
HAL Id: hal-02426650
https://hal.science/hal-02426650

Submitted on 2 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Videostrates: Collaborative, Distributed and
Programmable Video Manipulation

Clemens Nylandsted Klokmose, Christian Remy, Janus Bager Kristensen, Rolf
Bagge, Michel Beaudouin-Lafon, Wendy Mackay

To cite this version:
Clemens Nylandsted Klokmose, Christian Remy, Janus Bager Kristensen, Rolf Bagge, Michel
Beaudouin-Lafon, et al.. Videostrates: Collaborative, Distributed and Programmable Video Ma-
nipulation. UIST 2019 - 32nd Annual ACM Symposium on User Interface Software and Technology,
Oct 2019, New Orleans, United States. pp.233-247, �10.1145/3332165.3347912�. �hal-02426650�

https://hal.science/hal-02426650
https://hal.archives-ouvertes.fr

Videostrates: Collaborative, Distributed and Programmable
Video Manipulation

Clemens N. Klokmose1, Christian Remy1, Janus Bager Kristensen1, Rolf Bagge1,
Michel Beaudouin-Lafon2,3,4,5, Wendy Mackay4,2,3,5

1Aarhus University, 2Université Paris-Sud, 3CNRS, 4INRIA, 5Université Paris-Saclay
{clemens, jbk, rolf}@cavi.au.dk, remy@cc.au.dk, {mbl, mackay}@lri.fr

Figure 1. Videostrates examples: A) Two users collaboratively edit the same videostrate, one with a timeline-based editor and the other with a subtitle
editor. The results appear in a live, interactive preview on a large screen. B) Videostrates aggregates, broadcasts and records multiple live streams, here
from a statically mounted camera and a smartphone. C) A Videostrate-based computational notebook uses Codestrates to programatically create a
WebGL animation and synchronize its playback with recorded video composited with a green screen.

ABSTRACT
We present Videostrates, a concept and a toolkit for creat-
ing real-time collaborative video editing tools. Videostrates
supports both live and recorded video composition with a
declarative HTML-based notation, combining both simple and
sophisticated editing tools that can be used collaboratively.
Videostrates is programmable and unleashes the power of the
modern web platform for video manipulation. We demon-
strate its potential through three use scenarios: collaborative
video editing with multiple tools and devices; orchestration
of multiple live streams that are recorded and broadcast to
a popular streaming platform; and programmatic creation of
video using WebGL and shaders for blue screen effects. These
scenarios only scratch the surface of Videostrates’ potential,
which opens up a design space for novel collaborative video
editors with fully programmable interfaces.

Author Keywords
Collaborative Video; Information Substrates; Video Editing

CCS Concepts
•Human-centered computing → User interface toolkits;
Web-based interaction; Collaborative interaction;

INTRODUCTION
Video has become a ubiquitous medium on the Internet.
YouTube receives over 400 hours of video uploads every

UIST 2019, October 20–23, 2019, New Orleans, LA, USA
© 2019 Association for Computing Machinery.
This is the author version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in
ACM Symposium on User Interface Software and Technology (UIST 2019),
October 20-23, 2019, New Orleans, LA, USA,
https://doi.org/10.1145/3332165.3347912.

minute [52]; the streaming platform Twitch averages over
a million concurrent viewers [56]; and Skype users had spent
two trillion minutes on video calls by 2016 [53]. The use and
consumption of video is often collaborative: Video conferenc-
ing and streaming involve multiple users, and recorded videos
are shared, annotated and commented on in social platforms.
Yet video production is mostly solitary, performed by individ-
uals using single-user applications on personal computers.

Few video tools support real-time collaboration, and if they do,
the interface is the same for every user. Furthermore, a sub-
stantial functionality gap exists between easy-to-use tools with
limited features for non-professionals, and expert tools with
sophisticated features for professionals, with correspondingly
high skill and budget requirements. Tools for producing live
streaming content are trapped in applications separate from
those designed for editing recorded video, even though the
same effects and manipulations often apply to both. Video con-
ferencing tools inhibit users from manipulating video streams
in real time, except for a few novelty features such as overlay-
ing animated emojis.

Our previous work [5, 19, 30] has challenged the traditional
concept of applications and documents in favor of dynamic
information substrates (substrates for short). Substrates are
software artifacts that are neither application nor document,
but exhibit traits of either depending upon their use. Substrates
are malleable, composable with other substrates, and sharable
among users and across devices. They can be manipulated by
users through tools, as well as through other substrates.

This paper introduces video substrates, an information
substrate-based approach for working with video. Video sub-
strates provide mechanisms for fundamental video editing
functions, from overlaying clips to creating transitions, sub-
titles and applying effects. They support pre-recorded, live-

https://doi.org/10.1145/3332165.3347912

streamed and procedurally generated video content, as well
as creating and storing video files and composing new live
streams. Video substrates do not dictate how users should
interact with video, but rather provide a standard format for
expressing video that enables the development of different
types of tools. Video substrates can be edited collaboratively
across multiple devices, either in real time or asynchronously,
using similar or different tools. They are programmable so
that developers can create and share new functionality.

We demonstrate these capabilities with Videostrates, a web-
based implementation of video substrates and a toolkit for
developing collaborative, distributed, programmable video
editing environments. We showcase its potential through three
examples (Figure 1): real-time collaborative video editing with
different editors; compositing, annotating and recording live
streams; and procedurally manipulating and generating video.
Videostrates extends the Webstrates platform [30] to express
composite video objects using HTML. By bringing the real-
time sharing capabilities of Webstrates to video, Videostrates
enables the development of collaborative editors where multi-
ple users can edit the same video composition using different
tools on different devices.

The core components of the Videostrates architecture are a
server-side service for playback of videostrates as WebRTC-
based streams and a framework for declaratively expressing a
video composition in HTML and programmatically control-
ling video through a JavaScript API. A videostrate can be
composed of live, recorded and procedurally generated video
material, and exploits modern browser capabilities for han-
dling live video streams and for video processing. Videostrates
takes advantage of Webstrates to synchronise the DOM of a
web page across multiple browsers and adds a full architecture
for collaborative video editing and live streaming the output
to multiple clients.

In the rest of the paper, we review related work, define a
general model of video content and manipulation, and describe
the Videostrates prototype and toolkit. We then illustrate its
power with three examples, provide implementation details
and conclude with a discussion and avenues for future work.

RELATED WORK
We review related work in three areas: commercial and open-
source software, and online video editing platforms; tools
and techniques for interacting with video; and the concept of
information substrates that underlies video substrates.

Commercial and open source software
Computer-based, non-linear video editing dates to the early
1970s and evolved into professional video editing software,
e.g. Adobe’s Premiere Pro and Apple’s Final Cut Pro. Ap-
ple’s iMovie and Meltytech’s Shotcut provide amateurs with
user-friendly interfaces for video editing, albeit with relatively
limited functionality. In recent years, dedicated desktop appli-
cations have moved to web platforms, as has movie editing,
especially for lightweight tasks. Popular services such as
YouTube, Instagram and Vimeo offer simple editing features
for amateur users, but lack advanced capabilities.

Over the past decade, support for collaboration in professional
video editing tools has begun to appear, first through network-
based asset management tools that let multiple users access
the same raw material, and, more recently, with real-time
collaborative editing support, e.g. DaVinci Resolve 15 [10].
While some platforms, such as Frame.io, Wipster.io, WeV-
ideo, and Weaverize support online collaboration over video
content, they mostly target professionals and remain in their
early stages. The proliferation of streaming has transformed
public broadcasting from a professional television service into
a mainstream way to promote live video content, with a corre-
sponding change in software, popularizing tools that simplify
the process of streaming content, e.g. OBS Studio [4].

Research on video interaction
Research in human-computer interaction in digital video pro-
duction dates back to the 1980s, e.g., early work by Mackay
and Davenport [35]. A recent survey by Schoefmann [49] high-
lights the great progress in video content manipulation over the
past three decades. Although some researchers explored single
user or co-located collaborative editing on a shared computer,
a few also address real-time collaborative video editing. For
example, Terrenghi et al. [54] and Sokoler et al. [51] show-
case video editing on an interactive surface; Zigelbaum et
al. [62] created tangibles to facilitate co-located collaborative
video manipulation; Ramos and Balakrishnan [45] developed
a tablet application for video annotation; and Pavel et al. [43]
developed VidCrit to provide aynchronous feedback on drafts
of edited video. This research offers important insights into
the temporal aspects and social dynamics of collaborative
video editing, but, except for VidCrit, focuses on co-located
interaction on a single device.

Other researchers describe living in media spaces, e.g. Eu-
roPARC’s RAVE [20] and WAVE [48] systems, and collabora-
tive production practices, e.g. including collaborative viewing
experiences [21], and documentary production within grass-
roots movements [23]. Together with methodological frame-
works for collaborative authoring [40, 9], they offer insights
into the different video communication and production prac-
tices and further our understanding of video editing practice.
Videostrates inherently supports collaboration, whether remote
or co-located. This means that many insights from the above
research are directly relevant and can inform the creation of
future Videostrates-based collaborative video editing tools.

