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Linguistic typology aims to capture structural and semantic variation across the world’s lan-
guages. A large-scale typology could provide excellent guidance for multilingual Natural Lan-
guage Processing (NLP), particularly for languages that suffer from the lack of human labeled
resources. We present an extensive literature survey on the use of typological information in the
development of NLP techniques. Our survey demonstrates that to date, the use of information
in existing typological databases has resulted in consistent but modest improvements in system
performance. We show that this is due to both intrinsic limitations of databases (in terms of
coverage and feature granularity) and under-utilization of the typological features included in
them. We advocate for a new approach that adapts the broad and discrete nature of typological
categories to the contextual and continuous nature of machine learning algorithms used in
contemporary NLP. In particular, we suggest that such an approach could be facilitated by recent
developments in data-driven induction of typological knowledge.

1. Introduction

The world’s languages may share universal features at a deep, abstract level, but the
structures found in real-world, surface-level texts can vary significantly. This cross-
lingual variation has challenged the development of robust, multilingually applica-
ble Natural Language Processing (NLP) technology, and as a consequence, existing
NLP is still largely limited to a handful of resource-rich languages. The architecture
design, training, and hyper-parameter tuning of most current algorithms are far from
being language-agnostic, and often inadvertently incorporate language-specific biases
(Bender 2009, 2011). In addition, most state-of-the-art machine learning models rely on
supervision from (large amounts of) labeled data—a requirement that cannot be met for
the majority of the world’s languages (Snyder 2010).

Over time, approaches have been developed to address the data bottleneck in
multilingual NLP. These include unsupervised models that do not rely on the avail-
ability of manually annotated resources (Snyder and Barzilay 2008; Vulić, De Smet, and
Moens 2011, inter alia) and techniques that transfer data or models from resource-rich
to resource-poor languages (Padó and Lapata 2005; Das and Petrov 2011; Täckström,
McDonald, and Uszkoreit 2012, inter alia). Some multilingual applications, such as
Neural Machine Translation and Information Retrieval, have been facilitated by learn-
ing joint models that learn from several languages (Ammar et al. 2016; Johnson et al.
2017, inter alia) or via multilingual distributed representations of words and sentences
(Mikolov, Le, and Sutskever 2013, inter alia). Such techniques can lead to significant
improvements in performance and parameter efficiency over monolingual baselines
(Pappas and Popescu-Belis 2017).

Another, highly promising source of information for modeling cross-lingual
variation can be found in the field of Linguistic Typology. This discipline aims to
systematically compare and document the world’s languages based on the empirical
observation of their variation with respect to cross-lingual benchmarks (Comrie 1989;
Croft 2003). Research efforts in this field have resulted in large typological databases—
for example, most prominently the World Atlas of Language Structures (WALS) (Dryer
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and Haspelmath 2013). Such databases can serve as a source of guidance for feature
choice, algorithm design, and data selection or generation in multilingual NLP.

Previous surveys on this topic have covered earlier research integrating typological
knowledge into NLP (O’Horan et al. 2016; Bender 2016), however, there is still no
consensus on the general effectiveness of this approach. For instance, Sproat (2016) has
argued that data-driven machine learning should not need to commit to any assump-
tions about categorical and manually defined language types as defined in typological
databases.

In this article, we provide an extensive survey of typologically informed NLP meth-
ods to date, including the more recent neural approaches not previously surveyed in this
area. We consider the impact of typological (including both structural and semantic) in-
formation on system performance and discuss the optimal sources for such information.
Traditionally, typological information has been obtained from hand-crafted databases
and, therefore, it tends to be coarse-grained and incomplete. Recent research has focused
on inferring typological information automatically from multilingual data (Asgari and
Schütze 2017, inter alia), with the specific purpose of obtaining a more complete and
finer-grained set of feature values. We survey these techniques and discuss ways to in-
tegrate their predictions into the current NLP algorithms. To the best of our knowledge,
this has not yet been covered in the existing literature.

In short, the key questions our paper addresses can be summarized as follows: (i)
Which NLP tasks and applications can benefit from typology? (ii) What are the ad-
vantages and limitations of currently available typological databases? Can data-driven
inference of typological features offer an alternative source of information? (iii) Which
methods have been proposed to incorporate typological information in NLP systems,
and how should such information be encoded? (iv) To what extent does the performance
of typology-savvy methods surpass typology-agnostic baselines? How does typology
compare with other criteria of language classification, such as genealogy? (v) How can
typology be harnessed for data selection, rule-based systems, and model interpretation?

