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Abstract 

 

 In this work, we study theoretically the 

effect of the mass transfer processes on the 

volume magnetic force and viscous friction of the 

magnetic fluid subjected to a magnetic field 

gradient and a shear flow between two rotating 

cylinders.  The model is based on the diffusion 

equations and takes into account a condensation 

phase transition in the magnetic fluid.  The results 

of experimental and theoretical studies of the 

diffusion processes in a thin layer of the magnetic 

fluid are also presented. 
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1. Introduction 

 

Magnetophoresis and Brownian diffusion 

are natural processes taking place in magnetic 

fluid, as a suspension of magnetic particles, in the 

presence of inhomogeneous magnetic fields [1, 2]. 

As a result of these processes the 

concentration of magnetic particles in a magnetic 

fluid does not remain homogeneous and 

concentration gradients appear.  

On the other hand, the physical properties 

of the magnetic fluid depend on the concentration 

of particles Φ [1-3], such that the following 

phenomena can appear: 

1) the dependence of the magnetic fluid 

magnetization M on Φ leads to a change of the 

magnetic volume force Fm acting on the fluid [4]; 

2) the dependence of the fluid viscosity η on Φ 

leads to a change of the viscous stresses in the 

fluid and the forces of viscous friction  Fτ on the 

solid boundaries [5]; 

Furthermore, the nanoparticle 

concentration in some regions of the magnetic 

fluid can reach significant values, such as “gas-

liquid” or “order-disorder” phase transitions can 

occur, changing nanoparticle spatial organization 

within concentrated phases. These phase 

transitions have been extensively studied in 

external homogeneous magnetic fields [2, 6-11], 

and are expected to affect the mass transfer 

properties under non-uniform magnetic fields. In 

this context, we are aimed in the present paper to 

establish the effect of the condensation phase 

transition under non-uniform field on (a) volume 

magnetic force and viscous friction force of the 

magnetic fluid subjected to shear flow between 

two rotating cylinders; (b) diffusion process in a 

thin layer of the magnetic fluid. The objective (a) 

has a practical significance for the proper design 

of magnetic fluid seals.  

   

2. Governing equations and phase transition 

conditions 

 

 Mass transfer in a magnetic fluid 

associated with magnetophoresis and Brownian 

diffusion is governed by the diffusion equation  

div 0
t




 


i    (1) 

with the mass flux density i given by the 

following equation, valid in a dilute limit [2,4]: 

0 ( )D b m L H       i , (2) 

where t is the time, s; ρ – density of particles, 

kg/m
3
; D - diffusion coefficient, m

2
/s, which is 

connected with the hydrodynamic mobility of 

particles b by the Einstein’s relation D=kTb; 

μ0≈1.26·10
-6

, H/m – magnetic permeability of 

vacuum; m – magnetic moment of individual 

particle, J/T; k≈1.38·10
-23

, J/K  – Boltzmann 

constant; T – temperature, K; ( ) ( ) 1/L cth   

– Langevin function,  0 /mH kT   - Langevin 

parameter.  

 The development of diffusion theory for 

concentrated magnetic fluids was carried out in 

[12, 13], however, as the first step, we will use 

more simple equations (1), (2) with constant 

diffusion coefficient.  

At stationary state, the mass flux density 

is equal to zero in the whole volume of the fluid 

bounded by impermeable boundaries: i=0.   

 These equations suppose that magnetic 

particles in the fluid behave like gas molecules. 

but as it was mentioned above in strong magnetic 

field there is a phase transition in magnetic fluid 

when magnetic particles form a condensed phase. 

This transition will be assumed as a natural limit 

of validity of the theory of Brownian diffusion 

[14]. 

 So we will assume that magnetic particles 

in magnetic fluid can be in two states: “gas phase” 



where distribution of their concentration Φg is 

governed by the diffusion equations (1), (2) valid 

under dilute limit approximation, and “condensed 

phase” where their concentration has a constant 

value Φc. Conditions of the phase transition are 

defined by the dipolar coupling parameter 

   2 3

0 / 4m d kT   , where d is the particle 

diameter. 

The dependence of the magnetic fluid 

magnetization M on Φ will be described by 

M=MspΦL(ξ) in the gas phase and by the 

following equation taking into account for pair 

dipolar interactions between particles in the 

condensed phase [7]: 

( )(1 8 d / d )spM M L L     , where Msp is the 

magnetization of one magnetic particle. 