With a few exceptions, collaborative online video editing has
not yet leveraged the possibilities of cloud-based services.
Wagner and Keller [58] present a concept of web services for
distributed media composition; more recently, Glance [31] in-
troduced crowd-based annotation for video content. The most
recent and most advanced tool is LiveMâché [26], an online
whiteboard for educational purposes that enables collaborative
video sharing and annotation, although with a single static
interface for all collaborators.

Another central contribution of Videostrates is programma-
bility. About three decades ago, a number of toolkits were
developed to support multimedia and video content, including
X Toolkit [38], Ttoolkit [25], MET++ [2], Video Widgets [22]
and VideoScheme [36]. Since then, work has shifted towards

online platforms: Hop [50] offers web-based multimedia pro-
gramming similar to Orcc [61] that builds on a dataflow pro-
gramming model. NUBOMEDIA [18] provides an entire suite
based on WebRTC for programmable cloud-based editing.
Other recent examples include the Stage Framework [1] and
Timesheet.js [7]. TextAlive [28] enables creation of kinetic ty-
pography videos generated from audio and text input through
a combined design and live programming environment. For
live coding performances [8], Troop [29] allows for collab-
orative programming of procedurally generated audiovisual
experiences. While closest in nature to Videostrates’ dynamic
interface, these systems do not currently combine programma-
bility with collaborative and distributed video manipulation.

Streaming is another popular form of content distribution.
Research in this area has focused on tools for live broadcast-
ing and studies of user practices. VideoServer [47] offers a
web-based media space to simplify sharing of video content,
including streams, via URLs. In their studies of streaming
services, Reeves et al. [46] and Juhlin et al. [27] highlight
design requirements such as giving agency to users and sup-
porting mobile devices. Other novel systems focus on stream-
ing support for mobile development, such as SwarmCam [15]
and Streamer.Space [42], which implement mobile live broad-
casting. Videostrates supports streaming of content on any
web-enabled device and is fully customizable.

In summary, previous research typically targets specific cate-
gories of use and dedicated user interfaces, whereas the goal of
video substrates, as embodied by Videostrates, is to encompass
a wide range of activities by providing an enabling technology
that supports real-time collaborative editing of both recorded
and streaming video. We build on early visions of digital video
support [35, 6], with the goal of fundamentally changing how
users interact with and manipulate video.

Information substrates
Beaudouin-Lafon [5] describes “information substrates” (sub-
strates for short) as an alternative to the traditional model of
applications and documents. Substrates are software artifacts
that embody traits of both applications and documents, and can
be either, depending on their use. Klokmose et al. [30] present
Webstrates as a proof-of-concept web-based implementation
of substrates. A webstrate is a web page where any edits to its
DOM (document object model) is made persistent and shared
in real time with the other users of that page. Klokmose et al.
demonstrate how this enables the creation of collaborative soft-
ware that blurs the boundary between usage and development.
They demonstrate how transclusion (including a webstrate into
another webstrate) enables asymmetric collaboration, e.g. two
collaborators editing the same document but each using their
own personal user interface and editing tools.

With Codestrates [44], Rädle et al. introduce a development
environment for Webstrates inspired by computational note-
books, allowing users to seamlessly move between collabora-
tively developing, using and extending software. Videostrates
builds upon the principles and technology introduced with
Webstrates and Codestrates, extending them to liberate video
from the confines of traditional applications and make to video
editing inherently collaborative.

WHAT IS VIDEO?
As users, we think about video in terms of the systems we use
to access and manage it. Thus, we watch pre-recorded video
with players such as QuickTime or VLC or on platforms such
as YouTube or Vimeo. We also capture video with cameras
and smartphones, and sometimes edit it for later viewing with
tools such as iMovie, Adobe Premiere, or Final Cut Pro. We
sometimes annotate or extract metadata from video, e.g., when
coding video data collected from field or lab studies with tools
such as EVA [35], DIVA [34] or Chronoviz [17]. We also
procedurally generate or manipulate video, e.g., for creating
kinetic typography [28] or editing dialogue-driven scenes [32].

Video is also a live medium that we can watch on TV or live-
cast on platforms such as Facebook Live or Instagram. These
live streams can be time-shifted if the stream is recorded, such
as with a TV set-top box. The live stream can also result from
real-time editing, e.g., when broadcasting a sporting event cap-
tured with multiple cameras or when a VJ creates live video
from various sources. Finally, video is a rich communica-
tion medium, as attested by the success of videoconferencing
services such as Skype, FaceTime, Bluejeans, or Zoom.

While all these activities manipulate “video”, each is embed-
ded within a different type of application that insulates it from
other uses. For example, videoconferencing applications such
as Skype do not permit live editing of conversations, e.g., to
combine the live video feed of a participant with that of a
screencast. Similarly, platforms such as YouTube share video
content, but do not support synchronized viewing of the same
video by multiple users. Based on these diverse uses of video,
we identify three key dimensions of video: source type, stream
multiplicity, and interaction (Fig. 2).

First, video can come from different source types i.e. captured
while playing, recorded, or generated procedurally from code.
Time-shifting records a live source so users can pause, replay,
and catch up with the live source, thus combining aspects of
both live and recorded video. These different source types
represent video in diverse formats: Video authoring tools
represent the composition of recorded material as project files
that can be exported as a pre-rendered video or an edit decision
list (EDL). Streaming services usually transfer live streams,
although games, for example, only transfer updates to the
scene. Finally, live coding represents procedurally generated
video using program code.

Second, video can comprise a multiplicity of streams. Multi-
ple streams occur naturally in video-conferencing situations,
where participants generate their own streams, but also in
multi-camera situations, such as sporting events or music con-
certs. Video editing applications also treat each video clip as a
separate stream.

Third, video can involve diverse forms of interaction:
• Capturing video, recorded and/or live streamed;
• Playing live, time-shifted, or recorded video;
• Annotating video by adding metadata from external sources

or from analyzing the video content itself;
• Editing time-based properties of video segments, including

cutting, trimming and transitioning;

Video Source Number of Streams Interaction

Applications Liv
e

Rec
or

de
d

Pr
oc

ed
ur

al

One Mult
ipl

e

Rec
or

d

Pla
y

Ann
ot

ate

Ed
it

Com
po

sit
e

Pr
og

ra
m

Similar systems

Skype ü ü ü FaceTime
Whatsapp ü ü ü ü ü ü WeChat

Zoom ü ü ü Bluejeans
Instagram ü ü ü ü ü ü ü Snapchat

VLC ü ü ü ü Media Player
OBS Studio ü ü ü ü ü ü ü ü

Quicktime Pro ü ü ü ü ü
Final Cut ü ü ü ü ü ü ü ü ü Premiere
Youtube ü ü ü ü ü ü Vimeo

Twitch ü ü ü ü ü

LiveMâché ü ü ü ü ü ü ü
EVA ü ü ü ü ü ü ü

DIVA ü ü ü ü ü ü ü ChronoViz
VideoScheme ü ü ü ü ü ü

TextAlive ü ü ü ü

Videostrates ü ü ü ü ü ü ü ü ü ü ü

Re
se

ar
ch

Co
m

m
er

ci
al

 t
oo

ls

Figure 2. A selection of common commercial video applications and platforms as well as prominent research systems, categorized according to key
video dimensions: video source, stream multiplicity, and interaction. Pale green cells represent partially or poorly supported features.

• Compositing the spatial combination of video and other
content, including overlaying subtitles, adding image filters
or green-screen effects, creating a picture-in-picture, and
generating a mosaic with multiple video streams; and
• Programming video, either by procedurally generating it or

manipulating a video stream with code.

Sharing is a key, if often overlooked, aspect of interacting
with video. Although natural for video conferencing systems,
which are designed to exchange video streams, few tools sup-
port synchronized playing of recorded video, despite well
established practices such as joint TV and movie watching.
Similarly, collaborative annotation, editing, and compositing
is rare, even given the complex teamwork required for profes-
sional video production. Our goal is thus to create a unified
framework and platform for capturing, playing, annotating,
editing, and compositing video, with corresponding capabili-
ties for sharing multiple live and recorded video streams.

VIDEOSTRATES PRINCIPLES
A video substrate is based on the concept of an information
substrate, applied to video. It contains information about
source content—whether it is live (e.g. a stream), recorded
(in a file), or procedurally generated—and how this content
should be edited and composited together. A video substrate
can contain functionality to edit and render itself or may be
rendered and edited through another substrate via transclu-
sion. A video substrate may contain content, interactions and
behaviour unrelated to the rendered video. Thus, one could
create a video substrate that represents an entire video produc-
tion, including storyboards, script, notes, etc.

Videostrates is our proof-of-concept implementation of video
substrates. It is based on the Webstrates [30] platform and
provides a toolkit for developing video editing tools. A
videostrate is a webstrate that expresses a video composed
of live, recorded or procedurally generated video content. It
can contain a number of video HTML elements referencing
source material, information about which part of each video

should be played when, and style sheets describing animated
transitions between videos or the layout of a picture-in-picture
display. A videostrate can also contain subtitles and rolling
credits animated with scripts and CSS style sheets.

