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ON THE ROOTS OF THE POUPARD

AND KREWERAS POLYNOMIALS

FRÉDÉRIC CHAPOTON AND GUO-NIU HAN

Abstract. The Poupard polynomials are polynomials in one variable with in-

teger coefficients, with some close relationship to Bernoulli and tangent num-
bers. They also have a combinatorial interpretation. We prove that every

Poupard polynomial has all its roots on the unit circle. We also obtain the

same property for another sequence of polynomials introduced by Kreweras
and related to Genocchi numbers. This is obtained through a general state-

ment about some linear operators acting on palindromic polynomials.

1. Introduction

Let us consider the sequence of polynomials (Fn)n≥1 in one variable x charac-
terized by the equation

(1.1) (x− 1)2Fn+1(x) = (x2n+2 + 1)Fn(1)− 2x2Fn(x) for n ≥ 1,

with the initial condition F1 = 1. When described in this way, their existence is not
completely obvious, because the right hand side must have a double root at x = 1
for the recurrence to make sense. The first few terms are given by

F1 = 1,

F2 = x2 + 2x+ 1,

F3 = 4x4 + 8x3 + 10x2 + 8x+ 4,

F4 = 34x6 + 68x5 + 94x4 + 104x3 + 94x2 + 68x+ 34.

The polynomial Fn has degree 2n− 2 and palindromic coefficients.
The coefficients of these polynomials form the Poupard triangle (A8301), first

considered in 1989 by Christiane Poupard in the article [7] and proved there to
enumerate some kind of labelled binary trees. It follows from this combinatorial
interpretation that all coefficients of Fn are nonnegative integers. For further com-
binatorial information on these polynomials and their relatives, see [1, 2].

The constant terms of these polynomials form the sequence of reduced tangent
numbers (A2105), that can be defined for n ≥ 1 by the formula

(1.2) 2n(22n − 1)|B2n|/n,

where Bn are the classical Bernoulli numbers, and starts by

1, 1, 4, 34, 496, 11056, 349504, 14873104, 819786496, . . .

One can deduce from (1.1) that Fn+1(0) = Fn(1), so the reduced tangent numbers
also describe the values of the polynomials Fn at x = 1.
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Our first result is the following unexpected property, that was the experimental
starting point of this article.

Theorem 1.1. For n ≥ 1, all roots of the polynomial Fn(x) are on the unit circle.

This is proved in section 2 in a much more general context, by showing that, for
any positive integer D, a linear operator ND maps palindromic polynomials with
nonnegative coefficients to palindromic polynomials with nonnegative coefficients
and all roots on the unit circle.

As another interesting application, one can consider the sequence of polynomials
characterized by

(1.3) (x− 1)2Gn+1(x) = (x2n+3 + 1)Gn(1)− 2x2Gn(x) for n ≥ 1,

with initial condition G1 = 1 + x. The first few terms are

G1 = x+ 1,

G2 = 2x3 + 4x2 + 4x+ 2,

G3 = 12x5 + 24x4 + 32x3 + 32x2 + 24x+ 12,

G4 = 136x7 + 272x6 + 384x5 + 448x4 + 448x3 + 384x2 + 272x+ 136.

The polynomial Gn has degree 2n− 1 and palindromic coefficients.

Theorem 1.2. For n ≥ 1, all roots of the polynomial Gn(x) are on the unit circle.

Because the polynomials Gn have odd degree, they are all divisible by x + 1.
One can also show by induction that the polynomial Gn is divisible by 2n−1. The
quotient polynomials 21−nGn/(x + 1) have appeared in an article of Kreweras [3]
dealing with refined enumeration of some sets of permutations. Their constant
terms are the Genocchi numbers (A1469), given by the formula

(1.4) 2(22n − 1)|B2n|,
where Bn are again the Bernoulli numbers.

Both theorems above are proved in section 2 using a familly of operators ND

acting on palindromic polynomials. Section 3 describes explicit simple eigenvectors
of the operator N1. In section 4, some evidence is given for the general asymptotic
behaviour of the iteration of the operators ND for D > 1. The last section con-
tains various statements and conjectures on values of the operators ND on specific
palindromic polynomials.

Let us note as a side remark that another familly of polynomials, also related
to Bernoulli numbers, has been proved in [5, 6] to have only roots on the the unit
circle, by different methods.

2. Operators ND and roots on the unit circle

Let us consider a polynomial P (x) =
∑d
j=0 pjx

j with rational coefficients. Let
us say that the polynomial P is palindromic of index d if pj = pd−j for all j. Note
that the index can also be described as the sum of the degree and the valuation.
For example, the index of the polynomial x = 0 + x+ 0x2 is 2. For any d ≥ 0, let
Vd be the vector space spanned by palindromic polynomials of index d.