The Krieger-Dougherty approximation 

[15] will be used for the magnetic fluid viscosity 

η=η(Φ=0)(1-1.35Φ)
-1.85

. 

Let us now consider two specific 

problems related to the effect of the condensation 

phase transition of the magnetic fluid behavior 

under non-uniform magnetic fields. 

 

3. Couette flow between concentric cylinders.  

Theory. 

 

Magnetic fluid MF with constant 

temperature is held in a gap between coaxial 

cylinders of radii R1 and R2 rotating with angular 

velocities ω1 and ω2 by a locally inhomogeneous 

magnetic field created by an annular magnet pole 

MP. The problem geometry is presented in Fig. 1 

and represents the model of a magnetic fluid seal. 

 
Fig. 1. Problem geometry of a magnetic fluid flow between 

rotating cylinders. 

 

The assumption of the isothermal flow can be 

justified by evaluating the temperature difference 
T across the gap between two rotating cylinders. 

Balancing the heat power generated by viscous 

dissipation and the heat flux evacuated through 

the interface between the magnetic fluid and the 

external cylinder, we get T 
2 2

1 / eR  , where 

1 2    ,  is the MF viscosity, and e – its 

thermal conductivity. For the following realistic 

parameters of the MF seal, 10
-2

 Pa.s, 2.50 

rad/s (3000 rpm), R110
-2

 m, e0.1 W/(m.K), 

we evaluate T 1 K. Such a small temperature 

difference (with respect to a typical temperature 

T300K) can be safely neglected and the flow can 

be considered as isothermal. 

Furthermore, all the effects related to 

magnetization relaxation under shear flow are 

neglected because the typical relaxation time 

R10
-6

 – 10
-5

 s for the nanoparticle size d=10-12 

nm [1] is much shorter than the hydrodynamic 

timescale H 2 1 1( ) / ( )R R R 10
-4

 - 10
-3

 s.  

The equilibrium location of the magnetic 

fluid volume that is not symmetrical with respect 

to the magnetic pole can depend on a pressure 

drop at its lateral boundaries, such as, for 

example, in a magnetic-fluid seal. 

Due to magnetophoresis, the 

concentration of magnetic particles under the 

magnet pole MP could substantially increase and 

a condensed phase can occur. So, the magnetic 

fluid volume MF at 0<z <l (where l is the length 

of the fluid layer) is considered to consist of two 

parts: gas phase, indicated by the character “g” 

and condensed phase indicated by the character 

“c”. The axial coordinate of the interface between 

these phases is denoted by a. Neglecting the 

surface tension and magnetic field variation across 

the gap between two cylinders, the lateral 

boundaries of the volume are assumed plane. The 

stationary solution of the problem is presented 

below. 

Further in this section, the  magnetic field 

is approximated using experimental data [5] in 

magnetic fluid seal as,
* 2/ 1/ [1 3( / ) ]H H H z l     where H

*
=1.6·10

6
 

A/m is a characteristic value of the magnetic field 

intensity taken as a maximal value under the pole 

at z=0, l=10 mm.  
Neglecting the magnetic field variation 

across the gap (under the thin gap limit  

(R2-R1/R1<<1)) and under the aforementioned 

assumptions of the isothermal flow and 

equilibrium magnetization, one can show that the 

flow velocity has the only non-zero azimuthal 

component depending on the radial coordinate r, 

vφ =v(r), while another physical quantities depend 

only on the axial component z: Φ=Φ(z),  

M =M[Φ(z)], η= η[Φ(z)]. 

For this problem, the fluid velocity 

distribution v(r) are given by known solutions of 

the Navier-Stokes equations [16]: 



2 2 2 2

2 2 1 1 1 2 1 2

2 2 2 2

2 1 2 1

( ) 1R R R R
v r

R R R R r

    
 

 
. 

The magnetic force acting by volume of 

the fluid, Fm, and the moment of viscous forces N 

acting on each of the cylinders, are given by the 

following expressions: 

2 2

0 2 1

d
( ) ( ) ( ) d

d

a

m sp

l

H
F M R R z L z

z
      

 in the gas phase, and  
0

2 2

0 2 1

d d
( ) ( ) ( ) 1 8 ( ) d

d d
m sp

a

L H
F M R R z L z z

z
  



 
     

 
  

in the condensed phase, 

1

2

1

0

d
2 [ ( )]d

d

l

r R

v v
N R z z

r r
 



 
   

 
  in the whole 

volume of MF including the gas and the 

condensed phases. 

