On the existence of supporting broken book decompositions for contact forms in dimension 3
 Vincent Colin, Pierre Dehornoy, Ana Rechtman

To cite this version:

Vincent Colin, Pierre Dehornoy, Ana Rechtman. On the existence of supporting broken book decompositions for contact forms in dimension 3. 2020. hal-02426945v1

HAL Id: hal-02426945
https://hal.science/hal-02426945v1
Preprint submitted on 3 Jan 2020 (v1), last revised 8 Mar 2022 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE EXISTENCE OF SUPPORTING BROKEN BOOK DECOMPOSITIONS FOR CONTACT FORMS IN DIMENSION 3

VINCENT COLIN, PIERRE DEHORNOY, AND ANA RECHTMAN

Abstract

We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, then every nondegenerate Reeb vector field on M has positive topological entropy. Moreover, we obtain that on a closed 3 -manifold, every nondegenerate Reeb vector field has either two or infinitely many periodic orbits, and two periodic orbits are possible only on the sphere or on a lens space.

1. Introduction

On a closed 3-manifold M, every contact structure ξ is carried by some open book decomposition of M [Gir]: there exists a Reeb vector field for ξ transverse to the interior of the pages and tangent to the binding. The dynamics of this specific Reeb vector field is then captured by its first return map on a page, which is a flux zero area preserving diffeomorphism of a compact surface, a much simplified data. When one is interested in the dynamics of a given Reeb vector field this Giroux's correspondence is quite unsatisfactory - though there are ways to transfer some properties of an adapted Reeb vector field to every other one through contact homology techniques $[\mathrm{CH}, \widehat{\mathrm{ACH}]}$ - and the question one can ask is: Is every Reeb vector field adapted to some (rational) open book decomposition? Equivalently, does every Reeb vector field admit a Birkhoff section?

We give here a positive answer to these questions for the generic class of nondegenerate Reeb vector fields and the extended class of broken book decompositions (Definitions 2.1 and 2.4.

[^0]Theorem 1.1. Every nondegenerate Reeb vector field is carried by a broken book decomposition.

A contact form and the corresponding Reeb vector field are nondegenerate if all the periodic orbits of the Reeb vector field are nondegenerate, namely the eigenvalues of a Poincaré map are all different from one. The nondegeneracy condition is generic for Reeb vector fields, see for example [CH, Lemma 7.1].

A Birkhoff section of a vector field R is a surface with boundary whose interior is transverse to R, whose boundary, called here the binding, is composed of periodic orbits, and which intersects all orbits of R within bounded time, so that there is a well-defined return map in the interior of the surface. These surfaces are also known as global surfaces of section.

Broken book decompositions are generalisations of Birkhoff sections or rational open book decompositions, reminiscent of finite energy foliations constructed by Hofer-Wyszocki-Zehnder [HWZ2] for nondegenerate Reeb vector fields on \mathbb{S}^{3}. In a broken book decomposition we allow the binding to have hyperbolic components, in addition to elliptic ones modelled on the classical open book case. A broken book decomposition carries, or supports, a Reeb vector field if the binding is composed of periodic orbits, while the other orbits are transverse to the (usually non trivial, though by relatively compact leaves, as opposed to the genuine open book case) foliation given on the complement of the binding by the interior of the pages. In the proof of Theorem 1.1, we construct a supporting broken book decomposition for any fixed nondegenerate Reeb vector field on a 3-manifold M from a covering of M by pseudo-holomorphic curves, given by the nontriviality of the U-map in embedded contact homology. Those give a complete collection of surfaces transverse to the Reeb vector field.

Weinstein conjectured in 1979 that a Reeb vector field on a closed 3manifold has always at least one periodic orbit [Wei]. The conjecture was proved in full generality by Taubes [Tau] using Seiberg-Witten Floer homology. It is also a consequence of the U-map property we use here, and it is no surprise that our result indeed implies the existence of the binding periodic orbits. Taubes result was then improved independently by CristofaroGardiner and Hutchings [$\mathrm{C}-\mathrm{GH}]$ and by Ginzburg, Hein, Hryniewicz and Macarini [GHHM], who proved that every Reeb vector field on a closed 3-manifold has at least two periodic orbits. It is now moreover conjectured that a nondegenerate Reeb vector field has either two or infinitely many periodic orbits. The existence of infinitely many periodic orbits has been established under some hypothesis (see the survey [GG]) and it is known to be generic [[Ir]. Here we prove the conjecture for nondegenerate Reeb vector fields, as stated in Theorem 1.4.

Beyond the number of periodic orbits, the study of the topological entropy of Reeb vector fields started with the works of Macarini and Schlenk [MS] and has been continued by Alves [ACH, Alv]. We recall that topological entropy measures the complexity of a flow by computing the growth of the number of "different" orbits. If this number grows exponentially then the entropy is positive. For flows in dimension 3, if the topological entropy is positive then the number of periodic orbits is infinite (even more, the number of periodic orbits grows exponentially with respect to the period [Kat]).

As a first application of Theorem 1.1 we get a result on topological entropy

Theorem 1.2. If M is a closed irreducible oriented 3-manifold that is not a graph manifold, then every nondegenerate Reeb vector field on M has positive topological entropy.

This is obtained by analysing the hyperbolic binding components of the broken book decomposition and proving that we get cycles of connections between them. If there are no such hyperbolic components, then we have a rational open book decomposition and the result comes from an analysis of its monodromy. In particular, we obtain

Theorem 1.3. Every nondegenerate Reeb vector field without homoclinic orbits is carried by a rational open book decomposition (where we drop the compatibility of orientations condition along the binding), or equivalently has a Birkhoff section.

A homoclinic orbit is an orbit that is contained in a stable and an unstable manifold of the same hyperbolic periodic orbit. Equivalently, it is an orbit that is forward and backward asymptotic to the same hyperbolic periodic orbit.

Our techniques, combined with Fried's construction [Fri], also allow to establish the existence of a supporting rational open book decomposition (where we drop the orientation assumption on the binding) when there is one hyperbolic component of the binding. We refer to Theorem 4.4 for the details. Supported by these constructions, we make the optimistic Conjecture 4.5 that broken book decompositions can be transformed into rational open book decompositions (with no assumption on the orientation of the binding), and thus that nondegenerate Reeb vector fields always admit Birkhoff sections.

Finally, regarding the two or infinitely many periodic orbits conjecture, we can extend a recent result of Cristofaro-Gardiner, Hutchings and Pomerleano, originally obtained for torsion contact structures ξ (with $c_{1}(\xi) \in$ $\left.\operatorname{Tor}\left(H^{2}(M, \mathbb{Z})\right)\right)$ [C-GHP].

Theorem 1.4. If M is a closed irreducible oriented 3-manifold that is not the sphere or a lens space, then every nondegenerate Reeb vector field on M has infinitely many simple periodic orbits. In the case of the sphere or a lens space, there are either two or infinitely many periodic orbits.

A broken book decomposition having hyperbolic components in the binding has a finite number of rigid pages (these are pages of the broken book decomposition that are not surrounded by similar pages). The union of the rigid pages intersects every orbit of the Reeb vector field, and for the orbits that are not in the binding, the intersection is transversal. Thus if we number the rigid pages, there should be some symbolic dynamical system associated to the intersection of the orbits with the rigid pages. There is a feature of the dynamics that one has to be careful about when developing this analysis: the hyperbolic components of the binding have stable and unstable manifolds, and the orbits in these manifolds do not behave as in a classical open book decomposition. That is, the first-return time to the rigid pages is not bounded everywhere, and the fact that there are orbits asymptotic to the binding means that the discrete dynamics on the rigid pages has to be modelled by a pseudo-group of local diffeomorphisms.

The paper is organised as follows. In Section 2 we define broken book decompositions and how they support a contact form or its Reeb vector field. The existence of broken book decompositions is established in Section 3, in particular we give a proof of Theorem 1.1. The applications of this theorem are discussed in Section 4

2. BROKEN BOOK DECOMPOSITIONS

Recall that a rational open book decomposition of a closed 3-manifold M is a pair (K, \mathcal{F}) where K is an oriented link called the binding of the open book and $M \backslash K$ fibers over \mathbb{S}^{1}. The fibers define the foliation \mathcal{F} of $M \backslash K$ and a page of the open book is a leaf of \mathcal{F} whose closure is obtained by its union with K. Near every component k of K the foliation is as in Figure 1 . The adjective rational is dropped when moreover the closure of each page is embedded. So in an open book decomposition each page appears exactly once along each component of the binding. In both cases we say that k is elliptic with respect to \mathcal{F}.

We generalise this definition by allowing another behaviour in the binding, namely hyperbolic components. It coincides with the transverse foliations proposed by Hryniewicz and Salamão in [HryS].

Definition 2.1. A degenerate broken book decomposition of a closed 3manifold M is a pair (K, \mathcal{F}) such that:

Figure 1. On the left, a transversal section of an elliptic component in a rational open book with a page drawn in green. On the right, the intersection of a page with the boundary of a tubular neighborhood of a component of K.