For every nonnegative integer D, let us introduce a linear operator ND from Vd
to Vd+2D−2. This operator is characterized by the following formula:

(2.1) (x− 1)2ND(P )(x) = (xd+2D + 1)P (1)− 2xDP (x).

https://oeis.org/A1469
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The definition requires that the right hand side is divisible by (x−1)2. By linearity
of (2.1), it is enough to check this property for the basis elements xi + xd−i with
0 ≤ i ≤ d, where one finds

(2.2) ND(xi + xd−i) = 2
(1− xi+D)

(1− x)

(1− xd+D−i)

(1− x)
,

which is a polynomial with nonnegative integer coefficients. Note that when d = 2i,
one can divide (2.2) by 2.

The definition of ND and formula (2.2) imply immediately the following lemma.

Lemma 2.1. Let P be a non-zero palindromic polynomial of index d with nonneg-
ative integer coefficients. If d ≤ 1, assume moreover that D > 0. Then ND(P )
is a non-zero palindromic polynomial of index d + 2D − 2 with positive integer
coefficients.

Let us record the following useful statement as a lemma.

Lemma 2.2. When iterating i times ND on an palindromic polynomial P of odd
index with integer coefficients, the integer 2i divides N i

DP .

Proof. If the index of a palindromic polynomial P is odd, then it is divisible by
x+ 1. When P has integer coefficients, formula (2.1) then implies that ND(P ) has
one further factor 2. The lemma follows by induction. �

Recall that a palindromic polynomial P =
∑d
j=0 pjx

j is called unimodal if the

sequence of coefficients is increasing up to the middle coefficient(s), then decreasing.
A polynomial P is called concave if the piecewise linear function that maps j to pj
is a concave function. A concave polynomial P is called strictly concave if every
point (j, pj) is moreover an extremal point in the graph of this piecewise linear
function.

Lemma 2.3. Let P be a non-zero palindromic polynomial of index d with nonneg-
ative integer coefficients. If d ≤ 1, assume moreover that D > 0. Then ND(P ) is
unimodal and concave. If P has no zero coefficient, then ND(P ) is strictly concave.

Proof. By (2.2), the polynomial ND(P ) is a nonnegative linear combination of
unimodal and concave polynomials, hence itself unimodal and concave. Each term
in (2.2) gives two extremal points, or just one extremal point when i = d− i. When
P has no zero coefficient, this implies that there is an extremal point above every
integer between 1 and d+ 1. �

Let us now recall a beautiful criterion obtained by Lakatos and Losonczi in [4].

Lemma 2.4. Let P (x) =
∑d
j=0 pjx

j be a palindromic polynomial of index d. If

(2.3) |pd| ≥
1

2

d−1∑
j=1

|pj |,

then all roots of P are on the unit circle.

From this criterion, one deduces another one.

Theorem 2.5. Let P (x) =
∑d
j=0 pjx

j be a palindromic polynomial of index d. If

(2.4) 2pj ≥ pj−1 + pj+1 for all 0 ≤ j ≤ d,
with the convention that p−1 = pd+1 = 0, then all roots of P are on the unit circle.
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Proof. Let Q(x) = (1− x)2P (x). Then Q(x) =
∑d+2
j=0 qjx

j , where

q0 = p0,

qj+1 = pj+1 + pj−1 − 2pj , (0 ≤ j ≤ d)

qd+2 = pd.

Note that Q is also palindromic of index d+ 2.
By the hypothesis (2.4), all qj ≤ 0 for 1 ≤ j ≤ d+ 1. Since Q(1) = 0, we have

d+1∑
j=1

|qj | = −
d+1∑
j=1

qj = q0 + qd+2 = 2qd+2.

Note that therefore q0 ≥ 0.
Since Q(x) is palindromic, and

|qd+2| =
1

2

d+1∑
j=1

|qj |,

one can therefore apply lemma 2.4 to Q(x) and conclude that Q(x) has all its roots
on the unit circle. This implies the same property for P (x). �

Theorem 2.6. Let P be a non-zero palindromic polynomial of index d with non-
negative integer coefficients. If d ≤ 1, assume moreover that D > 0. Then ND(P )
is a non-zero palindromic polynomial of index d+ 2D − 2 with nonnegative integer
coefficients and all roots of ND(P ) are on the unit circle.