From the developer’s perspective, Videostrates consists of a
data format for expressing video compositions using HTML
and DOM manipulation, and an API for playback of a video
as a stream and for rendering the video composition to a file.
(See the appendix for an overview of the data format and API.)

Listing 1 shows a simple videostrate with three video segments.
The first segment plays for the first 10 seconds from the first
video file. The second segment plays for the next 10 seconds
from the second video file at double speed, starting from the
fifth second of the file. The third segment starts playing after
5 seconds for 10 seconds from the third video file with a 1.5
second fade-in animation at the beginning. This is overlaid
over the the others using the CSS in the style tag.

1 <html>
2 <head>
3 <style>
4 .overlay {
5 position: absolute;
6 left: 10px;
7 top: 10px;
8 width: 200px;
9 height: 200px;

10 }
11 </style>
12 </head>
13 <body>
14 <video class="composited" src="one.mp4" data-start="0"

data-end="10" data-offset="0"></video>
15 <video class="composited" src="two.mp4" data-start="10

" data-end="20" data-offset="5" data-speed="2"></
video>

16 <video class="composited overlay" src="three.mp4"
data-start="5" data-end="15" data-offset="5" style="
animation-name: compositor_transition_fade;
animation-duration: 1.5s;"></video>

17 </body>
18 </html>

Listing 1. HTML structure of a simple videostrate.

Listing 1 shows the declarative notation used by Videostrates.
Each HTML video element with the composited class is
included1 in the final video, based on its data-start, data
-end, data-offset and data-speed attributes, denoting
when in the final video the clip starts, ends, its time offset into
the source file and the playback speed.

Note that even though Listing 1 features three video elements,
the semantics of videostrates is that it represents a single video
clip. This video clip can then be viewed in the video element
of another webstrate. Conceptually, we want a videostrate to
be specified as the source of an HTML video element. In
addition, since a videostrate is a webstrate, it can be shared
so that any change is immediately visible from any page that
references it. Neither functionality is supported by HTML5,
so we need to create our own rendering infrastructure.

We thus developed vCompositor, the videostrate compositor,
and vStreamer, the videostrate streamer, to interpret the no-
tation and render it as a video. The vStreamer service takes
the URL of a videostrate and generates a WebRTC stream
that can be displayed in the video element of a browser and
controlled from that browser. As described in Implementa-
tion, vStreamer spawns a server-side browser instance that
opens the given videostrate, grabs and streams the graphics
output from that browser and streams it to client browsers.
vStreamer can also render the videostrate to a video file, e.g.
in the MPEG-4 format, for later download or use as a source.
vStreamer is controllable through an HTTP-based API that can
be used through a simple JavaScript library (see Appendix).
This library can be used, for example, to create a standalone
videostrate player or to integrate playback into a video editor.

vCompositor is a Javascript and CSS framework that manages
the playback of all composited elements in a videostrate, and is
used by vStreamer to control the playback. Besides its declar-
ative approach to video composition, vCompositor supports
programmatic generation of video content. Listing 2 shows
code for a video of a red rectangle that follows a sine curve to
move across the screen, implemented with the HTML5 canvas.

1 <canvas width="640" height="480" class="custom composited"
data-start="0" data-end="10"></canvas>

2 <script>
3 let c = document.querySelector("canvas");
4 let ctx = c.getContext("2d");
5

6 c.customLocalSeek = (time) => {
7 ctx.clearRect(0, 0, c.width, c.height);
8 ctx.fillStyle = "#FF0000";
9 ctx.fillRect(time/10 * c.width, 150 - Math.sin(time) *

120,10,10);
10 };
11 </script>

Listing 2. Using a custom component to programmatically generate
video content. The div element on line 1 has the class custom
composited that tells vCompositor to call a callback function (lines
6-10) when the clock changes or when seeking in the video.

Implementing videostrates as webstrates implies that:

• A videostrate is collaboratively editable, meaning that two
or more users can edit a videostrate simultaneously.

1Videostrates make no technical distinction between compositing
and editing. We have chosen to use the keyword composited to
denote a video clip that is either edited or composited into a video.

• If a stream of a videostrate is created using vStreamer and
the videostrate is updated from elsewhere, the streamed
video will update in real time. For example, if a stream is
created for the videostrate in listing 1 and the CSS is updated
to a new position while the stream plays, the composited
video will change its position in real time.

• Transclusion can be used to edit videostrates, thus a video
editor webstrate can provide the interface and tools for
editing a videostrate. This allows videostrates to be edited
simultaneously with multiple different editors.

• Since videostrates are webstrates that happen to use the
above notation so they can be rendered by vCompositor,
they are not restricted to video-based content and function-
ality. They can contain any content, behaviour or interaction
available in standard webstrates.

EXAMPLES
We present three examples developed with Videostrates that
demonstrate its power and generality. Each example features
a short scenario followed by an explanation of how it works,
and is illustrated in the accompanying video.

Collaborative video editing
Alice and Bob are interaction design students. Alice is an
experienced video editor, but Bob is a novice. They have
created paper mockups of a user interface prototype for a class,
and must create a video to show how it is used. They record
video clips on their mobile phones. To edit them into a short
video, Alice creates a new, empty videostrate on her laptop
and opens it in a timeline-based video editor. The videostrate
is created from a prototype that includes a video upload form.
Both Alice and Bob open the videostrate on their phones and
upload their video material. As the videos are uploaded, they
appear in Bob’s video editor on his laptop. Alice shares the
link to her editor with Bob, so he can participate in editing the
video. The video editor has limited functionality, so in order
to add transition effects, Alice manually edits the videostrate’s
HTML. Finally, Bob opens the videostrate in a simple editor,
capable only of adding subtitles and adds explanatory text to
the video. Although Alice’s editor does not support subtitle
editing, she can use it to scroll through the video and see where
the subtitles appear in the video.

How it works
A videostrate is a webstrate, and new videostrates can therefore
be created by copying from a prototype (by appending ?copy
to the prototype’s URL). To upload videos, the prototype needs
to contain an HTML upload form with an INPUT tag with type
video. Uploaded video clips are attached to the videostrate
as assets [13] and are accessible through their URL.

Our video editor (Figure 3) is implemented using Code-
strates [44], and is a minimalistic timeline-based editor in-
spired by Apple’s iMovie, comprising 2648 lines of code
(LOC). The videostrate is loaded into the editor using transclu-
sion. This means that the editor opens the videostrate in an
iframe element that is hidden from the user, and manipulates
the Document Object Model (DOM) of the videostrate to edit
the video. The videostrate is basically treated as the model of

Figure 3. A simple timeline-based video editor, inspired by Apple’s
iMovie. A videostrate is opened in the editor using transclusion, and
video material is uploaded to the videostrate and arranged in the time-
line. A preview in the top right is streamed live from vStreamer.

a model-view-controller pattern. Video clips uploaded to the
videostrate appear in the top left corner. These can be dragged
to the timeline at the bottom, causing a video tag to be added
to the transcluded videostrate with the composited class and
start and end times matching its place in the timeline. The clip
can now be resized and dragged around in the timeline, which
updates the videostrate accordingly.

A preview (top right) is generated using the vStreamer API.
Hovering the cursor over the timeline seeks through the video.
In this implementation of the video editor, each user receives
their own stream from vStreamer, which means that they can
independently play back and seek through the video. However,
playing and seeking in the video could also be synchronized
among clients. To render the videostrate to a file, the user
clicks the save icon in the bottom right corner. vStreamer
starts a pixel- and frame-perfect rendering, and a callback is
invoked when it finishes, so the user can download the video.

A file cache on the videostrate server (vCache) with a simple
API generates the thumbnails used for the video clips and time-
line, and caches source files for fast retrieval. The timeline in
the video editor updates in real-time based on remote changes
to the videostrate, which means that multiple users can collab-
orate on the same videostrate. Editing conflicts are handled
by Webstrates using operational transformation (OT) on the
DOM. This guarantees eventual consistency between the state
of the videostrate across clients, but does not protect against,
e.g., a user deleting a video clip being editing by another user.
This is similar to collaborative text editors such as Google
Docs, which do not protect users from deleting a sentence that
another user is writing.

The subtitle editor (268 LOC) shown in figure 4 is an inde-
pendent webstrate that transcludes the same videostrate as
the editor and displays a table of all subtitle elements in the
videostrate. The subtitle editor shows a vStreamer-generated
stream of the video. The user can add new subtitles by seeking
to a time in the video using the progress bar and press a plus
icon. Clicking a time in the table updates it to the current

Figure 4. This subtitle editor for Videostrates transcludes a videostrate
to add, remove and edit subtitles.

position of the progress bar. Listing 3 shows an example of
the HTML for a subtitle track.

1 <div class="composited subtitles">
2 <span class="composited subtitle" data-start="729"

data-end="734">Who was he?
3 <span class="composited subtitle" data-start="740"

data-end="745">I have no idea
4 </div>

Listing 3. HTML of a subtitle track

If Alice or Bob are fluent in HTML, they can manually edit the
videostrate, for example to add transitions that the editor does
not support. They can open the browser’s Developer Tools
and inspect and edit the elements in the DOM. They can also
mount the videostrate as a file in their filesystem (see [60])
and use their favorite code editor to edit the HTML, CSS and
JavaScript of the videostrate.