- K is an oriented link with $K=K_{e} \cup K_{h}$ the elliptic and hyperbolic components respectively; a component k_{e} of K is elliptic if \mathcal{F} foliates a neighborhood of k_{e} by annuli all having exactly one boundary on k_{e}. The other components of K are called hyperbolic.
- \mathcal{F} is a cooriented foliation of $M \backslash K$ such that each leaf L of \mathcal{F} is properly embedded in $M \backslash K$ and admits an immersed compactification \bar{L} in M which is a compact surface whose boundary is contained in K and $\bar{L} \backslash L \subset K$.

There are different types of leaves. A leaf which belongs to the interior of a 1-parameter family of leaves that are all diffeomorphic is regular. This is in particular the case of pages with boundary contained in K_{e}. On the other hand, a leaf that is not in the interior of a 1-parameter family is rigid. A rigid page must have at least one boundary component in K_{h}. The complement of the rigid pages fibers over \mathbb{R}. Hence, each connected component of the complement of the rigid pages can be thought as a product of a leaf in it and \mathbb{R}.

Definition 2.2. A contact form λ is carried by a degenerate broken book decomposition (K, \mathcal{F}) if its Reeb vector field R_{λ} is tangent to K and positively transverse to the pages of \mathcal{F}.

Here we do not require the binding to be positively oriented by R_{λ} for the orientation coming from the cooriented pages, as it is in the classical open book case.

Remark 2.3. We point out a possible confusion: an elliptic component of K of a broken book supporting a contact form λ can be an elliptic or hyperbolic

Figure 2. Transversal sections of hyperbolic components. On the left the hyperbolic component is degenerate, while on the right it is not. A rigid page is in purple, a regular page in green (the two or three segments of each color belong to the same page: in general it visits several times a neighborhood of a given hyperbolic orbit in the binding). An adapted Reeb vector field is also pictured.
periodic orbit of R_{λ}; while a hyperbolic component of K is necessarily a hyperbolic periodic orbit of R_{λ}.

If a nondegenerate Reeb vector field is carried by a degenerate broken book decomposition then the hyperbolic components of the binding locally have 4 sectors transversally foliated by hyperbolas, separated by 4 sectors radially foliated (as in the right hand illustration of Figure 2). In this situation, there are only finitely many rigid pages since every rigid page must be somewhere in a boundary of one of the sectors foliated by the hyperbolas. Moreover in our case, the monodromy along the hyperbolic components will be the identity, i.e., the pages with boundary in the hyperbolic components will be locally embedded along those.

Definition 2.4. A broken book decomposition is a degenerate broken book whose hyperbolic components of the binding locally have 4 sectors transversally foliated by hyperbolas, separated by 4 sectors radially foliated and with monodromy the identity.

In particular, with our definitions, a broken book decomposition - as well as a degenerate broken book decomposition - with a binding free of hyperbolic components is a rational open book decomposition. Also note that a hyperbolic component of the binding is the boundary of a finite number of rigid pages.

An immersed oriented compact surface whose boundary is made of periodic orbits and whose interior is embedded and positively transverse to the Reeb vector field R_{λ} will be called an R-section. Pages of supporting open book decompositions are examples of R-sections. Given an R-section S (or a collection of R-sections), an orbit γ of R_{λ} is asymptotically linking S if for all $T>0$ (resp. $T<0$) the flow for time $t>T$ (resp. $t<-T$) intersects S.

Also if γ is an orbit in the boundary of an R-section S, its asymptotic self-linking with S is the average intersection number of γ pushed along $D R_{\lambda}$ with S. More precisely, one can blow-up γ so that it is replaced with its unit normal bundle $\nu^{1} \gamma$, which is a 2 -dimensional torus. The vector field R_{λ} then extends to $\nu^{1} \gamma$. The boundary ∂S induces a longitude on $\nu^{1} \gamma$. The asymptotic self-linking with S is defined as the rotation number of the extension of R_{λ} to $\nu^{1} \gamma$, with respect to the 0 -slope given by ∂S.

3. CONSTRUCTION OF SURFACES OF SECTION FROM EMBEDDED CONTACT HOMOLOGY THEORY

For an introduction to embedded contact homology, we refer to [Hu] and $[\mathrm{C}-\mathrm{GHP}]$. Let λ be a contact form whose Reeb vector field R_{λ} is nondegenerate. The periodic orbits of R_{λ} split into elliptic, positive hyperbolic and negative hyperbolic ones, when the linearized first-return map is respectively conjugated to a rotation, has positive eigenvalues, or negative eigenvalues. The ECH chain complex $\operatorname{ECC}(M, \lambda)$ is generated over \mathbb{Z}_{2} (or \mathbb{Z}) by finite sets of simple periodic orbits together with multiplicities. Whenever an orbit of an orbit set is hyperbolic, its multiplicity is taken to be 1. This last condition is consistent with the way the ECH index 1 or 2 pseudoholomorphic curves involved in the definition of the differential or in the U-map break, see [Hu, Section 5.4]. Recall that when considering an ECH holomorphic curve between orbit sets Γ and Γ^{\prime}, the multiplicity of an orbit γ in Γ or Γ^{\prime} is the number of times the curve asymptotically covers γ at its positive or negative end, or alternatively the degree of the map from the positive or negative part of the boundary (going to $\pm \infty$ in the symplectization) of the compactified curve to the orbit. If a breaking involves a hyperbolic orbit with multiplicity strictly larger than 1 , then there is an even number of ways to glue and these contributions algebraically cancel [Hu, Section 5.4]. Thus in the compactness arguments below involving the U-map, since they rely on a odd number of holomorphic curves passing through a point, we will always be able to get breakings only involving hyperbolic orbits with multiplicity 1 . The way the ECH index 1 and 2 curves approach their limit orbits is governed by the partition conditions [Hu, Section 3.9] (associated
with usual SFT exponential convergence to multisections of the normal bundle of the orbit, see [HWZ1, Theorem 1.4]). In particular, near elliptic and negative hyperbolic limit orbits, there is a well-defined germ of first return map in bounded time of the Reeb flow on the (projection to M of the) corresponding cylindrical end. Near a positive hyperbolic limit orbit, every orbit in its stable/unstable manifold has 0 asymptotic linking number at, respectively, $+\infty /-\infty$ with respect to each of the corresponding cylindrical ends. Said differently, the asymptotic self-linking number of a positive hyperbolic limit orbit with respect to the projection of the holomorphic curve is 0 .

Now, there exists a class $[\Gamma]$ in $\operatorname{ECH}(M, \lambda)$ such that $U([\Gamma]) \neq 0$, where the map $U: E C C(M, \lambda) \rightarrow E C C(M, \lambda)$ is a degree -2 map counting pseudoholomorphic curves passing through a point $(0, z)$ of the symplectization $\mathbb{R} \times M$ of M, where z does not sit on a periodic orbit of R_{λ}. This is established via the naturality of the isomorphism between Heegaard Floer homology and embedded contact homology with respect to the U map [CGH0, CGH1, CGH2, CGH3] and the non-triviality of the U-map in Heegaard Floer homology [OS, Section 10], or via the isomorphism with Seiberg-Witten Floer homology, as explained in [C-GHP].

The class $[\Gamma]$ is the class of a finite sum of orbit sets $\Gamma=\sum_{i=1}^{k} \Gamma_{i}$. By the nondegeneracy assumption, there are only finitely many periodic orbits of action less than the action $\mathcal{A}(\Gamma)$ of Γ. Recall that the action of an orbit (or a portion of orbit) γ of R_{λ} is the integral $\int_{\gamma} \lambda$. If Γ is a collection of orbits, its action is the sum of the actions of its elements, counted with multiplicities. We let \mathcal{P} be the finite set of periodic orbits of the Reeb vector field R_{λ} of action less than $\mathcal{A}(\Gamma)$.

The main input from ECH-holomorphic curve theory is the following.
Lemma 3.1. For every z in $M \backslash \mathcal{P}$, there exists an embedded pseudoholomorphic curve $u: F \rightarrow \mathbb{R} \times M$ asymptotic to periodic orbits of R_{λ} in \mathcal{P} and whose projection to M contains z in its interior. If z belongs to \mathcal{P}, it is either in the interior of the projection of a curve or in a boundary component of its closure. All the hyperbolic orbits in the limits of u have multiplicity 1.

Proof. By definition of the U-map, for every generic $z \in M$, there is an ECH-index 2 embedded curve in $\mathbb{R} \times M$ from Γ and passing through $(0, z)$. Now, if z is fixed, it is the limit of a sequence of generic points $\left(z_{n}\right)_{n \in \mathbb{N}}$. Through $\left(0, z_{n}\right)$ passes a pseudo-holomorphic curve u_{n} with Γ as a positive end. By compactness for pseudo-holomorphic curves in the ECH context, including taking care of possibly unbounded genus and relative homology class, see [Hu, Sections 3.8 and 5.3], there is a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ converging to a pseudo-holomorphic building, a component of which is an embedded pseudo-holomorphic curve through $(0, z)$. All the asymptotics
of the limit curves are in \mathcal{P}, since they all have action less than $\mathcal{A}(\Gamma)$. In particular, when z is in $M \backslash \mathcal{P}$ it is contained in the interior of the projection of the curve to M. If z is contained in one of the orbits of \mathcal{P}, it might be in a limit end of the curve and thus in the boundary of the closure of the projection of the curve to M.