Proof. This is an application of theorem 2.5. The definition of ND and the hypoth-
esis that P has nonnegative coefficients imply immediately the condition (2.4). �

Let us now apply theorem 2.6 to the proofs of theorem 1.1 and theorem 1.2. The
defining recurrence (1.1) for the polynomials Fn can be written as Fn+1 = ND(Fn)
with the initial condition F1 = 1. The property follows by induction. The same
proof works for Gn with the initial polynomial 1 + x.

Let us now state two useful lemmas.

Lemma 2.7. For all d ≥ 0, the polynomial xd + 1 is in the kernel of N0.

Proof. This is a direct consequence of (2.2). �

Lemma 2.8. Let d ≥ 2 be an integer. Then

(2.5) N0(1 + x+ · · ·+ xd) =

d−2∑
i=0

(d− 1− i)(i+ 1)xi.

Proof. From the definition of N0 by (2.2), and by the previous lemma, this is equal
to

d−1∑
j=1

1− xj

1− x
1− xd−j

1− x
.

Developing, one find that the coefficient of xi is the cardinality of

{(j, k) | 0 ≤ k ≤ j − 1 and 0 ≤ i− k ≤ d− j − 1} .
But this is the same as the set

{(j, k) | 1 ≤ j − k ≤ d− i− 1 and 0 ≤ k ≤ i} ,
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Figure 1. Coefficients and roots of the Poupard polynomial F12

whose cardinality is (d− 1− i)(i+ 1). �

3. Sinus polynomials as eigenvectors

As can be seen in the right picture of fig. 1, the roots of the Poupard polynomials
Fn(x) are very close to some of the roots of x2n + 1, with two missing roots on the
right. Moreover the plot of the coefficients of Fn(x) seem to approximate a concave
continuous function, as in the left picture of fig. 1.

One expects that, up to a global multiplicative factor, the polynomials obtained
when iterating n times the operator ND (for some fixed D > 1) are always becom-
ing, when n is large, very close to the polynomials described in this section. Some
kind of justification will be given in the next section.

Let us consider the polynomial Sm,n(x) defined for n ≥ 2 and odd m ≥ 1 by

(3.1) Sm,n(x) =
xmn + 1

x2 − 2x cos πn + 1
,

whose roots are the roots of xmn + 1 except exp( iπn ) and its conjugate.
Let us first give an alternative expression for Sm,n.

Lemma 3.1. The polynomial Sm,n has an explicit expression

(3.2) Sm,n(x) =
1

sin(πn )

mn−2∑
k=0

sin

(
(k + 1)π

n

)
xk.

Proof. The proof is a simple computation, expanding both sides as polynomials in
x and ζ = exp( iπn ), also using that m is odd. �

This implies that the plot of the coefficients of S1,n looks very much like a sinus
curve, like the left image in fig. 1.

Proposition 3.2. For every n ≥ 2 and odd m ≥ 1, the polynomial Sm,n is an
eigenvector of the operator N1 acting on Vmn−2, for the eigenvalue 1/(1−cos(π/n)).
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Proof. The proof is another explicit computation using the definition of Sm,n in
(3.1) and the definition of the operator N1 in (2.1). �

Note that the eigenvalue is also the value Sm,n(1).
In general, the Galois conjugates of the polynomial S1,n are not providing a com-

plete set of eigenvectors for the operator N1 acting on Vn−2. The other eigenvectors
are Sm,n/m for odd divisors m of n, and their Galois conjugates.

The familly of operators N1 acting on the spaces Vn−2 of palindromic polyno-
mials looks very much like discrete versions of the Laplacian operator ∂2

x acting on
the space of functions f on the real interval [0, 1] such that f(1− x) = f(x) for all
x and f(0) = f(1) = 0.

4. Asymptotic behaviour from recurrence

Our next point is to justify in a heuristic way that iterating an operator ND for
some D > 1 produces a sequence of polynomials that gets closer and closer to the
sinus polynomials S1,n. We have not tried to make these computations rigourous.

Let us consider a familly of polynomials Hn of index n defined by iterating ND,
starting from an arbitrary palindromic polynomial Hm with nonnegative coefficients
and index m. In all this section, the index n belongs to an arithmetic progression
of step δ = 2D − 2 starting at m. Let us denote

(4.1) Hn(x) =

n∑
k=0

Hn,kx
k.

We will assume the following asymptotic ansatz for the constant terms:

(4.2) Hn(0) ' ABnnCnEn,

for some constants A, B, C, E, with A, B, E positive. This ansatz is motivated by the
known case of the tangent numbers, where B = 2

eπ , E = 1 and C = −1/2. This
ansatz implies that

(4.3) Hn+δ(0)/Hn(0) ' BδeδEnδE.