Live streaming studio
A big city library is hosting a popular annual three-day comic
book convention. Beth, one of the volunteers, has been tasked
to video document the convention, both with a live stream
and with daily three-minute highlight videos. She creates a
videostrate from the stream studio videostrate prototype and
opens it on her laptop. She also opens it on a computer con-
nected to a ceiling-mounted camera that captures an overview
of the main convention area. She immediately sees the camera
feed on her laptop. She sends the URL of the videostrate to
the other volunteers and asks them to open it on their phone
so they can use their phone camera to record from the con-
vention floor when they have the opportunity. On her laptop,
Beth sees a small video thumbnail appear when a volunteer
starts to stream and she can composite the different streams
from her laptop. She switches between streams, or displays
the overview stream plus one or more mobile camera streams
simultaneously. Beth also annotates the stream on her tablet
by drawing on top of the video with a pen.

To share the composited stream with the world without com-
promising the library’s limited server capacity, Beth connects
the library’s Videostrates server to a popular online streaming
platform and embeds the stream on the convention web site.
At the end of the day, Beth creates a new videostrate and uses
a simple video editor webstrate to cut a three-minute highlight
reel of the day that she exports to a video file and uploads to
the library website.

Figure 5. The stream studio videostrate opens a controller on a laptop
and a viewer on a tablet. The controller shows five streams, three of
which are minimized as thumbnails and do not appear on the tablet.

How it works
The stream studio videostrate (Figure 5) leverages modern
browser support for peer-to-peer video streaming using We-
bRTC [57] and for capturing video [12], and comprises 595
LOC. Webstrates provides a simple API for creating We-
bRTC streams [14] between clients of the same webstrate,
and a stream can be connected to a video element by using
videoElement.srcObject = stream.

When vStreamer is asked to open the stream studio videostrate,
it receives and displays the live WebRTC streams from the
other connected clients. The stream studio videostrate is
thus not time-based – it does not contain elements with the
composited class, data-start and data-end attributes.

If the stream studio videostrate is opened on a mobile phone
(or with a parameter in the URL) it acts as a sender. If opened
in a desktop browser it acts as a controller. When a stream is
created from a mobile device, it shows up as a thumbnail in
the controller. Clicking the thumbnail displays the video full
screen, or juxtaposes multiple feeds to fit the screen. This is
accomplished by manipulating CSS and DOM in JavaScript.

The two buttons in the bottom right corner record and broad-
cast via Twitch2. If the user clicks the record button, vStreamer
starts recording the live stream to a file. Clicking the Twitch
button prompts the user for the RMTP URL of their Twitch
account and begins broadcasting. Listing 4 shows an example
of using the broadcasting API with an external service.

1 broadcastButton.addEventListener("click", (e) => {
2 if (videostrate.isBroadcasting()) videostrate.

stopBroadcasting();
3 else {
4 let rtmpTarget = window.prompt("Enter RTMP URL");
5 videostrate.broadcast(rtmpTarget);
6 }
7 });

Listing 4. Broadcasting using RTMP

Opening the stream studio videostrate on a tablet enables pen
input for drawing free-hand SVG annotations on top of the
view. These annotations are SVG elements superimposed on
the video feed(s), and are rendered by vStreamer, as any other
videostrate content.
2twitch.tv is a popular live streaming service.

Figure 6. Three frames from Grace’s animation consisting of a chroma-
keyed video texture-mapped onto geometry in a WebGL scene.

Recorded video can be added to another videostrate for editing
into the highlights reel. Time shifting could be implemented
by programatically playing back the videostrate containing
the recordings inside the stream studio, although this is not
currently implemented in our prototype.

Programmable video
Grace runs a small one-woman video production and visual
effects company. She has been working on a showreel of her
work and wants to create an animated opening logo that she
can use in other productions. She has an idea of a video of
her waving with the company logo in the background, and
the video slowly disintegrating into cubes, disappearing into
outer space (Figure 6). She starts by programming the disin-
tegrating cube animation using WebGL in a codestrate. She
remembers that she had previously programmed a WebGL
shader for chroma-keying that she uses for live streaming tu-
torials. She creates a chroma-keying videostrate by adapting
the code to make it work with recorded video. She uploads
a video of herself waving in front of a green screen to the
videostrate, creates a background in HTML, and renders a
new video. Finally, she loads the chroma-keyed video into
the logo animation videostrate. She can now transclude the
logo videostrate into the showreel videostrate, or any other
videostrate she is working on.

How it works
To procedurally create the animation of the disintegrating
cubes, we modified a Three.js example [55] in a codestrate

twitch.tv

(307 LOC) to use a video as a texture, and controlled the
animation using the time callback on a custom videostrate
component. This means that the animation and video are
synchronized when seeking back and forth within the video.
For the chroma-key videostrate (962 LOC) we implemented
a chroma-key shader in the Graphics Library Shader Lan-
guage (GLSL). The shader receives a background texture,
a foreground texture (the video), and a texture defining the
color space. The codestrate implementing the chroma key
videostrate includes a simple interface for specifying which
colors to exclude. This is accessed by adding a parameter to
the URL of the videostrate. The videostrate also contains the
HTML for the background that is rendered onto the canvas
on page load, so that it can be used as a texture for the shader.
Both the animation videostrate and chroma-key videostrate
are implemented as codestrates (Figure 1(C)) where the devel-
opment environment is hidden using CSS during playback.

IMPLEMENTATION
Figure 7 shows the Videostrates architecture for the video ed-
itor from the collaborative video editing example. The main
components of Videostrates are the Videostrates Streamer
(vStreamer) and Videostrates Compositor (vCompositer).

Videostrates builds on Webstrates [30]: a videostrate is a web-
strate that uses the declarative notation and JavaScript API
of vCompositor. Videostrates thus assumes access to a Web-
strates server, which can be co-hosted with the Videostrates
server or hosted externally. We use the publicly available
Webstrates server at https://demo.webstrates.net.

vStreamer
vStreamer is a service running on a dedicated Linux server
with the main responsibility of spawning browser instances,
capturing their graphics output and streaming it to clients.
When a request is received from a client to open a videostrate,
the vStreamer controller spawns a Firefox [39] browser pro-
cess in a security sandbox (using Firejail [16]) on a window
surface matching the dimensions given by the client. The
window surface is not rendered on the screen, but instead each
frame is captured on the graphics card by a frame grabber and
sent to the vStreamer controller process through a UNIX pipe.

The vStreamer controller process (implemented in Java) uses
the GStreamer [24] media handling framework to create a
stream from the grabbed frames. Using GStreamer modules,
vStreamer can send this stream back to the client using We-
bRTC, record it in a file, or broadcast it using the RTMP
protocol to streaming services such as uStream or Twitch.

When streaming a videostrate to a client, frames may be
skipped to avoid slow down. However, it is is essential that no
frames are lost when rendering to a file. To coordinate when
the browser has finished showing a frame and can proceed
to the next, the frame grabber hosts a tiny WebSocket server
that the vCompositor webstrate (see below) can coordinate
through. Rendering videostrates can thus be slower than real
time, depending on the quality of the source material and the
complexity of the videostrate. Typically, rendering takes twice
as long as the duration of the video. To support time shifting,
recorded files are encoded so that they can be played while

recording. Similarly, to support previewing, rendered files can
be played before rendering is complete.

The vStreamer service includes a simple file hosting service for
the files produced when rendering or recording. Furthermore,
it contains a cache that can be used through a simple HTTP
API to generate alternative encodings of a source video file, e.g.
to support showing low resolution thumbnails, or producing a
preview video that supports fast seeking through an increased
number of key frames. vStreamer can, in principle, stream and
record any webpage with a public URL. However, to control
playback, it must be a videostrate that uses the vCompositor
notation or API.

vCompositor
vCompositor is implemented as a webstrate in JavaScript
and CSS. It is loaded in the Firefox instance opened by the
vStreamer controller, and the URL of the videostrate that the
client has requested to be streamed is given in a query string.
vCompositor transcludes the given videostrate in a transient3
iframe. It injects JavaScript and CSS for playback control
into the transcluded videostrate inlined in transient elements.
The client also transcludes the vCompositor webstrate, which
acts as a communication channel to the vCompositor instance
opened in vStreamer, using Webstrates’ signalling mecha-
nism4. These signals issue play, pause and seek commands.

vCompositor can play back composited video elements, ani-
mated SVG elements, DOM elements animated by CSS, cus-
tom elements, and transcluded videostrates. It computes the
total video duration based on the start and end times, and the
playback speed of each composited element. The composited
elements are hidden using CSS until the time matches their
start time. For video playback, vCompositor bypasses the
browser’s standard video playback, and instead seeks forward
in the video element, frame by frame. We exploit Firefox’s ex-
perimental API (HTMLMediaElement.seekToNextFrame
[11]) to quickly seek to the next frame without having to
construct it from the previous keyframe.