Recall here again that all the ECH index 1 and 2 holomorphic curves are asymptotic to hyperbolic orbits with multiplicity 1 and that their limit curves containing a hyperbolic orbit with multiplicity strictly greater than 1 come in pairs, meaning in particular that we can get, possibly by changing the sequence of curves u_{n} through $\left(0, z_{n}\right)$, that the hyperbolic ends of u all have multiplicity 1.

Corollary 3.2. For every z in M there exists an R-section S with boundary in \mathcal{P} passing through z. Moreover if z is in $M \backslash \mathcal{P}$ then z is contained in the interior of S. Every hyperbolic orbit k in ∂S with asymptotic self-linking number 0 is positive with multiplicity 1: every component of ∂S maps to k with degree 1.

Proof. The pseudo-holomorphic curve from Lemma 3.1 passing through $(0, z)$ is embedded in $\mathbb{R} \times M$. It has a finite number of points where it is tangent to the holomorphic $\left\langle\partial_{s}, R_{\lambda}\right\rangle$-plane, where s is the extra \mathbb{R}-coordinate. Indeed, close enough to its limit end orbits in \mathcal{P} it is not tangent to this plane field by classical asymptotic behaviour of bounded energy curves HWZ1, Theorem 1.4] and, by the isolated zero property for holomorphic maps, all these tangency points are isolated. These correspond exactly to the points where the projection of the curve to M is not an immersion. Everywhere else, the projection of the curve to M is positively transverse to the Reeb vector field R_{λ}.

We now modify this surface near the singular points. Surround each singular point $x_{i}, i=1, \ldots, p$, of the projected curve S in M by a small ball B_{i}, so that the singular point x_{i} is at the center and the boundary sphere ∂B_{i} is transverse to S. On $M \backslash\left(\cup_{i=1}^{p} B_{i}\right)$, the surface $S \backslash\left(\cup_{i=1}^{p} B_{i}\right)$ is immersed. It has a transversal given by R_{λ} so that we can resolve its selfintersections coherently to get an embedded surface S^{\prime} in $M \backslash\left(\cup_{i=1}^{p} B_{i}\right)$, positively transversal to R_{λ}. In this operation, triple points of intersection, coming generically from the transverse intersections of two branches of double points, are not an issue, since we can locally resolve one branch after another in any order and extend this resolution away, see Figure 3 . Also, the self-intersections along a line of double point ending in a boundary component is pictured in the two rightmost drawings of Figure 7, before and after desingularization. We can also deal with self-intersections along a line of double points of two sheets all ending in the same periodic orbit: we delete a small solid torus around the orbit and desingularize outside. We

Figure 3. How to resolve a triple point of selfintersections. One other way to picture what happens is to first desingularize the union of two surfaces and then to add and desingularize the third one.
then extend the desingularized surface in the solid torus either by annuli with a boundary on the orbit, or by meridian disks in case the slope of the desingularized surface on the boundary torus is meridional.

The surface S^{\prime} is hence embedded in $M \backslash\left(\cup_{i=1}^{p} B_{i}\right)$ and intersects every sphere ∂B_{i} along an embedded collection of circles. We can extend S^{\prime} inside the spheres B_{i} by an embedded collection of disks transverse to R_{λ}. We get a surface \bar{S} which is an R-section. It is easy to perform these surgery operations to keep the constraint of passing through the point z.

Every orbit of ∂S having asymptotic self-linking number 0 with S is positive hyperbolic and has degree 1 . This was the case for the holomorphic curves we started with, and if the asymptotic self-linking is 0 after desingularization, then the desingularization did not went through the orbit and the multiplicity remains 1 .

Lemma 3.3. There exists a finite number of R-sections with disjoint interiors, intersecting all orbits of R_{λ}, and such that:

- if an orbit of R_{λ} is not asymptotically linking this collection of sections, it has to converge to one of their boundary components, which is a positive hyperbolic with multiplicity 1 (every boundary component of an R-section mapping to this orbit is degree 1) orbit of the flow;
- in this case, each one of the four sectors delimited by the two stable and two unstable manifolds of a hyperbolic orbit is intersected by at least one R-section having the orbit as a boundary component.

Proof. The finite number of curves comes from a standard compactness argument and Corollary 3.2. Start with a finite covering of the complement
of an open neighborhood of \mathcal{P} by flow-boxes. Through every point in a flow-box, Corollary 3.2 provides an embedded surface with boundary in the orbits of \mathcal{P}. Since the closure of every flow-box is compact, there is a finite collection of surfaces intersecting every portion of orbit in the flowbox. Now again, we can make this collection of sections embedded by resolving intersections using the common transverse direction R_{λ}. The degree 1 property for hyperbolic orbits having asymptotic self-linking 0 with a section (from Corollary 3.2) remains because they cannot be touched by the desingularization for otherwise the self-linking value would change.

We now analyze what happens near a positive hyperbolic component k of \mathcal{P} with asymptotic self-linking equal to zero. The stable and unstable manifolds of the periodic orbit k delimit four sectors in a neighborhood of the orbit. For each sector, we take a sequence of generic points contained in the sector that all limit to some point in k, together with a sequence of ECH index 2 embedded holomorphic curves through these generic points. In the limit holomorphic building, there is a curve either cutting k transversally or asymptotic to k and linked positively with orbits in the invariant manifolds of k (this is in fact prohibited by the partition condition but we don't need this extra remark here), or asymptotic to k and approaching from the fixed sector. The fact that in the last case we approach from the sector containing the points z_{n} comes from the fact that, by compactness, the sequence of curves through $\left(0, z_{n}\right)$ are limiting to the broken ones. If the broken curves were all asymptotic to the hyperbolic orbit from other sectors then, by positivity of intersection/transversality with the Reeb vector field, the glued curves from the sequence would also be contained locally in other sectors and could not pass through $\left(0, z_{n}\right)$.

We can moreover get that the broken curves are asymptotic to k with multiplicity one : those arriving with a different multiplicity come in pairs as explained in [Hu, Section 5.4] whereas the total count of curves through $\left(0, z_{n}\right)$ is odd.

Again, we add these new curves to our previous collection of R-sections and then desingularize this new family by an application of Corollary 3.2 .

Finally we have an R-section S, so that every orbit of R_{λ} is either a boundary component or intersects S strictly positively. We let $K=\partial S$ be the union of the boundary orbits of S. If every orbit is asymptotically linking S, we get a rational open book. However, we can have here boundary components of broken pages where the orbits of R_{λ} accumulate without intersecting the corresponding surface. That is, there are orbits of R_{λ} that have asymptotically self-linking number with S equal to 0 . These boundary components are necessarily positive hyperbolic periodic orbits and they all
have multiplicity one. In such case, we obtain the existence of a broken book decomposition, as stated in Theorem 1.1 .

Proof of Theorem 1.1. At this point, we have an R-section S intersecting every orbit of the flow, and we want to turn it into a broken book decomposition. Said differently, the R-section S form a trivial lamination of $M \backslash K$, and we have to extend S into a foliation of $M \backslash K$.

For convenience, we first double all the components of S who have at least one boundary component on a hyperbolic orbit and are not asymptotically linking the orbits in their stable/unstable manifolds. The two copies are separated in their interior by pushing along the flow of R_{λ}. We keep the notation S for this new R-section. We then cut M along S and delete standard Morse type neighborhoods of ∂S as in Figure 4 .

We claim that the resulting manifold is a sutured manifold, foliated by compact R_{λ}-intervals: it is an I-bundle with oriented fibers, thus a product and the conclusion follows. Observe that when R_{λ} is asymptotically linking S near an orbit k of ∂S, the flow of R_{λ} near k has a well-defined first return map on S. These orbits are then decomposed by S into compact segments. When we are near a hyperbolic orbit k_{h} where the flow is not asymptotically linking with S, then S intersects a Morse type tubular neighborhood of k_{h} in at least 8 annuli, two in each sector (because of the doubling operation). Between two annuli in the same sector, the orbits of R_{λ} are locally going from one annulus to the other, thus an orbit is decomposed into compact intervals. If two consecutive annuli belong to different adjacent sectors, then they are cooriented in the same way by R_{λ} and can be pushed in the direction of the invariant manifold of k_{h} separating them and glued to form an annulus transverse to R_{λ} and again every local orbit of R_{λ} ends or starts in finite time on some (possibly glued) annulus.

Remark 3.4. If R_{λ} is supported by some open book decomposition, then every embedded holomorphic curve gives rise to a new rational open book decomposition for R_{λ} by the constructions above. In particular, the abundance of embedded holomorphic curves given by the non triviality of the U-map in embedded contact homology, or the differential, typically furnishes many open books for the same Reeb vector field.

4. Applications

We first analyse the hyperbolic components of a supporting broken book using the Reeb property. In particular, the possible intersections of the stable and unstable manifolds of the periodic orbits in K_{h}, the hyperbolic part of the binding, will play an important role. We will talk of heteroclinic orbit or intersection, even if it might be a homoclinic orbit or intersection, and

Figure 4. A hyperbolic component k_{h} of the binding. For building the foliation of $M \backslash K$, one reconnects the part of an R-section in the neighborhood of k_{h}, removes a (smaller) neighborhood, and cuts the resulting manifold along the (modified) R-section. The result is a trivial I-bundle.
reserve the use of homoclinic for when we can ensure it is a homoclinic orbit. We recall that a heteroclinic orbit is an orbit that lies in the intersection of a stable manifold of a hyperbolic periodic orbit and an unstable manifold of another hyperbolic periodic orbit.