We start this survey with a brief overview of Linguistic Typology (§ 2) and multi-
lingual NLP (§ 3). After these introductory sections we proceed to examine the devel-
opment of typological information for NLP, including that in hand-crafted typological
databases and that derived through automatic inference from linguistic data (§ 4). In the
same section, we also describe typological features commonly selected for application
in NLP. In § 5 we discuss ways in which typological information has been integrated
into NLP algorithms, identifying the main trends and comparing the performance of a
range of methods. Finally, in § 6 we discuss the current limitations in the use of typology
in NLP and propose novel research directions inspired by our findings.

2. Overview of Linguistic Typology

There is no consensus on the precise number of languages in the world. For example,
Glottolog provides the estimate of 7748 (HammarstrÃűm et al. 2016), whereas Eth-
nologue (Lewis, Simons, and Fennig 2016) refers to 7,097.1 This is because defining
what constitutes a ’language’ is in part arbitrary. Mutual intelligibility, which is used
as the main criterion for including different language variants under the same label, is

1 These counts include only languages traditionally spoken by a community as their principal means of
communication, and exclude unattested, pidgin, whistled, and sign languages.
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gradient in nature. Moreover, social and political factors play a role in the definition of
language.

Linguistic Typology is the discipline that studies the variation among the world’s
languages through their systematic comparison (Comrie 1989; Croft 2003). The com-
parison is challenging because linguistic categories cannot be predefined (Haspelmath
2007). Rather, cross-linguistically significant categories emerge inductively from the
comparison of known languages, and are progressively refined with the discovery of
new languages. Crucially, the comparison needs to be based on functional criteria,
rather than formal criteria. Typologists distinguish between constructions, abstract and
universal functions, and strategies, the type of expressions adopted by each language
to codify a specific construction (Croft et al. 2017). For instance, the passive voice is
considered a strategy that emphasizes the semantic role of patient: some languages lack
this strategy and use others strategies to express the construction. For instance, Awtuw
(Sepik family) simply allows for the subject to be omitted.

The classification of the strategies in each language is grounded in typological doc-
umentation (Bickel 2007, page 248). Documentation is empirical in nature and involves
collecting texts or speech excerpts, and assessing the features of a language based
on their analysis. The resulting information is stored in large databases (see § 4.1) of
attribute–values (this pair is henceforth referred to as typological feature), where usually
each attribute corresponds to a construction and each value to the most widespread
strategy in a specific language.

Analysis of cross-lingual patterns reveals that cross-lingual variation is bounded and
far from random (Greenberg 1966b). Indeed, typological features can be interdependent:
The presence of one feature may implicate another (in one direction or both). This inter-
dependence is called restricted universal, as opposed to unrestricted universals, which
specify properties shared unconditionally by all languages. Such typological universals
(restricted or not) are rarely absolute (i.e., exceptionless); rather, they are tendencies
(Corbett 2010), hence they are called “statistical”. For example, consider this restricted
universal: If a language (such as Hmong Njua, Hmong–Mien family) has prepositions,
then genitive-like modifiers follow their head. If, instead, a language (such as Slavey,
Na–DenÃl’ family) has postpositions, the order of heads and genitive-like modifiers
is swapped. However, there are known exceptions: Norwegian (Indo–European) has
prepositions but genitives precede their syntactic heads.2 Moreover, some typological
features are rare whereas others are highly frequent. Interestingly, this also means that
some languages are intuitively more plausible than others. Implications and frequencies
of features are important as they unravel the deeper explanatory factors underlying the
patterns of cross-linguistic variation (Dryer 1998).

Cross-lingual variation can be found at all levels of linguistic structure. The seminal
works on Linguistic Typology were concerned with morphosyntax, mainly morpho-
logical systems (Sapir 2014 [1921], page 128) and word order (Greenberg 1966b). This
level of analysis deals with the form of meaningful elements (morphemes and words)
and their combination, hence it is called structural typology. As an example, consider
the alignment of the nominal case system (Dixon 1994): Some languages like Nenets
(Uralic) use the same case for subjects of both transitive and intransitive verbs, and
a different one for objects (nominative–accusative alignment). Other languages like

2 Exception-less generalizations are known as absolute universals. However, properties that have been
proposed as such are often controversial, because they are too vacuous or have been eventually falsified
(Evans and Levinson 2009).
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Lezgian (Northeast Caucasian) group together intransitive subjects and objects, and
treat transitive subjects differently (ergative–absolutive alignment).