To play back CSS animations on composited elements, we
set the animation delay. Animations applied to composited
elements are paused by default (using the animation-play-
state CSS attribute). When the time on an element is updated
through a seek, we update the animation delay to match the
time. This causes the animation to display a static frame that
corresponds to the current time. For custom components, a
callback function customLocalSeek is called when the time
is updated. Finally, for transcluded videostrates, vCompositor
recursively opens the transcluded videostrate for playback.
When time updates in the parent, seek is called on the tran-
scluded videostrate.

vCompositor monitors the DOM of the loaded videostrate us-
ing JavaScript mutation observers and updates its time accord-
ingly when new composited elements appear or are changed.

3Transient elements in webstrates are elements that are not made
persistent on the server nor synchronized with other clients
4Webstrates uses a WebSockets-style API to send signals between
clients of the same webstrate.

https://demo.webstrates.net

Firefox

Browser
sandbox

Frame
grabber

vCompositor
webstrate

Videostrate

Injected
JS & CSS

vStreamer controller

vStreamer server

File server and cache

Webstrates server

vCompositer

Videostrate

Video
Editor

PreviewMedia
browser

Timeline

Client browser

Videostrate

Video editor

Video editor
implementation vStreamer.js

Streaming services

uStream, Twitch, etc.

vCompositor

1

2

3

4

5

6

8

9

7

10

6

Figure 7. The Videostrates architecture (video editing example). 1) The client opens the video editor webstrate in a web browser on her local machine. 2) The
video editor transcludes a videostrate for editing. 3) The vStreamer JavaScript API generates a WebRTC stream used to preview and control rendering, recording
and broadcasting of the videostrate. 4) The cache API generates media previews for the media browser and timeline. 5) When vStreamer receives a request to open
a videostrate, it spawns an instance of the Firefox browser that opens the vCompositor webstrate, which transcludes the given videostrate in an iframe. vCompositor
injects scripts and styles into the videostrate to control playback. A frame grabber connects to the Firefox instance to pipe graphics output from the Firefox instance
into the vStreamer controller. 6) Playback is controlled via signals across the vCompositor webstrate, which is also transcluded in the client browser. 7) Any
changes to the videostrate are immediately rerendered by vStreamer. 8) Rendered and recorded files are stored in the file server for later retrieval. 9) Broadcasted
streams are sent to external services using RTMP. 10) When rendering, vCompositor coordinates with the frame grabber over a WebSocket connection.

DISCUSSION
The Videostrates prototype demonstrates the viability and prac-
ticality of an information substrates-based approach to video
manipulation. Although Videostrates was designed as a proof-
of-concept, we use it for producing and editing video material:
The accompanying video was produced using Videostrates,
including the use of custom videostrates for screen recording.

Supporting end users
Our examples show how Videostrates can be used to let users
collaborate on video content without being trapped inside a
particular application. Each example highlights a particular
aspect of Videostrates, but they could easily be combined.
Indeed, Videostrates provides an enabling technology that de-
velopers and designers can use to both replicate existing video
production workflows as well as explore new possibilities.

Thanks to a unified representation of video, if a user reaches
the limits of an editor created with Videostrates, they can use
another one, extend it or even create their own. We expect
Videostrates to foster new forms of video editing, similar to
the transition from linear to non-linear editing in the 1990’s.

Performance
Providing exact performance measures is difficult, as perfor-
mance depends heavily on the design of a given videostrate.
A videostrate consisting of a simple composition of low-
resolution video material naturally renders much faster than a
4K composition with extensive use of WebGL effects. How-
ever, our tests show that we can support simultaneous playback
of six videostrates with 4K source material to a 1280x720 res-
olution stream.

Our Videostrates server is hosted on a high performance
consumer-grade workstation with a 32 core AMD Thread-
ripper 2 CPU and two Nvidia 960 GTX graphics cards. This
also means that a powerful laptop can host a local instance
of a Videostrates server for offline rendering. The current
implementation of Videostrates is not designed for 8K cine-
matic productions. The key bottleneck is video rendering and
memory management in the browser, which browser vendors
constantly improve, with immediate benefits to Videostrates.

Systems-oriented evaluation
We view Videostrates as an example of what Olsen calls user
interface systems research [41]. We evaluate it by demonstrat-
ing its potential [33] according to Olsen’s criteria, as relevant.

To our knowledge, Videostrates solves a previously unsolved
problem: Although collaborative video editors, web-based
video editors and programmable or scriptable video editors
all exist individually, no system combines them in a single
medium. Our analysis of what it means to interact with video
led to the concept of video substrates. Videostrates demon-
strates how this concept unifies uses of video that were previ-
ously addressed by incompatible tools.

We demonstrate the generality of Videostrates with three very
different examples that remix video editing tools in novel
ways. We show how to interact with Videostrates using sim-
ple drag-and-drop tools or a code editor. We also show how
Videostrates empowers new design participants: video editing
tools can be built with web development skills and frame-
works, and sophisticated video productions that previously
would have required expensive software and specialized skills
can now be produced with just HTML, CSS and JavaScript.

When used as a toolkit for building video editors, Videostrates
offers great flexibility: it is very easy to change a Videostrates
editor and experiment with new features, or simultaneously
compare different editors on the same videostrate. Videostrates
enables inductive combination by providing a relatively small
set of building blocks that can be combined to create sophisti-
cated video editors. It provides ease of combination, since the
common, underlying interface is the standardized DOM API.

Finally, Olsen poses a key question: Can it scale up? We show
how live streams can be shared on streaming platforms that
support hundreds of thousands, if not millions of users. Our
tests show that six simultaneous users can render 4K video ma-
terial on an inexpensive workstation (the price of two laptops),
making it powerful enough for 4K video editing. In terms of
performance, we do not believe scalability is an issue for prac-
tical use cases. However, scalability of functionality can be
costly, and would require a significant design and engineering
effort to create video editors for Videostrates that match the
sophistication of commercial desktop video editing software.
Even so, Videostrates opens the possibility of an open source
community that creates and shares video editing tools.

Limitations and future work
The most salient limitation of Videostrates is the lack of audio
support. The Web Audio API supports sophisticated audio
manipulation including effects, which can be enabled through
a declarative notation similar to what we did for video. The
requirements for adding audio to collaborative editing is high-
lighted in previous work [37, 47, 59], and is beyond the scope
of this paper, although a top priority for future work.

The vStreamer service uses UDP for transmission and does not
provide any error correction when packets are lost in WebRTC
streams. This may lead to performance issues when streaming
over unstable networks. Future work includes implementing
error correction techniques, such as retransmission (RTC),
forward error correction (FEC), or package loss indicators
(PLI) to resend a previous keyframe when data is lost. We
should also support a greater variety of resolutions, e.g., low
resolution for a preview, but high resolution for rendering to a
file, which would greatly enhance scalability.

We have included several CSS animations in vComposited that
can be used to declaratively apply special effects to videos. We
plan to extent this collection of animations, as well as include
preprogrammed effects beyond current CSS capabilities. We
also want to explore how to integrate real-time or off-line
video-processing such as face recognition to complement the
video stream with metadata.

Finally, we have not addressed issues of privacy and secu-
rity beyond the existing support in the underlying Webstrates
server. We are also limited by the performance and capabilities
of browsers to support advanced real-time processing such as
color correction and grading, and real-time visualizations such
as video scopes.

Future research
Videostrates opens up new ways to edit, share and interact
with video, beyond the traditional video editing paradigm.

Because Videostrates is built on Webstrates, we can combine
video editing with other forms of video interaction, integrating
relevant tools as needed.

Badam et al. [3] demonstrate how a Webstrates-based visual-
ization platform supports integrating collaboratively editable
and reprogrammable data visualisation workflows with other
tools, e.g., slideshow presentations and computational note-
books. We envision similar possibilities for Videostrates. For
example, we could add video editing to an online computa-
tional notebook for high school students to let them document
science experiments. Or, we could create simple tools that let
first graders collect and edit insect videos and share them via
a multimedia canvas on a classroom electronic whiteboard.

Professional video editing tools currently support a large
ecosystem of plug-ins and add-ons. Our goal is not to com-
pete with such professional video editing suites. Instead,
we envision Videostrates as a basis to support a similar, but
community-based approach for developing, sharing, and poten-
tially selling innovative video editing tools. Videostrates can
let people use their own, personalizable tools so that novices
can adopt simple, pre-made editors, and still collaborate with
professionals who use sophisticated or custom-made tools on
the same video production, leading to new types of workflows.

CONCLUSION
This paper describes the concept of video substrates, a
form of information substrate that supports collaborative, dis-
tributed and programmable video manipulation of both live
and recorded video. It also presents Videostrates, a proof-of-
concept implementation that illustrates both the potential and
practical details of implementing video substrates.

Videostrates is an enabling technology that supports a wide va-
riety of video applications by combining a simple declarative
HTML-based data format with a toolkit for video manipula-
tion. Videostrates makes it possible to create personalized
tools, as well as directly edit the HTML code describing a
videostrate. Videostrates builds on the Webstrates platform
to supports real-time sharing, enabling multiple users to col-
laborate simultaneously on the same video production using
their own tools. Videostrates leverage modern web technol-
ogy to include live streams from users’ personal devices and
to support programming video effects with widely available
graphics libraries on the web.