Lemma 4.1. Let R_{λ} be a Reeb vector field for a contact form λ carried by a broken book decomposition (K, \mathcal{F}) and let k_{0} be a hyperbolic component of the binding K. Then every unstable/stable manifold of k_{0} contains a heteroclinic intersection with a hyperbolic component of K_{h}, i.e. each unstable/stable manifold of k_{0} intersects the stable/unstable of some component of K_{h}.

Proof. A component $k_{0} \subset K_{h}$ has two unstable manifolds, each made of an \mathbb{S}^{1}-family of orbits of R_{λ}, asymptotic to k_{0} at $-\infty$. Each \mathbb{S}^{1}-family of orbits is a cylinder in M, injectively immersed in M since its portion near k_{0} for time $t<-T$ for T large enough is embedded.

We now argue by contradiction. We consider the finite collection of all the rigid pages $\mathcal{R}=\left\{R_{0}, \ldots, R_{k}\right\}$ of the broken book decomposition. If no orbit in the \mathbb{S}^{1}-family limits to a hyperbolic component of K at $+\infty$, then this \mathbb{S}^{1}-family has a return map on \mathcal{R} which is well-defined and intersects one of the pages of \mathcal{R}, say R_{0}, an infinite number of times. Since the \mathbb{S}^{1} family is injectively immersed, the intersection with R_{0} forms an infinite embedded collection C_{0} of curves in R_{0}.

Observe that $d \lambda$ is an area form on \mathcal{R}. We claim that only a finite number of the curves in C_{0} can be contractible in R_{0}. Two contractible components
of C_{0} bound disks D and D^{\prime} in R_{0}, these disks have the same $d \lambda$-area. Indeed D and D^{\prime} can be completed by an annular piece A tangent to R_{λ} to form a sphere, applying Stokes' theorem:

$$
\begin{equation*}
0=\int_{D \cup A \cup D^{\prime}} d \lambda=\int_{D} d \lambda+\int_{A} d \lambda-\int_{D^{\prime}} d \lambda=\int_{D} d \lambda-\int_{D^{\prime}} d \lambda, \tag{1}
\end{equation*}
$$

because $d \lambda$ vanishes along A. Note that equation (1) implies also that D is disjoint from D^{\prime}, since ∂D is disjoint from ∂D^{\prime} and D and D^{\prime} have the same area. Since the total area of R_{0} is bounded, there are only finitely many contractible curves in C_{0}, as we wanted to prove.

Thus infinitely many components of C_{0} are not contractible in R_{0}, so at least two have to cobound an annulus A^{\prime} in R_{0}. The annulus A^{\prime} is transverse to R_{λ} and its boundary components cobound by construction an annulus $A^{\prime \prime}$ tangent to the flow of R_{λ}. We now apply Stokes' theorem to this torus

$$
0=\int_{A^{\prime} \cup A^{\prime \prime}} d \lambda=\int_{A^{\prime}} d \lambda>0
$$

a contradiction.
Hence each unstable/stable manifold of k_{0} contains an orbit that is forward/backward asymptotic to a component of K_{h}.

For two components k_{0} and k_{1} of K_{h}, a heteroclinic orbit from k_{0} to k_{1} is an orbit contained in the unstable manifold of k_{0} and in the stable manifold of k_{1}.

Lemma 4.2. There exists $k_{0} \in K_{h}$ having two cyclic sequences of hyperbolic components

$$
\begin{aligned}
& A=\left\{k_{0}, k_{1}, \ldots, k_{n-1}, k_{n}=k_{0}\right\} \\
& B=\left\{k_{0}, k_{1}^{\prime}, \ldots, k_{l-1}^{\prime}, k_{l}^{\prime}=k_{0}\right\}
\end{aligned}
$$

based at some k_{0} so that there is a heteroclinic orbit O_{i} of R_{λ} from k_{i} to $k_{i+1}, 0 \leq i \leq n-1$ and a heteroclinic orbit O_{i}^{\prime} of R_{λ} from k_{i}^{\prime} to k_{i+1}^{\prime}, $0 \leq i \leq l-1$ and O_{0} and O_{0}^{\prime} are contained in each of the two unstable manifolds of k_{0}.

If $n>1$ the sequence A is a heteroclinic cycle, while if $n=1$ we say that A is a homoclinic intersection. To simplify the discussion, we call in both cases A a heteroclinic cycle. The lemma then says that there is a component of K_{h} with two heteroclinic cycles starting in the two possible unstable directions.

Proof. We know by Lemma 4.1 that if k is a hyperbolic component of the binding, in each of its unstable manifolds, there is a heteroclinic orbit to some hyperbolic component of K. We argue by contradiction, assume that there is no such double heteroclinic cycle based at any k_{0}, starting from the
two different unstable separatrices. Then from Lemma 4.1 we can build from a component $k_{0} \in K_{h}$ two heteroclinic sequences A_{0} and B_{0}, and at least one of them does not comes back to k_{0}.

Assume first that A_{0} is a heteroclinic cycle, so it comes back to k_{0} at some point. Consider the sequence B_{0} starting at the other unstable manifold of k_{0}, that is not cyclic by assumption. Since K_{h} is finite, there is a $k_{1} \in B_{0}$ so that from k_{1} the sequence B_{0} is a heteroclinic cycle that comes back to k_{1}. This cyclic subsequence of B_{0} cannot intersect A_{0}, because if it does, then k_{0} admits two heteroclinic cycles starting in its two unstable directions. Hence k_{1} admits one heteroclinic cycle starting in one of its unstable directions, and if in the other direction there is a cyclic sequence, we have a component as in the statement. If it is not cyclic, we can again consider this non cyclic sequence B_{1} and find $k_{2} \in B_{1}$ with a heteroclinic cycle B_{2} based at k_{2}. Observe that by assumption, B_{2} is disjoint of $A_{0} \cup B_{0}$. Since K_{h} is finite, this process stops, implying that there is a component of K_{h} with two heteroclinic cycles.

Now assume that both sequences A_{0} and B_{0} starting in the two unstable directions of k_{0} are not cyclic. We start following the direction B_{0}, since it is not cyclic there is a $k_{1} \in B_{0}$ so that from k_{1} the sequence B_{0} is a heteroclinic cycle that comes back to k_{1}. We can repeat the argument above starting at k_{1} to obtain a component of K_{h} with two heteroclinic cycles.

Remark 4.3. The interest of Lemma 4.2 is that one could try to apply the local construction of Fried [Fri] in the neighborhood of $\left(\cup_{i} k_{i}\right) \cup\left(\cup_{i} O_{i}\right) \cup$ $\left(\cup_{i} k_{i}^{\prime}\right) \cup\left(\cup_{i} O_{i}^{\prime}\right)$ to get a surface of section S_{0} that intersects transversally k_{0} in its interior, and thereby, changing the broken book along S_{0}, to decrease and finally get rid of all the hyperbolic components of its binding. This would construct a supporting (up to orientations of the binding) rational open book. Unfortunately, Lemma 4.2 does not seem sufficient to make sure that S_{0} intersects k_{0}, since the two heteroclinic cycles might join two adjacent quadrants of k_{0}, like NW and SW, instead of opposite ones like NE and SW (see Figure 5). However this works if there is only one hyperbolic component in the binding.

Consider a nondegenerate Reeb vector field, if the invariant manifolds of the hyperbolic periodic orbits intersect transversally, we say that the vector field is strongly nondegenerate. Observe that this is a weaker hypothesis than being Kupka-Smale, since a Kupka-Smale vector field has in addition all its periodic orbits hyperbolic. The strongly nondegenerate condition is generic for vector fields due to [Kup, Sma] and also for Reeb vector fields, the proof of the genericity of the Kupka-Smale condition in [Pei] extends to give the strong nondegeneracy condition in the Reeb case.

Figure 5. Two hyperbolic orbits and their stable/unstable manifolds at which one cannot directly apply Fried's construction.

Theorem 4.4. Let R_{λ} be a strongly nondegenerate Reeb vector field for a contact form λ carried by a broken book decomposition (K, \mathcal{F}). Assume that K contains at most one hyperbolic component. Then R_{λ} has a Birkhoff section.

Proof. Denote by k_{0} the hyperbolic component in the binding K. Thanks to Lemma 4.2, each of the two unstable manifolds of k_{0} intersect at least one stable manifold of k_{0}, and each of the two stable manifolds intersect at least one unstable manifold. Therefore, up to a symmetry, there are two orbits γ_{a} and γ_{b} such that γ_{a} belongs to both the east unstable manifold and the north stable manifold of k_{0}, and γ_{b} belongs to both the west unstable manifold and the south stable manifold of k_{0} (see Figure 6).