The dimensionless variables as follows 

will be hereinafter used : /z z l  , */H H H  ,  

s = a/l,     0( ) / ( )     z , where: Φ0 is an 

initial uniform concentration of particles. 

The effect of the redistribution of the 

concentration of particles in a magnetic fluid will 

also be characterized by dimensionless 

coefficients representing the ratio of the physical 

quantity under consideration to its value at the 

uniform distribution of particles: 

1) the relative magnetic force acting by 

magnetic fluid volume,  

 km=Fm/Fm(Φ0),    (3) 

2)  the relative moment of viscous forces, 
1

0

0

/ ( ) ( )dk N N z z       ,  (4) 

In relative values, all the coefficients 

associated with the radii of the cylinders and the 

angular velocities of their rotation are worked out 

and these values are independent of them. 

The distribution of particle concentration 

Φ in the gas phase is defined by the expression (2) 

under dilute limit approximation, which taking 

into account the impermeability of boundaries, 

gives iz=0 at stationary state, or 

 

d d
( )

d d

H
U L UH

z z


 

 
.   (5) 

 This equation has a general solution 

 

[ ( )]

( )
g

sh UH z
B

H z

 
 

 
.   (6) 

 The main dimensionless parameter 

characterizing the problem is magnetic parameter  

U=μ0mH
*
/kT - a ratio of the particle magnetic 

energy to its thermal energy. 

The integration constant B and the axial 

coordinate of the interface between phases s are 

defined from the condition of constancy of the 

average concentration Φ0, 
1

0c g

s

s dz       (7) 

To close the problem, one needs to 

specify the values of the concentration on the 

interface in the gas phase *g  and in the 

condensed phase Φc. This specification can be 

done by using the analytical expressions given in 

[5] or by using the phase equilibrium diagram 

given below in Fig. 2. We will use the second way 

and define these concentrations at λ=1.5 we get 

*g =0.489, and Φc=0.552. 

  
Fig. 2. Diagram of phase equilibrium in a magnetic fluid at 

saturation magnetization [5]. 

 

The results of calculations performed by 

the formulas (3)-(7) are presented in Figs. 3-5. 

As one can see from Fig. 3, an increase of 

the particles concentration in the direction of 

regions with larger magnetic field intensity occurs 

monotonically up to a certain value of the 

magnetic parameter U without formation of a 

condensed phase. When this value is exceeded (at 

Fig. 3. Distribution of particle concentration Φ in magnetic 

fluid depending on magnetic parameter U  at initial 

concentration Φ0=0.1 and 21/ (1 3 )H z   . 

 

approximately U>9 for the conditions of the 

above calculations), the phase transition interface 

forms at z=0 were magnetic field intensity has a 

maximum.  



The coordinate of the phase transition 

interface s shifts to the larger values of z-

coordinate and the width of condensed phase 

region increases with growth of U.  

Fig. 4 demonstrates that the re-

concentration of particles has the largest effect on 

the value of viscous forces (kτ), increasing them 

more than twice. The magnetic force increases at 

small values of U and decreases at large U. The 

latter effect is due to the fact that this force is also 

determined by the value of the magnetic field 

gradient, and for the large U a significant number 

of particles are concentrated near z=0, where this 

gradient is small. 

Fig. 4. Effect of the redistribution of particle concentration on 

the relative magnetic volume force km=Fm(Φ)/Fm(Φ0), and on 

the relative force of viscous friction kτ=Fτ(Φ)/Fτ(Φ0) at  

*g =0.489, and Φc=0.552. 

 

4. Magnetophoresis in axisymmetric plane 

layer. 

  
a) experiment 

In order to establish some characteristics of 

the mass transfer processes described in Secs. 2, 

3, an experiment on diffusion and 

magnetophoresis was done in a thin axisymmetric  

 
Fig. 5. Problem geometry of the plane axisymmetric 

magnetic fluid layer. 

 

plane magnetic fluid layer placed in axisymmetric 

magnetic field created by peaked poles of a 

permanent magnet as presented in Fig. 5.  