Videostrates opens a new design space for collaborative video
manipulation while offering new ways to integrate video
into other tools and contexts. We illustrate some possibil-
ities with three scenarios, but also invite the community
to explore its full potential. Videostrates is available at
https://videostrates.projects.cavi.au.dk.

ACKNOWLEDGMENTS
This project has been partially supported by the Aarhus Uni-
versity Research Foundation, The Carlsberg Foundation, In-
novation Fund Denmark 5123-00007B, JPI Urban Europe EU
693443, European Research Council (ERC) grants no. 321135
CREATIV: Creating Co-Adaptive Human-Computer Partner-
ships, and no. 695464 ONE: Unified Principles of Interaction.

https://videostrates.projects.cavi.au.dk

REFERENCES
[1] Rami Aamulehto, Mikko Kuhna, Jussi Tarvainen, and

Pirkko Oittinen. 2013. Stage framework: an HTML5 and
CSS3 framework for digital publishing. In Proceedings
of the 21st ACM international conference on Multimedia
- MM ’13. ACM Press, Barcelona, Spain, 851–854. DOI:
http://dx.doi.org/10.1145/2502081.2502228

[2] P. Ackermann. 1994. Direct manipulation of temporal
structures in a multimedia application framework. In
Proceedings of the second ACM international
conference on Multimedia - MULTIMEDIA ’94. ACM
Press, San Francisco, California, United States, 51–58.
DOI:http://dx.doi.org/10.1145/192593.192621

[3] S. K. Badam, A. Mathisen, R. Rädle, C. N. Klokmose,
and N. Elmqvist. 2019. Vistrates: A Component Model
for Ubiquitous Analytics. IEEE Transactions on
Visualization and Computer Graphics (2019), 1–1. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2865144

[4] Jim Baily. 2019. OBS Project.
https://obsproject.com/. (2019). Accessed:
2019-29-03.

[5] Michel Beaudouin-Lafon. 2017. Towards unified
principles of interaction. In Proceedings of the 12th
Biannual Conference on Italian SIGCHI Chapter. ACM,
1 page. DOI:
http://dx.doi.org/10.1145/3125571.3125602

[6] Amy Bruckman. 1992. The electronic scrapbook:
knowledge representation and interface design for
desktop video. In Posters and short talks of the 1992
SIGCHI conference on Human factors in computing
systems - CHI ’92. ACM Press, Monterey, California, 7.
DOI:http://dx.doi.org/10.1145/1125021.1125027

[7] Fabien Cazenave, Vincent Quint, and Cécile Roisin.
2011. Timesheets.js: tools for web multimedia. In
Proceedings of the 19th ACM international conference
on Multimedia - MM ’11. ACM Press, Scottsdale,
Arizona, USA, 699. DOI:
http://dx.doi.org/10.1145/2072298.2072423

[8] Nick Collins, Alex McLean, Julian Rohrhuber, and
Adrian Ward. 2003. Live Coding in Laptop Performance.
Org. Sound 8, 3 (Dec. 2003), 321–330. DOI:
http://dx.doi.org/10.1017/S135577180300030X

[9] E. Craighill, M. Fong, K. Skinner, R. Lang, and K.
Gruenefeldt. 1994. Scoot: an object-oriented toolkit for
multimedia collaboration. In Proceedings of the second
ACM international conference on Multimedia -
MULTIMEDIA ’94. ACM Press, San Francisco,
California, United States, 41–49. DOI:
http://dx.doi.org/10.1145/192593.192618

[10] Blackmagic Design. 2019. Davinci Resolve 15.
https://www.blackmagicdesign.com/dk/products/
davinciresolve/. (2019). Accessed: 2018-09-29.

[11] MDN Web Docs. 2019a.
HTMLMediaElement.seekToNextFrame().
https://developer.mozilla.org/en-US/docs/Web/

API/HTMLMediaElement/seekToNextFrame. (2019).
Accessed: 2019-07-13.

[12] MDN Web Docs. 2019b. MediaDevices.getUserMedia().
https://developer.mozilla.org/en-US/docs/Web/
API/MediaDevices/getUserMedia. (2019). Accessed:
2019-07-13.

[13] Webstrates Documentation. 2019a. Assets. https://
webstrates.github.io/userguide/api/assets.html.
(2019). Accessed: 2019-07-13.

[14] Webstrates Documentation. 2019b. Signaling.
https://webstrates.github.io/userguide/api/
signaling.html. (2019). Accessed: 2019-07-13.

[15] A. Engström, M. Esbjörnsson, and O. Juhlin. 2008.
Mobile collaborative live video mixing. In Proceedings
of the 10th international conference on Human
computer interaction with mobile devices and services -
MobileHCI ’08. ACM Press, Amsterdam, The
Netherlands, 157. DOI:
http://dx.doi.org/10.1145/1409240.1409258

[16] Firejail. 2019. Firejail Security Sandbox.
https://firejail.wordpress.com. (2019). Accessed:
2019-07-13.

[17] Adam Fouse, Nadir Weibel, Edwin Hutchins, and
James D Hollan. 2011. ChronoViz: a system for
supporting navigation of time-coded data. In CHI’11
Extended Abstracts on Human Factors in Computing
Systems. ACM, 299–304. DOI:
http://dx.doi.org/10.1145/1979742.1979706

[18] Boni Garcia, Luis López, Francisco Gortázar, Micael
Gallego, and Giuseppe Antonio Carella. 2017.
NUBOMEDIA: The First Open Source WebRTC PaaS.
In Proceedings of the 2017 ACM on Multimedia
Conference - MM ’17. ACM Press, Mountain View,
California, USA, 1205–1208. DOI:
http://dx.doi.org/10.1145/3123266.3129392

[19] Jérémie Garcia, Theophanis Tsandilas, Carlos Agon,
and Wendy Mackay. 2012. Interactive Paper Substrates
to Support Musical Creation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
1825–1828. DOI:
http://dx.doi.org/10.1145/2207676.2208316

[20] William Gaver, Thomas Moran, Allan MacLean,
Lennart Lövstrand, Paul Dourish, Kathleen Carter, and
William Buxton. 1992. Realizing a video environment:
EuroPARC’s RAVE system. In Proceedings of the
SIGCHI conference on Human factors in computing
systems - CHI ’92. ACM Press, Monterey, California,
United States, 27–35. DOI:
http://dx.doi.org/10.1145/142750.142754

[21] David Geerts, Ishan Vaishnavi, Rufael Mekuria, Oskar
van Deventer, and Pablo Cesar. 2011. Are we in sync?:
synchronization requirements for watching online video
together.. In Proceedings of the 2011 annual conference

http://dx.doi.org/10.1145/2502081.2502228
http://dx.doi.org/10.1145/192593.192621
http://dx.doi.org/10.1109/TVCG.2018.2865144
https://obsproject.com/
http://dx.doi.org/10.1145/3125571.3125602
http://dx.doi.org/10.1145/1125021.1125027
http://dx.doi.org/10.1145/2072298.2072423
http://dx.doi.org/10.1017/S135577180300030X
http://dx.doi.org/10.1145/192593.192618
https://www.blackmagicdesign.com/dk/products/davinciresolve/
https://www.blackmagicdesign.com/dk/products/davinciresolve/
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/seekToNextFrame
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/seekToNextFrame
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://webstrates.github.io/userguide/api/assets.html
https://webstrates.github.io/userguide/api/assets.html
https://webstrates.github.io/userguide/api/signaling.html
https://webstrates.github.io/userguide/api/signaling.html
http://dx.doi.org/10.1145/1409240.1409258
https://firejail.wordpress.com
http://dx.doi.org/10.1145/1979742.1979706
http://dx.doi.org/10.1145/3123266.3129392
http://dx.doi.org/10.1145/2207676.2208316
http://dx.doi.org/10.1145/142750.142754

on Human factors in computing systems - CHI ’11.
ACM Press, Vancouver, BC, Canada, 311. DOI:
http://dx.doi.org/10.1145/1978942.1978986

[22] Simon Gibbs, Christian Breiteneder, Vicki de Mey, and
Michael Papathomas. 1993. Video widgets and video
actors. In Proceedings of the 6th annual ACM
symposium on User interface software and technology -
UIST ’93. ACM Press, Atlanta, Georgia, United States,
179–185. DOI:
http://dx.doi.org/10.1145/168642.168660

[23] David Philip Green, Simon J. Bowen, Christopher
Newell, Guy Schofield, Tom Bartindale, Clara
Crivellaro, Alia Sheikh, Peter Wright, and Patrick
Olivier. 2015. Beyond Participatory Production:
Digitally Supporting Grassroots Documentary. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems - CHI ’15. ACM
Press, Seoul, Republic of Korea, 3157–3166. DOI:
http://dx.doi.org/10.1145/2702123.2702203

[24] GStreamer. 2019. GStreamer Open Source Multimedia
Framework. https://gstreamer.freedesktop.org.
(2019). Accessed: 2019-07-13.