Consider a small local transverse section D to R_{λ} around k_{0} and the induced first-return map f. By taking small transverse rectangles around k_{0} and considering their images by f, one can find two periodic points p_{a} in the $N E$-quadrant and p_{b} in the $S W$-quadrant. Denote by k_{a}, k_{b} the corresponding periodic orbits ot R_{λ}. For every word w in the alphabet $\{a, b\}$, one can find a periodic point p_{w} of f that follows k_{a}, and k_{b} in the order given by w. In particular one can consider the periodic orbit $k_{a b}$ through $p_{a b}$ and $p_{b a}$.

Now consider an arc connecting p_{a} to $p_{a b}$. When pushed by the flow, it describes a certain rectangle R_{1} and comes back to an arc connecting p_{a} to $p_{b a}$. Likewise an arc connecting p_{b} to $p_{b a}$ describes a rectangle R_{2} whose opposite side is an arc connecting p_{b} to $p_{a b}$ (see Figure 7 left). Together these four arcs form a parallelogram P in D which contains $D \cap k_{0}$ in its interior. The union of P and the two rectangles R_{1} and R_{2}, forms an immersed topological pair of pants, which can be smoothed into a surface S transverse to R_{λ}. The main properties of S is that it is bounded by k_{a}, k_{b} and $k_{a b}$, and it is transverse to k_{0}.

Figure 6. A transverse view of the orbit k_{0} and its stable/unstable manifolds. Two small transverse rectangles r_{W}, r_{E} in the W- and E-parts are shown in purple, together with their images by suitable iterates of the first-return map f, in green. In $r_{W} \cap f^{k_{W}}\left(r_{W}\right)$ lies a periodic point p_{a} of f of period k_{W}. Similarly in $r_{E} \cap f^{k_{E}}\left(r_{E}\right)$ lies a periodic point p_{b} of f of period k_{E}. Moreover, in $r_{W} \cap f^{k_{E}}\left(r_{E}\right)$ lies a periodic point $p_{a b}$ such that $p_{b a}:=f^{k_{W}}\left(p_{a b}\right)$ lies in $f^{k_{W}}\left(r_{W}\right) \cap r_{E}$ and $f^{k_{E}}\left(p_{b a}\right)=p_{a b}$, i.e., $p_{a b}$ has period $k_{W}+k_{E}$. The rectangle $p_{a} p_{a b} p_{b} p_{b a}$ is then transverse to k_{0}.

Now consider a page F_{0} of the foliation \mathcal{F}, take the union $F_{0} \cup S$, and use the flow direction R_{λ} to desingularize the arcs and circles of intersection (see Figure 7 right and Figure 3). The obtained surface intersects any tubular neighborhood of k_{0} along one (or several) meridian. Therefore k_{0} is not anymore in the hyperbolic part of the binding. Also the surface F_{0} intersects k_{a}, k_{b}, and $k_{a b}$, so that these periodic orbits link positively the union $F_{0} \cup S$. The resulting surface is a then a genuine (rational) Birkhoff section for the Reeb vector field, and the orbits k_{a}, k_{b}, and $k_{a b}$ are boundary components of elliptic type.

Conjecture 4.5. Every nondegenerate Reeb vector field has a Birkhoff section.

Figure 7. On the left the union of the rectangles R_{1} and R_{2} with the rectangle $p_{a} p_{a b} p_{b} p_{b a}$ yields a pair of pants. It can be smoothed into a surface transverse to the Reeb flow. On the center a page F_{0} which contains k_{0} (dark blue) and the rectangle $p_{a} p_{a b} p_{b} p_{b a}$ (orange), in a neighborhood of k_{0}. On the right the desingularization of their union (following Fried) yields a surface transverse to the flow, so that the local first-return time is now bounded by the period of k_{0}.

It follows from the previous considerations that if a nondegenerate Reeb vector field has no heteroclinic or homoclinic orbit, then any of its supporting broken book decomposition is in fact a rational open book, providing a proof of Theorem 1.3. Moreover, if a strongly nondegenerate Reeb vector field has at most one periodic orbit having a heteroclinic cycle then, by Lemma 4.1, it has a supporting broken book with at most one hyperbolic binding component, and by Theorem 4.4, a Birkhoff section.

We now give a proof of Theorem 1.4 and postpone the proof of Theorem 1.2 to the end of the section. We first discuss what happens for strongly nondegenerate Reeb vector fields and then remove the strongly hypothesis. In the strongly nondegenerate case, the theorem follows from the fact that if the broken book has hyperbolic components in its binding then Lemma 4.2 implies that there are heteroclinic cycles. The strongly nondegenerate hypothesis then gives a homoclinic intersection, that gives infinitely many periodic orbits. If there are no hyperbolic components in the binding, the broken book is a rational open book. Then, whenever M is not \mathbb{S}^{3} or a lens space, the page S is not a disk nor an annulus. The case when S is a disk
or an annulus was treated by Cristofaro-Gardiner, Hutchings and Pomerleano [C-GHP] and there are either 2 or infinitely many periodic orbits.

In the rest of the cases, the first return map is a flux zero area preserving diffeomorphism of S and we claim that it has infinitely many periodic points. To get this conclusion, we apply the following generalisation of a theorem of Franks and Handel [FH$]$ originally stated for periodic points of Hamiltonian diffeomorphisms of surfaces.

While writing this paper, we learned about a more direct and general proof (for homeomorphisms, possibly degenerate) by Le Calvez and Sambarino [LS].

Theorem 4.6. Let S be a compact surface with boundary different from the disk or the annulus, and $\omega=d \beta$ an ideal Liouville form for S. If $h: S \rightarrow S$ is a nondegenerate area-preserving diffeomorphism with zero-flux then h has infinitely many different periodic points.

Here the flux condition holds on the kernel of the map

$$
h_{*}-I: H_{1}(S, \mathbb{Z}) \rightarrow H_{1}(S, \mathbb{Z})
$$

and h is not assumed to be isotopic to the identity (nor Hamiltonian). It means that for every curve γ whose homology class is in $\operatorname{ker}\left(h_{*}-I\right)$, then γ and $h(\gamma)$ cobound a $d \beta$-area zero 2-cycle.

Proof. The zero flux condition tells that h can be realised by the first return map of the flow of a Reeb vector field on a page of the mapping torus of (S, h) [CHL]. If, in its Nielsen-Thurston decomposition, h has a pseudoAnosov component, then the conclusion of the theorem classically holds by Nielsen-Thurston theory even without any conservative hypothesis. Otherwise, all the pieces of h in the decomposition are periodic. Up to taking a power of h, which does not change the problem, we can assume that, up to isotopy, h is the identity on every piece. This means that h is isotopic to a composition of Dehn twists on disjoint curves. If h is isotopic to the identity, the conclusion is given by a theorem of Franks and Handel [FH], extended by Cristofaro-Gardiner, Hutchings and Pomerleano to fit exactly our case with boundary [[C-GHP].

Otherwise, we can use the Nielsen-Thurston representative h_{0} of h given by a product of Dehn twists along disjoint annuli, one of them being non boundary parallel. We once again realise it as the first return map of a Reeb flow R_{0} on a fiber in the mapping torus of (S, h). This Reeb flow has no contractible periodic orbits and thus can be used to compute cylindrical contact homology. In the mapping torus of a non-boundary parallel annulus where h_{0} is the power of a Dehn twist, we have \mathbb{S}^{1}-families of periodic Reeb orbits realising infinitely many slopes in the suspended thickened torus. These all give generators in cylindrical contact homology, since
the other orbits (corresponding to periodic points of h_{0}) belong to different Nielsen classes. The invariance of cylindrical contact homology suffices to conclude that the Reeb orbits given by the mapping torus of h (that are also all non contractible in the mapping torus of h) are at least the number given by the rank of the cylindrical contact homology computed with R_{0}, i.e. in infinite number.

Note here that the first return map on the page S is well-defined on the interior of S. It might not extend smoothly to ∂S. In that case, we filter the cylindrical contact homology complex by the intersection number of orbits with the page, i.e. the period of the corresponding periodic points. We can then modify the monodromy h near ∂S to a zero-flux area preserving diffeomorphism h_{k} so that (1) the modified monodromy h_{k} extends to ∂S, (2) the orbits of period less or equal to k in the Nielsen classes not parallel to the boundary are not affected and (3) h_{k} is isotopic to h and so has the same Nielsen-Thurston representative h_{0}. The arguments developed in the proof of Theorem 4.6 then apply to show the existence of periodic points of h_{k} with period upper bounded by k, these are also periodic points of period bounded by k.

Note that the proof of Theorem 4.6 gives, if h is nondegenerate, the existence of positive ($=$ even) hyperbolic orbits, which are odd degree generators of cylindrical homology coming from the positive hyperbolic generators in the Morse-Bott families. Thus we are able to answer positively to Question 1.8 of [C-GHP]:

Corollary 4.7. If M is not \mathbb{S}^{3} nor a lens space and if R_{λ} is a nondegenerate Reeb vector field on M, then it has a positive hyperbolic orbit.

Indeed, if there were none, R_{λ} would admit a supporting rational open book decomposition and Theorem 4.6 would give at least one positive hyperbolic orbit (amongst infinitely many other ones) in case every piece of h is periodic. In case there is a pseudo-Anosov piece, the existence of a Nielsen class with negative total Lefschetz index gives the same result, and leads to a contradiction.

We now prove Theorem 1.4 in the case where we drop the hypothesis strongly to obtain the result for nondegenerate Reeb vector fields.