We will also assume that there exists a smooth function Ψ which is a probability
distribution function on the real interval [0, 1] vanishing at 0 and 1, with Ψ(1−x) =
Ψ(x) on this interval and such that

(4.4) Hn,k '
αn
n

Ψ

(
k

n

)
+Hn,0

is a good asymptotic approximation when n is large, for some sequence αn to be
determined.

Taking the sum of (4.4) over k ranging from 0 to n and using the hypothesis on
Ψ, one gets

Hn+δ,0 = Hn(1) ' αn + (n+ 1)Hn,0,

Assuming that nHn,0 is negligible compared to Hn+δ,0, one obtains that a correct
choice for αn is

αn = Hn+δ,0.

From (2.1), one deduces that the action of ND at the level of coefficients is given
by

(4.5) Hn+δ,k+D − 2Hn+δ,k+D−1 +Hn+δ,k+D−2 = −2Hn,k,
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except for k = 0 and k = n.
Replacing in (4.5) the coefficients by the expression from (4.4), one obtains

(4.6)
αn+δ

n+ δ

(
Ψ

(
k +D

n+ δ

)
− 2Ψ

(
k +D − 1

n+ δ

)
+ Ψ

(
k +D − 2

n+ δ

))
' −2

(
αn
n

Ψ

(
k

n

)
+Hn,0

)
Using now the growth ansatz, one can get rid of Hn,0 in the rightmost term and

obtain

(4.7) Ψ

(
k +D

n+ δ

)
− 2Ψ

(
k +D − 1

n+ δ

)
+ Ψ

(
k +D − 2

n+ δ

)
' −2

αn
αn+δ

Ψ

(
k

n

)
.

The left hand side is an approximation of the second derivative of Ψ, so that one
obtains

(4.8)
1

2(n+ δ)2
Ψ′′
(

k

n+ δ

)
' −2

αn
αn+δ

Ψ

(
k

n

)
.

If δE = 2, one therefore reaches the following differential equation

(4.9) Ψ′′ = −FΨ,

where F = 4
Bδe2

. Because Ψ vanishes at 0, it must be a multiple of sin(
√
Fx).

Because Ψ vanishes at 1 and is positive on the interval [0, 1], necessarily F = π2

and therefore Bδ = ( 2
eπ )2. Because Ψ is a probability distribution, one must have

Ψ = π
2 sin(πx).

One can therefore conclude that, under several plausible but unproven assump-
tions, the asymptotic shape of the coefficients of the polynomials Hn is approxi-
mating that of the polynomials S1,n+2.

5. Various remarks

5.1. Action of the operator N0. Applying the operator N0 decreases the index
by 2, so that iterating this operator on any initial polynomial P of index d always
vanishes after a finite number of steps. Let N max

0 be the last non-identically zero
iterate of N0 acting on Vd. Let us denote by ρ the linear map that maps P to the
constant term of N max

0 (P ).
For example, here is a sequence of iterates of N0:

x4 + x3 + x2 + x+ 1, 3x2 + 4x+ 3, 4.

In this case, ρ(x4 + x3 + x2 + x+ 1) = 4.
Let us present some special cases of initial choices where the value of ρ is inter-

esting.

For n ≥ 0, consider the polynomial

(5.1) Qn(t) =

2n+1∑
i=0

ρ

(
xi − x2n+1−i

x− 1

)
ti,

recording this sequence of final values. By antisymmetry of the argument of ρ, the
polynomial Qn vanishes at t = 1. Let Pn(t) be the quotient Qn(t)/(t− 1), which is
clearly a palindromic polynomial.

Proposition 5.1. For every n ≥ 0, the polynomial Pn is the Poupard polynomial
Fn+1.
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Proof. For n = 0, one can check that Pn(t) = 1. Assume n > 0. For 0 ≤ i ≤ 2n,
the coefficient cn,i of ti in Pn(t) can be written as

(5.2) − ρ

 ∑
0≤k≤i

xk − x2n+1−k

x− 1

 = ρ

(
xi+1 − 1

x− 1

x2n+1−i − 1

x− 1

)
.

Let us now compute cn,i+2 − 2cn,i+1 + cn,i for 0 ≤ i ≤ 2n − 2. Starting from the
left hand side of (5.2), this is given by

ρ
(
xi+1 + x2n−i−1

)
.