On the other hand, semantic typology studies languages at the semantic and
pragmatic levels. This area was pioneered by anthropologists interested in kinship
(d’Andrade 1995) and colors (Berlin and Kay 1969), and was expanded by studies on
lexical classes (Dixon 1977). The main focus of semantic typology has been to categorize
languages in terms of concepts (Evans 2011) in the lexicon, in particular with respect to
the 1) granularity, 2) division (boundary location), and 3) membership criteria (grouping
and dissection). For instance, consider the event expressed by to open (something). It
lacks a precise equivalent in languages such as Korean, where similar verbs overlap in
meaning only in part (Bowerman and Choi 2001). For instance, ppaeda means ‘to remove
an object from tight fit’, (used, e.g., for drawers) and pyeolchida means ‘to spread out
a flat thing’ (used, e.g., for hands). Moreover, the English verb encodes the resulting
state of the event, whereas an equivalent verb in another language such as Spanish
(abrir) rather expresses the manner of the event (Talmy 1991). Although variation in
the categories is pervasive due to their partly arbitrary nature, it is constrained cross-
lingually via shared cognitive constraints (Majid et al. 2007).

Similarities between languages do not always arise from language-internal dynam-
ics but also from external factors. In particular, similarities can be inherited from a com-
mon ancestor (genealogical bias) or borrowed by contact with a neighbor (areal bias)
(Bakker 2010). Owing to genealogical inheritance, there are features that are widespread
within a family but extremely rare elsewhere (e.g., the presence of click phonemes in the
Khoisan languages). As an example of geographic percolation, most languages in the
Balkan area (Albanian, Bulgarian, Macedonian, Romanian, Torlakian) have developed,
even without a common ancestor, a definite article that is put after its noun simply
because of their close proximity.

Research in linguistic typology has sought to disentangle such factors and to in-
tegrate them into a single framework aimed at answering the question “what’s where
why?” (Nichols 1992). Language can be viewed as a hybrid biological and cultural sys-
tem. The two components co-evolved in a twin track, developing partly independently
and partly via mutual interaction (Durham 1991). The causes of cross-lingual variation
can therefore be studied from two complementary perspectives—from the perspective
of functional theories or event-based theories (Bickel 2015). The former theories involve
cognitive and communicative principles (internal factors) and account for the origin
of variation, whereas the latter ones emphasize the imitation of patterns found in
other languages (external factors) and account for the propagation (or extinction) of
typological features (Croft 1995, 2000).

Examples of functional principles include factors associated with language use,
such as the frequency or processing complexity of a pattern (Cristofaro and Ramat 1999).
Patterns that are easy or widespread become integrated into the grammar (Haspelmath
1999, inter alia). On the other hand, functional principles allow the speakers to draw
similar inferences from similar contexts, leading to locally motivated pathways of di-
achronic change through the process known as grammaticalization (Greenberg 1966a,
1978; Bybee 1988). For instance, in the world’s languages (including English) the future
tense marker almost always originates from verbs expressing direction, duty, will, or
attempt because they imply a future situation.

The diachronic and gradual origin of the changes in language patterns and the
statistical nature of the universals explain why languages do not behave monolithically.
Each language can adopt several strategies for a given construction and partly incon-
sistent semantic categories. In other words, typological patterns tend to be gradient.
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For instance, the semantics of grammatical and lexical categories can be represented
on continuous multi-dimensional maps (Croft and Poole 2008). Bybee and McClelland
(2005) have noted how this gradience resembles the patterns learned by connectionist
networks (and statistical machine learning algorithms in general). In particular, they
argue that such architectures are sensitive to both local (contextual) information and
general patterns, as well as to their frequency of use, similarly to natural languages.

Typological documentation is limited by the fact that the evidence available for each
language is highly unbalanced and many languages are not even recorded in a written
form.3 However, large typological databases such as WALS (Dryer and Haspelmath
2013) nevertheless have an impressive coverage (syntactic features for up to 1,519
languages). Where such information can be usefully integrated in machine learning,
it can provide an alternative form of guidance to manual construction of resources that
are now largely lacking for low resource languages. We discuss the existing typological
databases and the integration of their features into NLP models in sections 4 and 5.

3. Overview of Multilingual NLP

The scarcity of data and resources in many languages represents a major challenge for
multilingual NLP. Many state-of-the-art methods rely on supervised learning, hence
their performance depends on the availability of manually crafted data sets annotated
with linguistic information (e.g., treebanks, parallel corpora) and/or lexical databases
(e.g., terminology databases, dictionaries). Although similar resources are available for
key tasks in a few well-researched languages, the majority of the world’s languages
lack them almost entirely. This gap cannot be easily bridged: The creation of linguistic
resources is a time-consuming process and requires skilled labor. Furthermore, the
immense range of possible tasks and languages makes the aim of a complete coverage
unrealistic.