[25] Nuno M. Guimarães, Nuno M. Correia, and Telmo A.
Carmo. 1992. Programming time in multimedia user
interfaces. In Proceedings of the 5th annual ACM
symposium on User interface software and technology -
UIST ’92. ACM Press, Monteray, California, United
States, 125–134. DOI:
http://dx.doi.org/10.1145/142621.142637

[26] William A. Hamilton, Nic Lupfer, Nicolas Botello, Tyler
Tesch, Alex Stacy, Jeremy Merrill, Blake Williford,
Frank R. Bentley, and Andruid Kerne. 2018.
Collaborative Live Media Curation: Shared Context for
Participation in Online Learning. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems - CHI ’18. ACM Press, Montreal QC, Canada,
1–14. DOI:
http://dx.doi.org/10.1145/3173574.3174129

[27] Oskar Juhlin, Arvid Engström, and Erika Reponen.
2010. Mobile broadcasting: the whats and hows of live
video as a social medium. In Proceedings of the 12th
international conference on Human computer
interaction with mobile devices and services -
MobileHCI ’10. ACM Press, Lisbon, Portugal, 35. DOI:
http://dx.doi.org/10.1145/1851600.1851610

[28] Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015.
TextAlive: Integrated Design Environment for Kinetic
Typography. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 3403–3412.
DOI:http://dx.doi.org/10.1145/2702123.2702140

[29] Ryan Kirkbride. 2017. Troop: A Collaborative Tool for
Live Coding. In Proceedings of the 14th Sound and
Music Computing Conference. Aalto University, 104–9.

[30] Clemens N Klokmose, James R Eagan, Siemen Baader,
Wendy Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: shareable dynamic media. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology. ACM, 280–290. DOI:
http://dx.doi.org/10.1145/2807442.2807446

[31] Walter S. Lasecki, Mitchell Gordon, Danai Koutra,
Malte F. Jung, Steven P. Dow, and Jeffrey P. Bigham.
2014. Glance: rapidly coding behavioral video with the
crowd. In Proceedings of the 27th annual ACM
symposium on User interface software and technology -
UIST ’14. ACM Press, Honolulu, Hawaii, USA,
551–562. DOI:
http://dx.doi.org/10.1145/2642918.2647367

[32] Mackenzie Leake, Abe Davis, Anh Truong, and
Maneesh Agrawala. 2017. Computational Video Editing
for Dialogue-driven Scenes. ACM Trans. Graph. 36, 4,
Article 130 (July 2017), 14 pages. DOI:
http://dx.doi.org/10.1145/3072959.3073653

[33] David Ledo, Steven Houben, Jo Vermeulen, Nicolai
Marquardt, Lora Oehlberg, and Saul Greenberg. 2018.
Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 36. DOI:
http://dx.doi.org/10.1145/3173574.3173610

[34] Wendy E. Mackay and Michel Beaudouin-Lafon. 1998.
DIVA: exploratory data analysis with multimedia
streams. In Conference on Human Factors in Computing
Systems: Proceedings of the SIGCHI conference on
Human factors in computing systems, Vol. 18. 416–423.
DOI:http://dx.doi.org/10.1145/274644.274701

[35] Wendy E. Mackay and Glorianna Davenport. 1989.
Virtual Video Editing in Interactive Multimedia
Applications. Commun. ACM 32, 7 (July 1989),
802–810. DOI:
http://dx.doi.org/10.1145/65445.65447

[36] James Matthews, Peter Gloor, and Fillia Makedon. 1993.
VideoScheme: A Programmable Video Editing Systems
for Automation and Media Recognition. In Proceedings
of the First ACM International Conference on
Multimedia (MULTIMEDIA ’93). ACM, New York, NY,
USA, 419–426. DOI:
http://dx.doi.org/10.1145/166266.168442

[37] Ketan Mayer-Patel, David Simpson, David Wu, and
Lawrence A. Rowe. 1996. Synchronized continuous
media playback through the World Wide Web. In
Proceedings of the fourth ACM international conference
on Multimedia - MULTIMEDIA ’96. ACM Press,
Boston, Massachusetts, United States, 435–436. DOI:
http://dx.doi.org/10.1145/244130.244458

[38] Joel McCormack and Paul Asente. 1988. An overview
of the X toolkit. In Proceedings of the 1st annual ACM
SIGGRAPH symposium on User Interface Software -
UIST ’88. ACM Press, Alberta, Canada, 46–55. DOI:
http://dx.doi.org/10.1145/62402.62407

http://dx.doi.org/10.1145/1978942.1978986
http://dx.doi.org/10.1145/168642.168660
http://dx.doi.org/10.1145/2702123.2702203
https://gstreamer.freedesktop.org
http://dx.doi.org/10.1145/142621.142637
http://dx.doi.org/10.1145/3173574.3174129
http://dx.doi.org/10.1145/1851600.1851610
http://dx.doi.org/10.1145/2702123.2702140
http://dx.doi.org/10.1145/2807442.2807446
http://dx.doi.org/10.1145/2642918.2647367
http://dx.doi.org/10.1145/3072959.3073653
http://dx.doi.org/10.1145/3173574.3173610
http://dx.doi.org/10.1145/274644.274701
http://dx.doi.org/10.1145/65445.65447
http://dx.doi.org/10.1145/166266.168442
http://dx.doi.org/10.1145/244130.244458
http://dx.doi.org/10.1145/62402.62407

[39] Mozilla. 2019. Firefox.
https://www.mozilla.org/firefox/. (2019). Accessed:
2019-07-13.

[40] Boris Novikov and Oleg Proskurnin. 2003. Towards
Collaborative Video Authoring. In Advances in
Databases and Information Systems, Gerhard Goos,
Juris Hartmanis, Jan van Leeuwen, Leonid
Kalinichenko, Rainer Manthey, Bernhard Thalheim, and
Uwe Wloka (Eds.). Vol. 2798. Springer Berlin
Heidelberg, Berlin, Heidelberg, 370–384. DOI:
http://dx.doi.org/10.1007/978-3-540-39403-7_28

[41] Dan R Olsen Jr. 2007. Evaluating user interface systems
research. In Proceedings of the 20th annual ACM
symposium on User interface software and technology.
ACM, 251–258. DOI:
http://dx.doi.org/10.1145/1294211.1294256

[42] Rui Pan and Carman Neustaedter. 2017. Streamer.Space:
A Toolkit for Prototyping Context-Aware Mobile Video
Streaming Apps. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems - CHI EA ’17. ACM Press, Denver,
Colorado, USA, 1947–1954. DOI:
http://dx.doi.org/10.1145/3027063.3053083

[43] Amy Pavel, Dan B. Goldman, Björn Hartmann, and
Maneesh Agrawala. 2016. VidCrit: Video-based
Asynchronous Video Review. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology - UIST ’16. ACM Press, Tokyo, Japan,
517–528. DOI:
http://dx.doi.org/10.1145/2984511.2984552

[44] Roman Rädle, Midas Nouwens, Kristian Antonsen,
James R Eagan, and Clemens N Klokmose. 2017.
Codestrates: Literate Computing with Webstrates. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology. ACM,
715–725. DOI:
http://dx.doi.org/10.1145/3126594.3126642

[45] Gonzalo Ramos and Ravin Balakrishnan. 2003. Fluid
interaction techniques for the control and annotation of
digital video. In Proceedings of the 16th annual ACM
symposium on User interface software and technology -
UIST ’03. ACM Press, Vancouver, Canada, 105–114.
DOI:http://dx.doi.org/10.1145/964696.964708

[46] Stuart Reeves, Christian Greiffenhagen, Martin
Flintham, Steve Benford, Matt Adams, Ju Row Farr, and
Nicholas Tandavantij. 2015. I’d Hide You: Performing
Live Broadcasting in Public. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems - CHI ’15. ACM Press, Seoul,
Republic of Korea, 2573–2582. DOI:
http://dx.doi.org/10.1145/2702123.2702257

[47] Nicolas Roussel and Sofiane Gueddana. 2007. Beyond
"beyond being there": towards multiscale
communication systems. In Proceedings of the 15th
international conference on Multimedia -
MULTIMEDIA ’07. ACM Press, Augsburg, Germany,

238. DOI:
http://dx.doi.org/10.1145/1291233.1291283

[48] Pagani Daniele S. and Wendy E. Mackay. 1989.
Bringing Media Spaces into the Real World.
Proceedings of the Third European Conference on
Computer-Supported Cooperative Work 32, 7 (July
1989), 802–810. DOI:
http://dx.doi.org/10.1145/65445.65447

[49] Klaus Schoeffmann, Marco A. Hudelist, and Jochen
Huber. 2015. Video Interaction Tools: A Survey of
Recent Work. Comput. Surveys 48, 1 (Sept. 2015), 1–34.
DOI:http://dx.doi.org/10.1145/2808796

[50] Manuel Serrano. 2007. Programming web multimedia
applications with hop. In Proceedings of the 15th
international conference on Multimedia -
MULTIMEDIA ’07. ACM Press, Augsburg, Germany,
1001. DOI:
http://dx.doi.org/10.1145/1291233.1291450

[51] Tomas Sokoler, Håkan Edeholt, and Martin Johansson.
2002. VideoTable: A Tangible Interface for
Collaborative Exploration of Video Material During
Design Sessions. In CHI ’02 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’02).
ACM, New York, NY, USA, 656–657. DOI:
http://dx.doi.org/10.1145/506443.506531

[52] Statista. 2019. Youtube statistics from Statista. https:
//www.statista.com/statistics/259477/hours-of-
video-uploaded-to-youtube-every-minute/. (2019).
Accessed: 2018-09-26.