Using now the equation (2.2) for N0 and the definition of ρ as the final value for
the iteration of N0, this becomes

2ρ

(
xi+1 − 1

x− 1

x2n−i−1 − 1

x− 1

)
,

in which one can recognize −2cn−1,i using the right hand side of (5.2).
Moreover, cn,1 − 2cn,0 = ρ(1 + x2n) = 0 because 1 + x2n is in the kernel of N0

by lemma 2.7.
Let us now check that cn,0 =

∑2n−2
i=0 cn−1,i. First, by (5.2), the left hand side is

the image by ρ of N0(1 + x+ · · ·+ x2n), given by Lemma 2.8. The right hand side
is the image by ρ of

(5.3)

2n−2∑
i=0

∑
0≤k≤i

∑
k≤j≤2n−2−k

xj =

2n−2∑
j=0

(2n− 1− j)(j + 1)xj ,

which is the exact same expression.
All these properties of the coefficients cn,i imply exactly that the polynomial

Pn(t) is the image of Pn−1(t) by N1, acting on the variable t. �

For n ≥ 0, consider the polynomial

(5.4) Q′n(t) =

2n∑
i=0

ρ

(
xi − x2n−i

x− 1

)
ti,

recording this sequence of final values. By antisymmetry of the argument of ρ, the
polynomial Q′n vanishes at t = 1. Let P ′n(t) be the quotient Q′n(t)/(t− 1), which is
clearly a palindromic polynomial of odd index.

Proposition 5.2. For every n ≥ 1, the polynomial Q′n is the Kreweras polynomial
Gn.

Proof. The proof is very similar to the previous one. One first check that Q′1 is
1 + x. Then one checks by looking at coefficients that Q′n+1 is N1(Q′n). �

Let us now describe some similar conjectural properties. For the starting se-
quence (2−j(1 + x)2j)j≥0, one gets the following values of ρ:

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, . . .

which seem to be the Euler numbers A364. Similarly, for the starting sequence
(2−j(1 + x)2j+1)j≥0, one gets

1, 3, 25, 427, 12465, 555731, 35135945, . . .

This seems to be the closely related sequence A9843.

https://oeis.org/A364
https://oeis.org/A9843
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As a final conjectural remark, let us consider the following extension of the two
previous cases.

Conjecture 5.3. For every i, j, the number ρ(xi(1 + x)j) is divisible by 2bj/2c.

This property is clear if j is odd by lemma 2.2, but not at all if j is even.
Assuming this conjecture, one can define, for every integer n, the square matrix

Mn whose coefficient Mn(i, j), for 0 ≤ i ≤ n and 0 ≤ j ≤ n, is ρ(xi(1+x)j)2−bj/2c.

Conjecture 5.4. For all n ≥ 0, the determinant dn of the matrix Mn is given by
the formula

(5.5) dn = (n− 1)!ε(1)(n− 2)!ε(2)(n− 3)!ε(3) . . . 1!ε(n−1),

where

ε(k) =

{
2 if k is odd,

4 if k is even.

For example, M6 is equal to

(5.6)


1 1 1 3 5 25
1 2 3 14 33 226
2 8 18 120 378 3336

10 64 198 1728 6858 74304
104 896 3528 38016 182088 2339712

1816 19456 92808 1188864 6668568 99118080


whose determinant is indeed 5!24!43!22!41!2.

This matrix contains entries with large prime factors, for example 92808 =
23321289, but the determinant has only small prime factors.

5.2. Action of the operator N1. Applying the operator N1 does not change the
index, so iterating this operator on any initial choice gives an infinite sequence of
palindromic polynomials of the same index.

For example, starting with x gives a sequence of polynomials

x, x2 + 2x+ 1, 4x2 + 6x+ 4, 14x2 + 20x+ 14, 48x2 + 68x+ 48, 164x2 + 232x+ 164, . . .

whose constant terms and middle coefficients are given by A7070 and by A6012.
Indeed, the action of N1 on reciprocal polynomials of index 2 is given in the basis
{1 + x2, x} by the matrix (

2 1
2 2

)
so that both sequences satisfy the recurrence an = 4an−1−2an−2 with appropriate
initial conditions.

5.3. Action of the operator N2. Applying the operator N2 increases the index
by 2, so iterating this operator gives an infinite sequence of polynomials for every
initial choice. In each such sequence, the sequence of constant terms is, up to a shift
of indices by one, the same as the sequence of values at x = 1. Some examples were
presented in the introduction, related to reduced tangent numbers and Genocchi
numbers. Let us record one more familly of examples.

https://oeis.org/A7070
https://oeis.org/A6012
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Using the polynomials xi(x+ 1) for i ≥ 0 as starting points, one gets a table of
constant terms: 

1 1 3 17 155 2073
0 1 6 55 736 13573
0 1 10 135 2492 60605
0 1 15 280 6818 211419
0 1 21 518 16086 619455
0 1 28 882 34020 1592811


Here i is the row index and in each row the term of index j is the constant term
divided by 2j . This table seems to be essentially the Salié triangle A65547.
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