One solution to this problem explored by the research community abandons the
use of annotated resources altogether and instead focuses on unsupervised learning.
This class of methods infers probabilistic models of the observations given some la-
tent variables. In other words, it unravels the hidden structures within unlabeled text
data. Although these methods have been used extensively for multilingual applications
(Snyder and Barzilay 2008; Vulić, De Smet, and Moens 2011; Titov and Klementiev
2012, inter alia), their performance tends to lag behind the more linguistically informed
supervised learning approaches (Täckström, McDonald, and Nivre 2013). Moreover,
they have been rarely combined with typological knowledge. For these reasons, we do
not review them in this section.

Other promising ways to overcome data scarcity include transferring models or
data from resource-rich to resource-poor languages (§ 3.1) or learning joint models
from annotated examples in multiple languages (§ 3.2) in order to leverage language
interdependencies. Early approaches of this kind have relied on universal, high-level
delexicalized features, such as part of speeds (PoS) tags and dependency relations. More
recently, however, the incompatibility of (language-specific) lexica has been countered
by mapping equivalent words into the same multilingual semantic space through rep-
resentation learning (§ 3.3). This has enriched language transfer and multilingual joint

3 According to Lewis, Simons, and Fennig (2016), 34.4% of the world’s languages are threatened, not
transmitted to younger generations, moribund, nearly extinct, or dormant. Moreover, 34% of the world’s
languages are vigorous but have not yet developed a system of writing.
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Figure 1
Three methods for language transfer: a) annotation projection, b) model transfer, and c)
translation. The image has been adapted from Tiedemann (2015).

modeling with lexicalized features. In this section, we provide an overview of these
methods, as they constitute the backbone of the typology-savvy algorithms surveyed in
§ 5.

3.1 Language Transfer

Linguistic information can be transferred from resource-rich languages to resource-poor
languages; these are commonly referred to as source languages and target languages,
respectively. Language transfer is challenging as it requires us to match word sequences
with different lexica and word orders, or syntactic trees with different (anisomorphic)
structures (Ponti et al. 2018a). As a consequence, the information obtained from the
source languages typically needs to be adapted, by tailoring it to the properties of
the target languages. The methods developed for language transfer include annotation
projection, (de)lexicalized model transfer, and translation (Agić et al. 2014). We illustrate
them here using dependency parsing as an example.

Annotation projection was introduced in the seminal work of Yarowsky, Ngai, and
Wicentowski (2001) and Hwa et al. (2005). In its original formulation, as illustrated in
Figure 1(a), a source text is parsed and word-aligned with a target parallel raw text. Its
annotation (e.g., PoS tags and dependency trees) is then projected directly and used to
train a supervised model on the target language. Later refinements to this process are
known as soft projection, where constraints can be used to complement alignment, based
on distributional similarity (Das and Petrov 2011) or constituent membership (Padó and
Lapata 2009). Moreover, source model expectations on labels (Wang and Manning 2014;
Agić et al. 2016) or sets of most likely labels (Khapra et al. 2011; Wisniewski et al. 2014)
can be projected instead of single categorical labels. These can constrain unsupervised
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models by reducing the divergence between the expectations on target labels and on
source labels or support “ambiguous learning” on the target language, respectively.

Model transfer instead involves training a model (e.g., a parser) on a source lan-
guage and applying it on a target language (Zeman and Resnik 2008), as shown in
Figure 1(b). Due to their incompatible vocabularies, models are typically delexicalized
prior to transfer and take language-independent (Nivre et al. 2016) or harmonized
(Zhang et al. 2012) features as input. In order to bridge the vocabulary gap, model trans-
fer was later augmented with multilingual Brown word clusters (Täckström, McDonald,
and Uszkoreit 2012) or multilingual distributed word representations (see § 3.3).

Machine translation offers an alternative to lexicalization in absence of annotated
parallel data. As shown in Figure 1(c), a source sentence is machine translated into a
target language (Banea et al. 2008), or through a bilingual lexicon (Durrett, Pauls, and
Klein 2012). Its annotation is then projected and used to train a target-side supervised
model. Translated documents can also be used to generate multilingual sentence repre-
sentations, which facilitate language transfer (Zhou, Wan, and Xiao 2016).

Some of these methods are hampered by their resource requirements. In fact, anno-
tation projection and translation need parallel texts to align words and train translation
systems, respectively (Agić, Hovy, and Søgaard 2015). Moreover, comparisons of state-
of-the-art algorithms revealed that model transfer is competitive with machine trans-
lation in terms of performance (Conneau et al. 2018). Partly owing to these reasons,
typological knowledge has been mostly harnessed in connection with model transfer,
as we discuss in § 5.2. Moreover, typological features can guide the selection of the best
source language to match to a target language for language transfer (Agić et al. 2016,
inter alia), which benefits all the above-mentioned methods (see § 5.3).