Magnetic fluid layer has a thickness of h= 

0.06 mm, and radius of R=5.6 mm. 

In this case the distribution of magnetic 

field intensity is 
* 2/ 1/(1 2.5 )H H H r    , 

where H
*
= 450 кА/m is a maximal magnetic field 

intensity in the center of the layer; /r r R  . 

Magnetic fluid based on kerosene and 

magnetite with saturation magnetization of  

5 кА/m, density of 886 kg/m
3
, initial volume 

fraction of particles, equal to 0.016, was used. In 

this case U=32, λ=1.5.  

Small concentration of particles and small 

thickness of the layer provide conditions for 

visualization of the process. Results of the 

experiment are presented in Figs. 6, 7. 

Fig. 6. Photos of the magnetic fluid layer at different 

moments of time: (a) – 0 min, (b) – 120 min, (c) – 240 min. 

 

The increase of the black level C with 

time in the central part of the layer in Fig. 6 

characterizes the increase of the particle 

concentration. 

The process of the concentration 

redistribution was recorded with time and the 

black level was assessed at each radial position r 

at different elapsed times using the Adobe 

Photoshop software and the results are presented 

in Fig.7. 

 
Fig. 7. The distribution of the black level C of images along 

the radius of the magnetic fluid layer at different moments of 

time. 

 

First of all, the experiment demonstrates a 

significant redistribution of the concentration of 

particles in a magnetic fluid in a highly 

inhomogeneous magnetic field of high intensity.  



As calibration measurements showed, at a 

particle concentration equal to or higher than 0.2, 

the layer of magnetic fluid becomes opaque and 

has C= 100%. Thus, in the experimental curves, 

the region in the central part of the layer r/R <0.2 

is a region of concentrated fluid with a particle 

concentration larger than 0.2, which is more than 

10 times the initial concentration. 

A more detailed experimental gradation 

of the particle concentration in the region r/R<0.2 

becomes impossible due to fluid opaqueness and 

the determination of its properties requires further 

special studies. 

 

b) theory 
The theoretical description of this one-

dimensional problem under stationary condition 

(at long elapsed time after putting the sample 

under magnetic field) is completely analogous to 

the previous problem and has the same solution of 

the diffusion equation 

 

 
[ ( )]

( )
g

sh UH r
B

H r

 
 

 
, 

but the condition for the constancy of the average 

particle concentration will have a form different 

from (7), namely 
1

2

02с g

s

s r dr      .  (8) 

This, in particular, leads to the fact that 

for large values of U, when the main fraction of 

particles is concentrated in the “condensed” phase 

and the first term in (8) becomes much larger than 

the second one, the coordinate s of the phase 

transition is determined by the relation 

0 / cs    instead of the linear dependence 

0 / cs   , as in the previous problem described 

in Sec. 3. 

The distribution of the particle 

concentration Φ at initial concentration Φ0=0.016 

in this case is presented in Fig.8 for different 

values of U. 

The experimental curve for large time  

t=24h in Fig. 7 and the theoretical curve 3 for 

stationary state in Fig. 8 demonstrate adequate 

qualitative description of experimental data by the 

theory.  

Over time, a region of high particle 

concentration, in accordance with both experiment 

and theory, is formed within 0<r/R <0.2 where the 

particle concentration is larger than 0,2 and the 

“condensed” phase is formed in accordance with 

theory. 

 

 

Fig. 8. Distribution of particle concentration Φ in 

axisymmetric plane magnetic fluid layer depending on 

magnetic parameter U  at initial concentration Φ0=0.016 and 
21/ (1 2.5 )H r   . 

 

6. Conclusions 

 

 It is theoretically shown that the 

combination of the redistribution of the magnetic 

particle concentration in magnetic fluid (due to 

magnetophoresis and Brownian diffusion) and the 

condensation phase transition can essentially 

increase the viscous force under shear flow, while 

the effect on the volume magnetic force depends 

on the initial particle concentration and the value 

of the parameter U. Experiments and modelling of 

the mass transfer in an axisymmetric plane layer 

reveal a significant redistribution of the 

concentration of particles in the magnetic fluid in 

a highly inhomogeneous magnetic field and 

importance of the condensation phase transition 

on the concentration distribution. 
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