Consider two hyperbolic periodic orbits (not necessarily different) with an orbit connecting them. We say that there is a homoclinic or heteroclinic connection if the corresponding stable and unstable manifolds coincide, otherwise it is a homoclinic or heteroclinic intersection. A homoclinic or heteroclinic intersection or orbit is said to be one-sided if the stable and unstable manifolds intersect and do not cross, where crossing is in the topological sense $[\overline{B W}]$. In case they cross, we have a crossing intersection.

Note that these definitions include the case where the stable and unstable manifolds intersect along an interval transverse to the flow and either cross or stay on one side at the boundary components.

We treat differently heteroclinic connections and one-sided intersections because in the Reeb context, a heteroclinic connection cannot be eliminated by a local perturbation of the Reeb vector field: one cannot displace a transverse circle form itself with a zero flux map close to the identity, whereas it is possible for a transverse interval, thus for eliminating a one-sided intersection (this is used in the proof of Proposition 4.9).

We start with the case when there are only complete connections.
Lemma 4.8. Let (K, \mathcal{F}) be a broken book decomposition supporting a nondegenerate Reeb vector field R_{λ}. Assume that every hyperbolic component of the binding has its stable/unstable manifolds that coincide with unstable/stable manifolds of another hyperbolic component of the binding, i.e. all the homoclinic or heteroclinic intersections are connections. Then, if M is different from the sphere or a lens space, the Reeb vector field R_{λ} has infinitely many different simple periodic orbits.

Proof. We decompose M along the stable/unstable manifolds of the hyperbolic components of the binding. We obtain a, possibly not connected, manifold M^{\prime} with torus boundary. Precisely M^{\prime} is obtained as a metric completion of M minus the stable/unstable manifolds of the hyperbolic components of the binding, which endows it with boundary components.

The boundary of M^{\prime} is made of copies of the stable and unstable manifolds of orbits in K_{h}. It has corners along the copies of orbits of K_{h}. The Reeb vector field is tangent to the boundary and the foliation \mathcal{F} is now transverse to the boundary and singular only along the elliptic components in K_{e}. This means that $M^{\prime} \backslash K_{e}$ fibers over \mathbb{S}^{1} and that the Reeb vector field has a first return map defined on the interior of each page.

Whenever a page of the fibration is not a disk or an annulus, we have the conclusion by Theorem 4.6. Otherwise, since K_{e} is not empty, there is a component N of M^{\prime} where all pages are annuli, all having a boundary component on an elliptic orbit k_{e} of K_{e} in the interior of N and the other on the boundary of N. Note that this implies that N is a solid torus. The boundary of N is decomposed into the annuli given by the homoclinic or heteroclinic connections, each annulus being bounded by two (not necessarily different) components of K_{h}. Observe that no annulus is foliated by Reeb components of R_{λ}, since R_{λ} is geodesible ($[$ Sul $\left.]\right)$: simply here, in the case of a Reeb component $d \lambda$ would be zero on the annulus, while the integral of λ would be nonzero on the boundary, in contradiction with Stokes’ theorem. Moreover, the periodic orbits in $K_{h} \cap \partial N$ are attracting on one
side and repelling on the other side, since we are alternately passing from a stable manifold to an unstable manifold.

We now claim that we can change the fibration of $N \backslash k_{e}$ by another fibration by annuli, close to the previous one (in terms of their tangent plane fields), so that it is still transverse to R_{λ} in the interior, but also at the boundary. Indeed, outside of a neighborhood of ∂N, the Reeb vector field is away from the tangent plane field of the fibration by a fixed factor, in particular near k_{e} where the infinitesimal first return map is a non trivial rotation. Near ∂N, the Reeb vector field gets close to the tangent field of the fibration and is tangent to it along $K_{h} \cap \partial N$, but with a fixed direction: we can tilt the fibration in the other direction to make it everywhere transverse. This operation changes the slope by which the fibration approaches k_{e} and the boundary ∂N. If the slope was, say, $(1,0)$ in some basis, it is now of the form $(P, \pm 1)$ for some $P \gg 1$.

Since the fibers are now everywhere transverse to R_{λ}, there is a well defined first return map that extends to the boundary to give a diffeomorphism of a closed annulus. Observe that this annulus is not necessarily embedded along k_{e}, but the map is well defined. The boundary of any such annulus page intersects at least one component of K_{h}, so that the first return map to this annulus has at least one periodic point in the boundary. A theorem of Franks implies that there are infinitely many periodic points (see Theorem 3.5 of [Fra]).

We now prove that an unstable manifold of an orbit of K_{h} that does not coincide with the stable manifold of some orbit of K_{h} must have a crossing intersection with some unstable manifold of an orbit of K_{h}.

Proposition 4.9. Let (K, \mathcal{F}) be a broken book decomposition supporting a nondegenerate Reeb vector field R_{λ}. If an unstable manifold $V^{u}(k)$ of some orbit $k \in K_{h}$ does not coincide with a stable manifold of an orbit in K_{h}, then it contains a crossing intersection.

Proof. The proof of this result is not straightforward and will involve proving intermediate Lemmas 4.10 to 4.13 . We know by Lemma 4.1 that $V^{u}(k)$ must intersect stable manifolds of other hyperbolic components of K. We argue by contradiction and assume that $V^{u}(k)$ has no crossing intersection. Then $V^{u}(k)$ must contain only one-sided intersections. We follow $V^{u}(k)$ from k. Consider the set \mathcal{R} of rigid pages of the broken book decomposition. Then $M \backslash \mathcal{R}$ is formed of product-type components. The unstable manifold $V^{u}(k)$ enters successively these components until it enters the first one P that contains in its boundary an orbit $k^{\prime} \in K_{h}$ such that $V^{u}(k)$ and $V^{s}\left(k^{\prime}\right)$ intersect. Before arriving near k^{\prime}, the intersections of $V^{u}(k)$ with the regular pages of (K, \mathcal{F}) are along circles. We pick a regular page S of (K, \mathcal{F})
in P. Then we have two components of $V^{u}(k) \cap S$ and of $V^{s}\left(k^{\prime}\right) \cap S$ which are circles $C(k)$ and $C\left(k^{\prime}\right)$. The circles $C(k)$ and $C\left(k^{\prime}\right)$ intersect into a nonempty compact set Δ, containing only one-sided intersections. Indeed every point of Δ is located on an heteroclinic intersection from k to k^{\prime}, all of those being one-sided. The one-sided intersections can be on one side of $C(k)$ or the other, thus we further decompose Δ as the disjoint union of two compact sets Δ_{+}and Δ_{-}, depending on the side of tangency.

The idea of the rest of the proof is to destroy, inductively, the one-sided intersections of $V^{u}(k)$, starting from those passing through Δ and to find a new Reeb vector field supported by the same broken book decomposition but such that $V^{u}(k)$ does not intersect any stable manifold up to a certain length. This will lead to a contradiction, by Lemma 4.1 .

To follow this plan, we first need to define the length of a segment of orbit γ. It will be given by the number of components delimited in γ by its intersections with the rigid pages. The length of a chain of heteroclinic connections will be the sum of the length of its components. Observe that the length of an orbit of K is zero, while the length of a full orbit in a heteroclinic or homoclinic intersection is bounded.

We also want to consider convergence of sequences of orbits. For that we consider a small neighborhood $N\left(K_{h}\right)$ of K_{h}, made of the disjoint union of neighborhoods $N\left(k^{\prime}\right)$ of each $k^{\prime} \in K_{h}$. These neighborhoods are taken to be a standard Morse type neighborhood. Hence any orbit that enters and exits $N\left(k^{\prime}\right)$ has to intersect a rigid page inside $N\left(k^{\prime}\right)$.

We have the following lemma whose first part is a tautology from the definition of length and the second part follows by compactness.

Lemma 4.10. For every $L>0$, there exists $N>0$ such that every orbit γ of length greater than L intersects \mathcal{R} at least $L-1$ times and the total action of $\gamma \backslash N\left(K_{h}\right)$ is less than N.

Next observe:
Lemma 4.11. Given $L>0$, the set of heteroclinic intersections of length less than L admits a natural compactification by chains of heteroclinic intersections of length less than L.

Proof. Let $\left(\gamma_{n}\right)$ be a sequence of heteroclinic intersections of length bounded by L. Every orbit γ_{n} passes through less than L components of $N\left(K_{h}\right)$ and we can extract a subsequence such that the orbits in the subsequence have the same pattern of crossings with $N\left(K_{h}\right)$. Then the portions of orbits in the complement of $N\left(K_{h}\right)$ are segments of bounded action by Lemma 4.10 that are, up to extracting subsequences, converging to a collection of segments of orbits. Inside a component $N\left(k_{1}\right)$ of $N\left(K_{h}\right)$, they either converge to an orbit segment or to a sequence of one orbit in $V^{s}\left(k_{1}\right)$ followed by k_{1}
and then by an orbit in $V^{u}\left(k_{1}\right)$. This shows that a subsequence of $\left(\gamma_{n}\right)$ converges to a chain of heteroclinic intersections. It is then immediate that the chain has length less than L and Lemma 4.11 follows.