3.2 Multilingual Joint Supervised Learning

NLP models can be learned jointly from the data in multiple languages. In addition to
facilitating intrinsically multilingual applications, such as Neural Machine Translation
and Information Extraction, this approach often surpasses language-specific monolin-
gual models as it can leverage more (although noisier) data (Ammar et al. 2016, inter
alia). This is particularly true in scenarios where either a target or all languages are
resource-lean (Khapra et al. 2011) or in code-switching scenarios (Adel, Vu, and Schultz
2013). In fact, multilingual joint learning improves over pure model transfer also in
scenarios with limited amounts of labeled data in target language(s) (Fang and Cohn
2017).4

A key strategy for multilingual joint learning is parameter sharing (Johnson et al.
2017). More specifically, in state-of-the-art neural architectures input and hidden repre-
sentations can be either private (language-specific) or shared across languages. Shared
representations are the result of tying the parameters of a network component across
languages, such as word embeddings (Guo et al. 2016), character embeddings (Yang,
Salakhutdinov, and Cohen 2016), hidden layers (Duong et al. 2015b), or the attention
mechanism (Pappas and Popescu-Belis 2017). Figure 2 shows an example where all
the components of a PoS tagger are shared between two languages (Malagasy on the
left and Polish on the right). Parameter sharing, however, does not necessarily imply
parameter identity: It can be enforced by minimizing the distance between parameters

4 This approach is also more cost-effective in terms of parameters (Pappas and Popescu-Belis 2017).
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Figure 2
In multilingual joint learning, representations can be private or shared across languages. Tied
parameters are shown as neurons with identical color. Image adapted from Fang and Cohn
(2017), representing multilingual PoS tagging for Bambara (left) and Warlpiri (right).

(Duong et al. 2015a) or between latent representations of parallel sentences (Niehues
et al. 2011; Zhou et al. 2015) in separate language-specific models.

Another common strategy in multilingual joint modeling is providing information
about the properties of the language of the current text in the form of input language
vectors (Guo et al. 2016). The intuition is that this helps tailoring the joint model
toward specific languages. These vectors can be learned end-to-end in neural language
modeling tasks (Tsvetkov et al. 2016; Östling and Tiedemann 2017) or neural machine
translation tasks (Ha, Niehues, and Waibel 2016; Johnson et al. 2017). Ammar et al.
(2016) instead used language vectors as a prior for language identity or typological
features.

In § 5.2, we discuss ways in which typological knowledge is used to balance pri-
vate and shared neural network components and provide informative input language
vectors. In § 6.3, we argue that language vectors do not need to be limited to features ex-
tracted from typological databases, but also include automatically induced typological
information (Malaviya, Neubig, and Littell 2017, see § 4.3).

3.3 Multilingual Representation Learning

The multilingual algorithms reviewed in § 3.1 and § 3.2 are facilitated by dense real-
valued vector representations of words, known as multilingual word embeddings.
These can be learned from corpora and provide pivotal lexical features to several down-
stream NLP applications. In multilingual word embeddings, similar words (regardless
of the actual language) obtain similar representations. Various methods to generate mul-
tilingual word embeddings have been developed. We follow the classification proposed
by Ruder (2018), and we refer the reader to Upadhyay et al. (2016) for an empirical
comparison.
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Monolingual mapping generates independent monolingual representations and
subsequently learns a linear map between a source language and a target language
based on a bilingual lexicon (Mikolov, Le, and Sutskever 2013) or in an unsupervised
fashion through adversarial networks (Conneau et al. 2017). Alternatively, both spaces
can be cast into a new, lower-dimensional space through canonical correlation analysis
based on dictionaries (Ammar et al. 2016) or word alignments (Guo et al. 2015).

Pseudo-cross-lingual approaches merge words with contexts of other languages
and generate representations based on this mixed corpus. Substitutions are based on
Wiktionary (Xiao and Guo 2014) or machine translation (Gouws and Søgaard 2015;
Duong et al. 2016). Moreover, the mixed corpus can be produced by randomly shuffling
words between aligned documents in two languages (Vulić and Moens 2015).

Cross-lingual training approaches jointly learn embeddings from parallel corpora
and enforce cross-lingual constraints. This involves minimizing the distance of the
hidden sentence representations of the two languages (Hermann and Blunsom 2014) or
decoding one from the other (Lauly, Boulanger, and Larochelle 2013), possibly adding a
correlation term to the loss (Chandar et al. 2014).

Joint optimization typically involves learning distinct monolingual embeddings,
while enforcing cross-lingual constraints. These can be based on alignment-based trans-
lations (Klementiev, Titov, and Bhattarai 2012), cross-lingual word contexts (Luong,
Pham, and Manning 2015), the average representations of parallel sentences (Gouws,
Bengio, and Corrado 2015), or images (Rotman, Vulić, and Reichart 2018).

