resonant

driving in the adiabatic frame, thus producing a fast and robust state transfer.

Appendix B. Optimal Control Theory

In order to formulate the problem, one uses the fact that this resonant three-state

problem is of SU(2) symmetry. One can separate the dynamics into two independent

sub-dynamics each of them being associated to the real and imaginary parts of the initial

condition, here taken as real 〈1|ψ(0)〉 = 1, leading to the system of equations

ẋ = (upT1 + usT2)x, (B.1)

with

T1 =

 0 −1 0

1 0 0

0 0 0

 , T2 =

 0 0 0

0 0 −1

0 1 0

 , T3 =

 0 0 1

0 0 0

−1 0 0

 , (B.2)

[T1, T2] = T3, and x = [x1 ≡ 〈1|ψ〉, x2 ≡ i〈2|ψ〉, x3 ≡ −〈3|ψ〉]T , where the superscript T

denotes the transpose.
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To determine optimal control fields u(t) of a dynamical system ẋ = f(x(t); u(t)) (of

dimension N) with respect to the minimization of a given cost

J(u(t)) =

∫ T

0

g(x(t),u(t))dt, (B.3)

we use Pontryagin’s maximum principle, which provides necessary conditions for

optimality [36]. The maximum principle states that the trajectories of the extremal

vector x(t) and of the corresponding adjoint state p(t) formed by the Lagrange

multipliers, p(t) ≡ [p1(t), · · · , pN(t)], fulfill Hamilton’s equations

ẋ =
∂Hc

∂p
, ṗ = −∂Hc

∂x
, (B.4)

associated to the control pseudo-Hamiltonian

Hc(p(t),x(t); u(t)) = p · f(x(t); u(t))− p0g(x(t),u(t)), (B.5)

where the constant p0 > 0 can be chosen for convenience since it amounts to multiply the

cost function by a constant. For almost all 0 ≤ t ≤ T the function Hc(p(t),x(t); u(t))

is maximum at certain controls v(t) = u(t).

We use the angle coordinates, which defines the dynamical mode |φ0(t)〉 (16), i.e.

with θ(0) = 0, θ(T ) = π/2, ϕ(0) = ϕ(T ) = 0. The equations of the dynamics (14)

ϕ̇ = up cos θ − us sin θ, θ̇ = (up sin θ + us cos θ) tanϕ (B.6)

can be simplified as

ϕ̇ = vp, θ̇ = −vs tanϕ, (B.7)

using a rotation on the control fields[
vp
vs

]
=

[
cos θ − sin θ

− sin θ − cos θ

][
up
us

]
. (B.8)

The minimization of the energy (29), E =
∫ T
0

[u2p(t) + u2s(t)] dt =
∫ T
0

[v2p(t) + v2s(t)] dt,

leads to the control pseudo-Hamiltonian

Hc = λϕvp − λθvs tanϕ− 1

2
(v2p + v2s) (B.9)

with λ = [λϕ, λθ]
T the costate. The Hamilton equations lead to the equation of motion

(B.7) and to

λ̇ϕ =
v

cos2 ϕ
λθ, λ̇θ = 0. (B.10)

This implies that λθ is a constant of motion (taken positive). We apply the maximum

principle:

∂Hc

∂vp
= λϕ − vp = 0, (B.11)

∂Hc

∂vs
= −λθ tanϕ− vs = 0, (B.12)
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which leads to λϕ = vp and λθ tanϕ = −vs, i.e.

Hc =
1

2
(v2p + v2s) =

1

2
(λ2ϕ + λ2θ tan2 ϕ). (B.13)

We determine the optimal trajectory by quadrature, using Hc = C/2 = const., since Hc

features an effective autonomous system:

ϕ̇ = ±λθ tanϕm

√
1− tan2 ϕ

tan2 ϕm
, (B.14)

dϕ

dθ
=
ϕ̇

θ̇
= ±tanϕm

tan2 ϕ

√
1− tan2 ϕ

tan2 ϕm
, (B.15)

tanϕm =

√
C

λθ
, (B.16)

where we have assumed ϕ ≥ 0 (which is satisfied for up and us both positive) and

ϕ̇(t = T/2) = 0 by symmetry, leading to ϕ(T/2) ≡ ϕm maximum at t = T/2 and

positive (negative) branch of (B.14),(B.15) for t ∈ [0, T/2], ϕ increasing from 0 to ϕm
(t ∈ [T/2, T ], ϕ decreasing from ϕm to 0). Taking into account the boundary conditions,

we determine the solution of (B.14):

sinϕ = sinϕm sin (πt/T ) (B.17)

with λθT = π cosϕm, and the one of (B.15), θ+(ϕ+), for the positive branch of the

geodesic (where ϕ increases from 0 to ϕm, denoted ϕ+):

θ+ = atan

(
sinϕ+√

tan2 ϕm − sin2 ϕ+

cos2 ϕm

)
− cosϕmasin

( sinϕ+

sinϕm

)
. (B.18)

By imposing by symmetry that θ(ϕm) = π/4, we get

ϕm = π/3, (B.19)

which leads to

θ+ = atan

(
sinϕ+√

3− 4 sin2 ϕ+

)
− 1

2
asin

(
2√
3

sinϕ+

)
. (B.20)

This also leads to the time dependence of ϕ:

sinϕ =

√
3

2
sin (πt/T ) (B.21)

and consequently to the one of θ:

θ = atan
(1

2
tan (πt/T )

)
− πt

2T
. (B.22)

For the negative branch (i.e. ϕ decreasing from ϕm to 0), Eq. (B.21) still holds. The

negative branch θ−(ϕ−) of the geodesic reads:

θ− =
π

2
− atan

(
sinϕ−√

3− 4 sin2 ϕ−

)
+

1

2
asin

(
2√
3

sinϕ−

)
. (B.23)
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We note that asin(sinϕ−/ sinϕm) = π − πt/T in this case since ϕm is maximum.

Equation (B.22) hold as well if we assume the definition

atan(x) ∈

{
[0, π/2[ for x ≥ 0,

]π/2, π[ otherwise.
(B.24)

Inserting these relations into the definition of the pulses (14), we obtain for the optimal

pulses with respect to the energy as follows,

up(t) =

√
3π

2T
cos

(
πt

2T

)
, us(t) =

√
3π

2T
sin

(
πt

2T

)
. (B.25)
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[16] Torosov B T, Guérin S and Vitanov N V 2011 Phys. Rev. Lett. 106 233001

[17] Torosov B T and Vitanov N V 2013 Phys. Rev. A 87 043418
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