Since each $N\left(k^{\prime}\right)$ is taken to be a standard Morse type neighborhood, if $V^{s}\left(k^{\prime}\right)$ denotes one side of the stable manifold of k^{\prime}, the intersection $V^{s}\left(k^{\prime}\right) \cap N\left(k^{\prime}\right)$ has one connected component that contains k^{\prime} and which intersects $\partial N\left(k^{\prime}\right)$ along a circle $C^{s}\left(k^{\prime}\right)$.

We now explain how to eliminate the intersections from Δ_{+}. They sit on one side of $V^{s}\left(k^{\prime}\right)$, so they determine a quadrant Q of k^{\prime} delimited by the component of $V^{s}\left(k^{\prime}\right)$ containing Δ_{+}and an unstable component $V^{u}\left(k^{\prime}\right)$ of k^{\prime}.

Lemma 4.12. If the component $V^{u}\left(k^{\prime}\right)$ is not a complete connection, i.e. it does not coincide with the stable manifold of an orbit $k^{\prime \prime} \in K_{h}$, then we can slightly modify R_{λ} to eliminate Δ_{+}, without creating extra intersections of $V^{u}(k)$ of length less or equal to L.

Proof. We first apply the following lemma:
Lemma 4.13. If $V^{u}\left(k^{\prime}\right)$ is not a complete connection, then there is a point p in $V^{u}\left(k^{\prime}\right)$ that is not on an heteroclinic intersection of length less than or equal to L.

Proof. Assume by contradiction that every orbit is an intersection from k^{\prime} to some other orbit in K_{h} of length less or equal to L. Then the set of intersections from k^{\prime}, i.e. its entire unstable manifold $V^{u}\left(k^{\prime}\right)$, has a natural compactification by chains of intersections of length less than or equal to L by Lemma 4.11 .

To arrive to a contradiction to our assumption, as we did for k, we follow $V^{u}\left(k^{\prime}\right)$ in the product components of $M \backslash \mathcal{R}$. The heteroclinic intersections of $V^{u}\left(k^{\prime}\right)$ can be (partially) orderer by length, with respect to the integer valued length defined above. Let C be the shortest length of an intersection and consider one intersection of length C, that goes to an orbit $k^{\prime \prime} \in K_{h}$. Then one component $V^{u}\left(k^{\prime \prime}\right)$ of the unstable manifold of $k^{\prime \prime}$ is entirely contained in the closure of $V^{u}\left(k^{\prime}\right)$, as it can be seen locally in a neighborhood of $k^{\prime \prime}$. The compactness of the set implies then that every point of $V^{u}\left(k^{\prime \prime}\right)$ is itself contained in a intersection of length less or equal to $L-C$. If $V^{u}\left(k^{\prime \prime}\right)$ is not a complete connection to some other orbit, we replace $V^{u}\left(k^{\prime}\right)$ with $V^{u}\left(k^{\prime \prime}\right)$ and repeat the previous argument. If $V^{u}\left(k^{\prime \prime}\right)$ is a complete connection to some $k^{\prime \prime \prime}$, we have that every orbit in a component of $V^{u}\left(k^{\prime \prime \prime}\right)$ is also contained in limits of length less or equal to L heteroclinic intersections from k and we can continue with $V^{u}\left(k^{\prime \prime \prime}\right)$ until we find an unstable manifold that is entirely made of heteroclinic intersections that
are limits of those from k and is not a complete connection (the process stops because at each step the length in \mathbb{N} is strictly decreasing and we end with an unstable manifold that is not a complete connection because the orbit of K_{h} in the sequence we end with has intersections from k in its stable manifold). Up to reindexing, we call it $V^{u}\left(k^{\prime \prime}\right)$. We can apply the same argument we applied to $V^{u}\left(k^{\prime}\right)$ to $V^{u}\left(k^{\prime \prime}\right)$ and continue until we arrive at the nth step at an unstable manifold $V^{u}\left(k^{(n)}\right)$ of some $k^{(n)}$ in K_{h} which is only made of heteroclinic intersections to orbits in K_{h}, all having the same length which is also the minimal length. This means that $V^{u}\left(k^{(n)}\right)$ is in fact a complete connection and no orbit could have come from $V^{u}\left(k^{\prime \prime}\right)$ to $k^{(n)}$, a contradiction.

Let γ be the orbit of R_{λ} through p given by Lemma 4.13. We then claim that there exists a small neighborhood $N(p)$ of p in M that does not meet any intersection orbit from k to some $k^{\prime \prime} \in K_{h}$ of length less or equal to L.

Indeed, if every neighborhood of p was having such an intersection, then we would have a sequence of orbits γ_{n} from k to some $k_{n} \in K_{h}$, where a point $p_{n} \in \gamma_{n}$ limits to p and the length of γ_{n} is bounded above by L. Using Lemma 4.11, we get that p is on a heteroclinic intersection that is part of a chain to which a subsequence of $\left(\gamma_{n}\right)$ converges and the claimed is proved.

Next, we take a small arc δ in $N(p)$, starting at p and going straight inside the quadrant Q of k^{\prime} associated with Δ_{+}. We push δ by the backward flow of R_{λ} and look at the intersection generated by this half infinite strip $\delta \times(-\infty, 0]$ with the surface S. We recall that S is the regular page of the broken book that was used to define the sets $\Delta_{ \pm}$.

Since δ is anchored in $V^{u}\left(k^{\prime}\right)$, we get on S a half infinite line l spiralling to the circle $C\left(k^{\prime}\right)$ from the side containing $C(k)$ near Δ_{+}, i.e. the side of the quadrant Q. This line l crosses $C(k)$ near Δ_{+}. The goal is now to eliminate Δ_{+}by replacing portions of $C(k)$ by portions of l. This will be done in a product neighborhood of S by modifying the direction of R_{λ} so that the circle $C(k)$ entering the neighborhood of S will be mapped to the modified circle when exiting. The modification is performed in a neighborhood of Δ_{+}that does not meet a neighborhood of Δ_{-}(remember that Δ_{-} and Δ_{+}are disjoint compact sets in S).

Concretely, by a generic choice of δ, we first make sure that l is transverse to $C(k)$. Then between any two consecutive intersections of $C(k)$ with l, there is a segment of l and a segment of $C(k)$. If the segment of $C(k)$ contains an intersection point of Δ_{+}, we replace this segment of $C(k)$ with the segment of l. This procedure ends thanks to the compactness of Δ_{+}.

Here there are two issues to address. First, we want our deformation of $C(k)$ to be smooth. We can perform the smoothing in the image of the neighborhood of $N(p)$ by the flow, which gives a neighborhood of l in S.

More importantly, we need the $d \lambda$-area between $C(k)$ and its modification to be zero for being able to realise it with a modification of the Reeb vector field which gives a change of holonomy having zero flux. When we replace a portion of $C(k)$ with a portion of l we have a contribution to the flux which is the area between the two. Since l spirals to $C\left(k^{\prime}\right)$, this can be taken to be small at will by taking the segments of l close enough to $C\left(k^{\prime}\right)$. This total ϵ change of area can be compensated near a fixed intersection of $C(k)$ with the image of the neighborhood of $N(p)$ by the flow, where we have a fixed area coming from $N(p)$ available.

Doing so, we see that we can eliminate Δ_{+}and since the modification of $V^{u}(k)$ is contained in the orbits through $N(p)$, we do not create heteroclinic intersections of length less or equal to L. This proves Lemma 4.12 ,

Under the similar hypothesis, we can also eliminate Δ_{-}.
We are left with the case in which the unstable component $V^{u}\left(k^{\prime}\right)$ is a complete connection to an orbit $k^{\prime \prime}$. We can repeat our argument of Lemma 4.12; either the corresponding unstable manifold of $k^{\prime \prime}$ is a complete connection, or we can eliminate Δ_{+}, by using a segment δ anchored in $V^{u}\left(k^{\prime \prime}\right)$, whose image by the flow in S is similar to the one of the previous case, i.e. spiralling to $C\left(k^{\prime}\right)$. Since by hypothesis not all the elements of K_{h} have complete connections, this process stops and we can always eliminate $\Delta_{ \pm}$. Arguing by induction, we eliminate successively all intersections from k of length less or equal to L (without creating new ones) and obtain a contradiction with Lemma 4.10 for the unstable manifold $V^{u}(k)$. This terminates the proof of Proposition 4.9 .

We can now prove Theorems 1.4 and 1.2 . In view of Lemma 4.8 and Proposition 4.9, to prove Theorem 1.4 we need to consider the case when there is at least one crossing intersection between the components of K_{h}.

Lemma 4.14. Let (K, \mathcal{F}) be a broken book decomposition supporting a nondegenerate Reeb vector field R_{λ}. Assume that there is at least one heteroclinic intersection between hyperbolic components of the binding K_{h}, with a crossing of stable and unstable manifolds. Then there is at least one homoclinic intersection with a crossing of stable and unstable manifolds, and thus positive topological entropy and infinitely many periodic orbits.

Proof. We consider the set \mathcal{C} of complete connections between components of K_{h} that belong to a cycle of such complete connections. We then as before cut M along \mathcal{C} to get a manifold M^{\prime} with boundary and corners. We let K_{h}^{\prime} be the collection of periodic orbits of K_{h}, when viewed in M^{\prime}. The set K_{h}^{\prime} may contain several copies of the same orbit of K_{h}.