In this section, we have briefly outlined the most widely used methods in multilin-
gual NLP. Although they offer a solution to data scarcity, cross-lingual variation remains
a challenge for transferring knowledge across languages or learning from several lan-
guages simultaneously. Typological information offers promising ways to address this
problem. In particular, we have noted that it can support model transfer, parameter
sharing, and input biasing through language vectors. In the next two sections, we
elaborate on these solutions. In particular, we review the development of typological
information and the specific features which are selected for various NLP tasks (§ 4).
Afterwards, we discuss ways in which these features are integrated in NLP algorithms,
for which applications they have been harnessed, and whether they truly benefit system
performance (§ 5).

4. Selection and Development of Typological Information

In this section we first present major publicly available typological databases and then
discuss how typological information relevant to NLP models is selected, pre-processed,
and encoded. Finally, we highlight some limitations of database documentation with
respect to coverage and feature granularity, and discuss how missing and finer-grained
features can be obtained automatically.

4.1 Hand-Crafted Documentation in Typological Databases

Typological databases are created manually by linguists. They contain taxonomies of
typological features, their possible values, as well as the documentation of feature
values for the world’s languages. Major typological databases, listed in Table 1, typically
organize linguistic information in terms of universal features and language-specific
values. For example, Figure 3 presents language-specific values for the feature number
of grammatical genders for nouns on a world map. Note that each language is color-coded
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Table 1
An overview of major publicly accessible databases of typological information. The databases
are ordered by description level (and secondly by date of creation), along with their coverage.
The table also provides feature examples: for each feature (in small capitals) we present two
example languages with distinct feature values, and the total number of languages with each
value in parenthesis (where applicable).

Name Levels Coverage Feature Example

World Atlas of
Language Structures
(WALS)

Phonology,
Morphosyntax,
Lexical semantics

2,676 languages;
192 attributes;
17% values covered

ORDER OF OBJECT
AND VERB Amele :
OV (713)
Gbaya Kara :
VO (705)

Atlas of Pidgin
and Creole
Language Structures
(APiCS)

Phonology,
Morphosyntax

76 languages;
335 attributes

TENSE–ASPECT
SYSTEMS
Ternate Chabacano :
purely aspectual (10)
Afrikaans :
purely temporal (1)

URIEL
Typological
Compendium

Phonology,
Morphosyntax,
Lexical semantics

8,070 languages;
284 attributes;
~439,000 values

CASE IS PREFIX
Berber (Middle
Atlas) : yes (38)
Hawaaian : no (993)

Syntactic
Structures of the
World’s Languages
(SSWL)

Morphosyntax 262 languages;
148 attributes;
45% values covered

STANDARD NEGATION
IS SUFFIX
Amharic : yes (21)
Laal : no (170)

AUTOTYP Morphosyntax 825 languages,
~1000 attributes

PRESENCE OF
CLUSIVITY
!Kung (Ju) : false
Ik (Kuliak) : true

Valency Patterns
Leipzig (ValPaL)

Predicate–argument
structures

36 languages;
80 attributes;
1,156 values

TO LAUGH
Mandinka : 1 > V
Sliammon : V.sbj[1] 1

Lyon–Albuquerque
Phonological Systems
Database (LAPSyD)

Phonology 422 languages;
~70 attributes

â AND ú
Sindhi : yes (1)
Chuvash : no (421)

PHOIBLE Online Phonology 2155 languages;
2,160 attributes

m
Vietnamese : yes
(2053) Pirahã :
no (102)

StressTyp2 Phonology 699 languages;
927 attributes

STRESS ON
FIRST SYLLABLE
Koromfé : yes (183)
Cubeo : no (516)

World Loanword
Database (WOLD)

Lexical
semantics

41 languages;
24 attributes;
~2000 values

HORSE
Quechua :
kaballu borrowed (24)
Sakha : s1lg1
no evidence (18)

Intercontinental
Dictionary Series
(IDS)

Lexical
semantics

329 languages;
1310 attributes

WORLD
Russian : mir
Tocharian A : ārkiśos. i

Automated Similarity
Judgment Program
(ASJP)

Lexical
Semantics

7,221 languages;
40 attributes

I
Ainu Maoka : co7okay
Japanese : watashi
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Figure 3
Number of grammatical genders for nouns in the world’s languages according to WALS (Dryer
and Haspelmath 2013): none (white), two (yellow), three (orange), four (red), five or more
(black).

according to its value. Further examples for each database can be found in the rightmost
column of Table 1.