[53] The Skype Team. 2019. Microsoft: 10 years of Skype.
https://blogs.skype.com/stories/2016/01/12/ten-
years-of-skype-video-yesterday-today-and-
something-new/. (2019). Accessed: 2018-09-26.

[54] Lucia Terrenghi, Torsten Fritsche, and Andreas Butz.
2008. Designing environments for collaborative video
editing. In 2008 IET 4th International Conference on
Intelligent Environments. 1–7. DOI:
http://dx.doi.org/10.1049/cp:20081137

[55] three.js. 2019. WebGL Video Demo. https:
//threejs.org/examples/#webgl_materials_video.
(2019). Accessed: 2019-07-13.

[56] TwitchTracker. 2019. Twitch tracker statistics.
https://twitchtracker.com/statistics. (2019).
Accessed: 2018-09-26.

[57] Justin Uberti and Peter Thatcher. 2019. WebRTC.
https://www.w3.org/TR/webrtc/. (2019). Accessed:
2018-10-01.

[58] Matthias Wagner and Wolfgang Kellerer. 2004. Web
services selection for distributed composition of
multimedia content. In Proceedings of the 12th annual
ACM international conference on Multimedia -
MULTIMEDIA ’04. ACM Press, New York, NY, USA,
104. DOI:
http://dx.doi.org/10.1145/1027527.1027546

https://www.mozilla.org/firefox/
http://dx.doi.org/10.1007/978-3-540-39403-7_28
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1145/3027063.3053083
http://dx.doi.org/10.1145/2984511.2984552
http://dx.doi.org/10.1145/3126594.3126642
http://dx.doi.org/10.1145/964696.964708
http://dx.doi.org/10.1145/2702123.2702257
http://dx.doi.org/10.1145/1291233.1291283
http://dx.doi.org/10.1145/65445.65447
http://dx.doi.org/10.1145/2808796
http://dx.doi.org/10.1145/1291233.1291450
http://dx.doi.org/10.1145/506443.506531
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://blogs.skype.com/stories/2016/01/12/ten-years-of-skype-video-yesterday-today-and-something-new/
https://blogs.skype.com/stories/2016/01/12/ten-years-of-skype-video-yesterday-today-and-something-new/
https://blogs.skype.com/stories/2016/01/12/ten-years-of-skype-video-yesterday-today-and-something-new/
http://dx.doi.org/10.1049/cp:20081137
https://threejs.org/examples/#webgl_materials_video
https://threejs.org/examples/#webgl_materials_video
https://twitchtracker.com/statistics
https://www.w3.org/TR/webrtc/
http://dx.doi.org/10.1145/1027527.1027546

[59] Ge Wang and Perry Cook. 2004. ChucK: a programming
language for on-the-fly, real-time audio synthesis and
multimedia. In Proceedings of the 12th annual ACM
international conference on Multimedia -
MULTIMEDIA ’04. ACM Press, New York, NY, USA,
812. DOI:
http://dx.doi.org/10.1145/1027527.1027716

[60] Webstrates. 2019. Webstrates File System.
https://github.com/Webstrates/file-system.
(2019). Accessed: 2019-07-13.

[61] Herve Yviquel, Antoine Lorence, Khaled Jerbi, Gildas
Cocherel, Alexandre Sanchez, and Mickael Raulet. 2013.

Orcc: multimedia development made easy. In
Proceedings of the 21st ACM international conference
on Multimedia - MM ’13. ACM Press, Barcelona, Spain,
863–866. DOI:
http://dx.doi.org/10.1145/2502081.2502231

[62] Jamie Zigelbaum, Michael S. Horn, Orit Shaer, and
Robert J. K. Jacob. 2007. The tangible video editor:
collaborative video editing with active tokens. In
Proceedings of the 1st international conference on
Tangible and embedded interaction - TEI ’07. ACM
Press, Baton Rouge, Louisiana, 43. DOI:
http://dx.doi.org/10.1145/1226969.1226978

http://dx.doi.org/10.1145/1027527.1027716
https://github.com/Webstrates/file-system
http://dx.doi.org/10.1145/2502081.2502231
http://dx.doi.org/10.1145/1226969.1226978

APPENDIX
This appendix gives an overview of the Videostrates format
and the vStreamer API.

Videostrates format
DOM elements with the composited class define clips that
are part of the video. They can have the following attributes:

• data-start When the clip should start in the timeline
of the video (in seconds).
• data-end When the clip should end in the timeline of

the video (in seconds).
• data-offset The offset into the source timeline, e.g.,

the offset into a source video clip or into the timed CSS
animation of an element (in seconds).
• data-speed The playback speed of the video in multi-

ples of the original speed.

Custom elements can be created using the custom
composited classes. The developer must attach a
customLocalSeek function to the given element, which
is called with the current time during seeking or playback.
Videostrates also supports compositing videos from other
videostrates using transclusion. Listing 5 shows the HTML for
compositing a part of another videostrate into the final video.

1 <div class="custom composited videostrate"
2 data-src="<webstrates server>/anotherVideostrate"
3 data-start="15" data-end="12" data-offset="5">
4 </div>

Listing 5. Composing in a videoclip from another videostrate.

Videostrates has a standard library of CSS animations for
transitions, for creating subtitles and for scrolling credits.

Transitions can be added to a composited element by
specifying the animation-name and animation
-duration CSS properties (see Listing 6). The
Videostrates library currently contains 23 transition
types, including compositor_transition_fade,
compositor_transition_barndoor_horizontal_in
or compositor_transition_radial_hard_out.

1 <video class="composited" src="clip.mp4" data-start="5"
2 data-end="15" data-offset="5"
3 style="animation-name: compositor_transition_fade;
4 animation-duration: 1.5s;">
5 </video>

Listing 6. HTML of a clip with a transition.

Subtitles are created using a DIV element with the classes
composited subtitles that contains a SPAN element with
the classes composited subtitle for each subtitle. Each
subtitle should have a data-start and data-end attribute.
Listing 7 shows an example of a subtitle track.

1 <div class="composited subtitles">
2 <span class="composited subtitle" data-start="729"

data-end="734">Who was he?
3 <span class="composited subtitle" data-start="740"

data-end="745">I have no idea
4 </div>

Listing 7. Example HTML of a subtitle track

Scrolling credits are created using a DIV element with the
classes composited creditscroll and data-start and
data-end attributes. Any content of the credit scroll element
will scroll from the bottom to the top of the screen within the
given time. Listing 8 shows and example of scrolling credits.

1 <div class="composited creditscroll" data-start="100"
data-end="130">

2 <h1>Actors</h1>
3 <h2>Jane Doe as the nameless protagonist</h2>
4 <h2>Jack Doe as the nameless antagonist</h2>
5 <h1>Producer</h1>
6 <h2>Richard Roe</h2>
7 </div>

Listing 8. Example HTML of scrolling credits

vStreamer API
vStreamer has a simple API to create a controllable stream
of a videostrate. Listing 9 shows how to create and play a
videostrate specified by its URL from vStreamer.

1 <html>
2 <head>
3 <script src="vstreamer.js"></script>
4 </head>
5 <body>
6 <video></video>
7 <script>
8 let videostrateUrl = "<webstrates server>/VideoStrate"
9 let vs = new VideostrateView(document.querySelector("

video"), videostrateUrl, {width: 640, height: 360})
10 vs.startStreamView()
11 vs.play()
12 </script>
13 </body>
14 </html>

Listing 9. Using the vstreamer API to play a videostrate

The videostrate viewer object vs has the following methods:

• vs.play() starts playback.
• vs.stop() stops playback.
• vs.seek(seconds) seeks to a given time in the video.
• vs.record() starts recording the stream and returns a

promise with the resulting file URL.
• let stopRecordPromise = vs.stopRecord()

stops recording the stream and returns a promise with the
resulting file URL.
• let renderPromise = vs.render() starts render-

ing the videostrate and returns a promise with the result-
ing file URL.
• let stopRenderPromise = vs.stopRender()

stops rendering the videostrate and returns a promise
with the resulting file URL.
• vs.broadcast(rtmpTarget) starts broadcasting the

stream to a rtmp-compatible streaming services. The
rtmptarget is the URL of the stream end point.
• vs.stopBroadcasting() stops broadcasting.

	Introduction
	Related Work
	Commercial and open source software
	Research on video interaction
	Information substrates

	What is Video?
	Videostrates principles
	Examples
	Collaborative video editing
	How it works

	Live streaming studio
	How it works

	Programmable video
	How it works

	Implementation
	vStreamer
	vCompositor

	Discussion
	Supporting end users
	Performance
	Systems-oriented evaluation
	Limitations and future work
	Future research

	Conclusion
	Acknowledgments
	References