By hypothesis there is at least one heteroclinic orbit in M^{\prime} between elements of K_{h}^{\prime} along which there is a crossing intersection. Hence it is not in ∂M^{\prime}. Note that for every component T of ∂M^{\prime}, the number of stable and unstable manifolds of orbits $k_{h} \in \partial T \subset M^{\prime}$ that are not themselves contained in ∂T is even, since there are as many stable than unstable manifolds in ∂T (every heteroclinic or homoclinic connection in ∂T involves a stable and an unstable manifold).

Consider the connected component T of M^{\prime} that contains a crossing intersection, and let $k \in K_{h}$ be the orbit whose unstable manifold $V^{u}(k)$ is involved in this intersection. Following the heteroclinic intersections from $V^{u}(k)$, as in Lemma 4.2, we get a sequence of heteroclinic intersections. We claim that this sequence stays inside T. Indeed, if it arrives to a periodic orbit in $K_{h} \cap \partial T$ along a stable manifold, then the two components of the unstable manifold of this periodic orbit are in T. We can thus construct a sequence such that all the stable and unstable manifolds involved are in the interior of T. Lemma 4.1 and Proposition 4.9 imply that there is a cycle with a crossing intersection.

Near this cycle, we obtain a crossing homoclinic intersection, which is also a homoclinic intersection in M. Positivity of topological entropy comes from [BW].

We now prove Theorem 1.2 stating that on a 3 -manifold that is not graphed, every nondegenerate Reeb vector field has positive topological entropy.

Proof of Theorem 1.2. A nondegenerate Reeb vector field is carried by some broken book decomposition. If there is no hyperbolic component in the binding, then the broken book is in fact a rational open book. If M is not a graph manifold, then the monodromy of this rational open book must contain a pseudo-Anosov component in its Nielsen-Thurston decomposition. The first return map of the Reeb vector field on a page is homotopic to the Nielsen-Thurston monodromy, so its topological entropy is bounded from below by the latter one, that is positive.

If the binding of the broken book has hyperbolic components then all elements of K_{h} that are not complete connections contain, by Proposition 4.9 . a crossing intersection. This proves the positivity of the entropy in this case.

If all stable and unstable manifolds of elements of K_{h} are complete connections, then as in Lemma 4.8 , they decompose M into partial open books and if M is not graphed, then one of them must have some pseudo-Anosov monodromy piece in its Nielsen-Thurston decomposition and we obtain positive topological entropy.

5. From broken books to nondegenerate broken books

A broken book decomposition (K, \mathcal{F}) is nondegenerate if

- near every component δ of K_{e}, there are cylindrical coordinates $(r, \phi, z) \in[0,1] \times[0,2 \pi[\times[0,1]$ where \mathcal{F} is given by the radial foliation $\{\phi=c s t$.$\} , and the neighborhood of \delta$ given by the mapping torus of a rotation $\{z=0\} \sim\{z=1\}$ exchanging the rays $\{\phi=c s t$.$\} and \delta=\{r=0\} / \sim$;
- near every component δ of K_{h}, there are coordinates $(x, y, z) \in$ $[0,1]^{3}$ where \mathcal{F} is given by the hyperbolic model foliation $\{x d y+$ $y d x=0\}$, with $\{z=0\} \sim\{z=1\}$ and $\delta=\left\{x^{2}+y^{2}=0\right\} / \sim$.
Observe that in this case any component of K_{h} has locally 4 adjacent rigid pages.

Near a hyperbolic component of a broken book, the pages are coming in 4 stacks of thickened separatrices and 4 sectors foliated by hyperbolas. The broken book can then be deformed locally into a nondegenerate broken book decomposition with 4 nondegenerate hyperbolic components, together with 3 elliptic components of the new binding. The vector field can be deformed by a C^{0} perturbation to adapt to this new open book.

Thus we get
Proposition 5.1. Every vector field carried by a broken book decomposition can be C^{0} deformed to become carried by a nondegenerate broken book decomposition.

REFERENCES

[Alv] M. Alves, Legendrian contact homology and topological entropy, J. Topol. Anal. 11 (2019), no. 1, 53-108.
[ACH] M. Alves, V. Colin and K. Honda, Topological entropy for Reeb vector fields in dimension three via open book decompositions, Jour. Ecole Polytechnique, Tome 6 (2019), 119-148.
[BW] K. Burns and H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys. 172 (1995), 95-118.
[CGH0] V. Colin, P. Ghiggini and K. Honda, Embedded contact homology and open book decompositions, preprint 2010. ArXiv:1004.2942.
[CGH1] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I, preprint 2012. ArXiv:1208.1074.
[CGH2] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II, preprint 2012. ArXiv:1208.1077.
[CGH3] V. Colin, P. Ghiggini and K. Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions III: from hat to plus, preprint 2012. ArXiv:1208.1526.
[CH] V. Colin and K. Honda, Reeb vector fields and open book decompositions, J. Eur. Math. Soc. 15 (2013), no. 2, 443-507.
[CHL] V. Colin, K. Honda, F. Laudenbach, On the flux of pseudo-Anosov homeomorphisms, Algebr. Geom. Topol. 8 (2008), 2147-2160.
[C-GH] D. Cristofaro-Gardiner and M. Hutchings, From one Reeb orbit to two, J. Diff. Geom. 102 (2016), 25-36.
[C-GHP] D. Cristofaro-Gardiner, M. Hutchings and D. Pomerleano, Torsion contact forms in three dimensions have two or infinitely many Reeb orbits, arXiv:1701.02262, to appear in Geom. Topol.
[Fra] J. Franks, Geodesics on \mathbb{S}^{2} and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992), no. 2, 403-418.
[FH] J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol. 7 (2003), 713-756.
[Fri] D. Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983), 299-303.
[Ghy] E. Ghys, Right-handed vector fields and the Lorenz attractor, Japan. J. Math. 4 (2009), 47-61.
[GG] V. Ginzburg and B. Gürel, The Conley conjecture and beyond, Arnold Math. J. 1 3 (2015), 299-337.
[GHHM] V. Ginzburg, D. Hein, U. Hryniewicz, and L. Macarini, Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam., 38 (2013) 55-78.
[Gir] E. Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, Proceedings of the ICM, Vol. II (Beijing 2002), Higher Ed. Press, Beijing (2002), 405-414.
[HWZ1] H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudo-holomorphic curves in symplectizations I: asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 337-379.
[HWZ2] H. Hofer, K. Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125-255.
[HryS] U. Hryniewicz, P. Salamão, Global surfaces of section for Reeb flows in dimension three and beyond, arXiv:1712.01925.
[Hry19] U. Hryniewicz, A note on Schwartzman-Fried-Sullivan Theory, with an application, https://arxiv.org/abs/1904.12416
[Hu] M. Hutchings, Lecture notes on embedded contact homology, Contact and symplectic topology, Bolyai Soc. Math. Stud. 26 (2014), 389-484.
[Ir] K. Irie, Dense existence of periodic Reeb orbits and ECH spectral invariants, J. Mod. Dyn. 9 (20125), 357-363.
[Kat] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173.
[Kup] I. Kupka, Contributions à la théorie des champs génériques, Contrib. Diff. Equations 2 (1963), 457-484; ibid. 3 (1964), 411-420.
[LS] P. Le Calvez, M. Sambarino, Homoclinic orbits for area preserving difffeomorphisms of surfaces, arXiv:1912.06792.
[MS] L. Macarini and F. Schlenk, Positive topological entropy of Reeb flows on spherizations, Math. Proc. Cambridge Philos. Soc. 151 (2011), 103-128.
[OS] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159-1245.
[Pei] M. Peixoto, On an approximation Theorem of Kupka and Smale, J. Differential Equations 3 (1966), 214-227.
[Sma] S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Normale Superiore Pisa 18 (1963), 97-116.
[Sul] D. Sullivan, A foliation of geodesics is characterized by having no "tangent homologies", J. Pure Appl. Algebra 13 (1978), no. 1, 101-104.
[Tau] C. H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117-2202.
[Wei] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979), 353-358.
V. Colin, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

E-mail address: vincent.colin@univ-nantes.fr URL: https://www.math.sciences.univ-nantes.fr/~vcolin/
P. Dehornoy, Univ. Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France

E-mail address: pierre.dehornoy@univ-grenoble-alpes.fr
URL: http://www-fourier.ujf-grenoble.fr/~dehornop/
A. Rechtman, Institut de Recherche Mathématique Avancée, UniverSité de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France

E-mail address: rechtman@math.unistra.fr
URL: https://irma.math.unistra.fr/~rechtman/

[^0]: Date: This version: January 3, 2020.
 2000 Mathematics Subject Classification. 58A30.
 Key words and phrases. open book decomposition, broken book decomposition, Birkhoff section, Reeb vector field, entropy, periodic orbits.
 V. Colin thanks the ANR Quantact for its support.
 P. Dehornoy thanks the projects ANR-15-IDEX-02, ANR-11LABX-0025-01, and ANR-19-CE-40-007 Gromeov for their supports.
 A. Rechtman thanks the IdEx Unistra, Investments for the future program of the French Government.