Some databases store information pertaining to multiple levels of linguistic de-
scription. These include WALS (Dryer and Haspelmath 2013) and the Atlas of Pidgin
and Creole Language Structures (APiCS) (Michaelis et al. 2013). Among all presently
available databases, WALS has been the most widely used in NLP. In this resource,
which has 142 typological features in total, features 1–19 deal with phonology, 20–29
with morphology, 30–57 with nominal categories, 58–64 with nominal syntax, 65–80
with verbal categories, 81–97 and 143–144 with word order, 98–121 with simple clauses,
122–128 with complex sentences, 129–138 with the lexicon, and 139–142 with other
properties.

Other databases only cover features at a specific level of linguistic description.
For example, both Syntactic Structures of the World’s Languages (SSWL) (Collins and
Kayne 2009) and AUTOTYP (Bickel et al. 2017) focus on syntax. SSWL features are man-
ually crafted, whereas AUTOTYP features are derived automatically from primary linguis-
tic data using scripts. The Valency Patterns Leipzig (ValPaL) (Hartmann, Haspelmath,
and Taylor 2013) provides verbs as attributes and predicate–argument structures as their
values (including both valency and morphosyntactic constraints). For example, in both
Mandinka and Sliammon, the verb to laugh has a valency of 1; in other words, it requires
only one mandatory argument, the subject. In Mandinka the subject precedes the verb,
but there is no agreement requirement; in Sliammon, on the other hand, the word order
does not matter, but the verb is required to morphologically agree with the subject.

For phonology, the Phonetics Information Base and Lexicon (PHOIBLE) (Moran,
McCloy, and Wright 2014) collates information on segments (binary phonetic features).
In the Lyon–Albuquerque Phonological Systems Database (LAPSyD) (Maddieson et al.
2013), attributes are articulatory traits, syllabic structures, or tonal systems. Finally,
StressTyp2 (Goedemans, Heinz, and der Hulst 2014) deals with stress and accent pat-
terns. For instance, in KoromfÃl’ each word’s first syllable has to be stressed, but not in
Cubeo.
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Other databases document various aspects of semantics. The World Loanword
Database (WOLD) (Haspelmath and Tadmor 2009) documents loanwords by identify-
ing the donor languages and the source words. The Automated Similarity Judgment
Program (ASJP) (Wichmann, Holman, and Brown 2016) and the Intercontinental Dictio-
nary Series (IDS) (Key and Comrie 2015) indicate how a meaning is lexicalized across
languages: For example, the concept of WORLD is expressed as mir in Russian, and as
ārkiśos. i in Tocharian A.

Although typological databases store abundant information on many languages,
they suffer from shortcomings that limit their usefulness. Perhaps the most significant
shortcoming of such resources is their limited coverage. In fact, feature values are
missing for most languages in most databases. Other shortcomings are related to feature
granularity. In particular, most databases fail to account for feature value variation
within each language: They report only majority value rather than the full range of pos-
sible values and their corresponding frequencies. For example, the dominant Adjective–
noun word order in Italian is adjective before noun; however, the opposite order is also
attested. The latter information is often missing from typological databases.

Further challenges are posed by restricted feature applicability and feature hier-
archies. Firstly, some features apply, by definition, only to subsets of languages that
share another feature value. For instance, WALS feature 113A documents “Symmet-
ric and Asymmetric Standard Negation,” whereas WALS feature 114A “Subtypes of
Asymmetric Standard Negation.” Although a special NA value is assigned for
symmetric-negation languages in the latter, there are cases where languages without
the prerequisite feature are simply omitted from the sample. Secondly, features can
be partially redundant, and subsume other features. For instance, WALS feature 81A
“Order of Subject, Object and Verb” encodes the same information as WALS feature 82A
“Order of Subject and Verb” and 83A “Order of Object and Verb,” with the addition of
the order of subject and object.

4.2 Feature Selection from Typological Databases

The databases presented above can serve as a rich source of typological information
for NLP. In this section, we survey the feature sets that have been extracted from these
databases in typologically informed NLP studies. In § 5.4, we review in which ways
and to what degree of success these features have been integrated in machine learning
algorithms.

Most NLP work incorporated a subset of word order features from WALS (Dryer
and Haspelmath 2013), mostly for the task of syntactic dependency parsing, where word
order provides crucial guidance (Naseem, Barzilay, and Globerson 2012). The feature
subsets used in different studies are shown in Figure 4. As depicted in the figure, these
studies utilized quite similar word order features. The feature set first established by
Naseem, Barzilay, and Globerson (2012) served as inspiration for subsequent works.
These works, however, often discarded features with the same value for all of the
languages in their sample, as these were not discriminative.

Another group of studies used more comprehensive feature sets. The feature set of
Daiber, Stanojević, and Sima’an (2016) included not only WALS word order features but
also nominal categories (e.g., “Conjunctions and Universal Quantifiers”) and nominal
syntax (e.g., “Possessive Classification”). Berzak, Reichart, and Katz (2015) considered
all features from WALS associated with morphosyntax and pruned out the redundant
ones, resulting in a total of 119 features. Søgaard and Wulff (2012) utilized all the
features in WALS with the exception of phonological features. Tsvetkov et al. (2016)
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Subject, Object and Verb 81A

Subject and Verb 82A

Object and Verb 83A

Object, Oblique and Verb 84A

Adposition and Noun Phrase 85A

Genitive and Noun 86A

Adjective and Noun 87A

Demonstrative and Noun 88A

Numeral and Noun 89A

0 2 4 6

Ammar+ 2016
Daiber+ 2016
Naseem+ 2012
Täckström+ 2013
Zhang+ 2012
Zhang+ 2015

Figure 4
Feature sets used in a sample of typologically informed experiments for dependency parsing.
The numbers refer to WALS ordering (Dryer and Haspelmath 2013).

selected 190 binarized phonological features from URIEL (Littel, Mortensen, and Levin
2016). These features encoded the presence of single segments, classes of segments,
minimal contrasts in a language inventory, and the number of segments in a class. For
instance, they record whether a language allows two sounds to differ only in voicing,
such as /t/ and /d/.

Finally, a small number of experiments adopted the entire feature inventory of
typological databases, without any sort of pre-selection. In particular, Agić (2017) and
Ammar et al. (2016) extracted all the features in WALS, whereas Deri and Knight
(2016) extracted all the features in URIEL. Schone and Jurafsky (2001) did not resort
to basic typological features, but rather to “several hundred [implicational universals]
applicable to syntax” drawn from the Universal Archive (Plank and Filiminova 1996).

Typological attributes that are extracted from typological databases are typically
represented as feature vectors in which each dimension encodes a feature value. This
feature representation is often binarized (Georgi, Xia, and Lewis 2010): For each pos-
sible value v of each database attribute a, a new feature is created with value 1 if it
corresponds to the actual value for a specific language and 0 otherwise. Note that this
increases the number of features by a factor of 1

||a||
∑||a||

i=1 ||vai ||. Although binarization
helps harmonizing different features and different databases, it obscures the different
types of typological variables.

To what extent do the limitations of typological databases mentioned in § 4.1
affect the feature sets surveyed in this section? The coverage is generally broad for the
languages used in these experiments, as they tend to be well-documented. For instance,
on average, 79.8% of the feature values are populated for the 14 languages appearing in
Berzak, Reichart, and Katz (2015), as opposed to 17% for all the languages in WALS.

It is hard to assess at a large scale how informative is a set of typological features.
However, these can be meaningfully compared with genealogical information. Ideally,
these two properties should not be completely equivalent (otherwise they would be
redundant),5 but at the same time they should partly overlap (language cognates inherit

5 This does not apply to isolates, however: by definition, no genealogical information is available for these
languages. Hence, typology is the only source of information about their properties.
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ga
fi
hu
it
es
fr
de
sv
cs
en

(a) Word-order features

hu
fi
ga
sv
de
en
cs
it
es
fr

(b) All WALS features with average genus
values

Figure 5
Heat maps of encodings for different subsets of typological WALS features taken from Ammar
et al. (2016): rows stand for languages, dimensions for attributes, and color intensities for feature
values. Encodings are clustered hierarchically by similarity. The meaning of language codes is:
DE German, CS Czech, EN English, ES Spanish, FR French, FI Finnish, GA Irish Gaelic, HU
Hungarian, IT Italian, SV Swedish.

typological properties from the same ancestors). In Figure 5, we show two feature sets
appearing in Ammar et al. (2016), each depicted as a heatmap. Each row represents a
language in the data, each cell is colored according to the feature value, ranging from 0
to 1. In particular, the feature set of Figure 5(a) is the subset of word order features listed
in Figure 4; and Figure 5(b) is a large set of WALS features where values are averaged
by language genus to fill in missing values.

In order to compare the similarities of the typological feature vectors among lan-
guages, we clustered languages hierarchically based on such vectors.6 Intuitively, the
more this hierarchy resembles their actual family tree, the more redundant the typo-
logical information is. This is the case for Figure 5(b), where the lowest-lever clusters
correspond exactly to a genus or family (top–down: Romance, Slavic, Germanic, Celtic,
Uralic). Still, the language vectors belonging to the same cluster display some micro-
variations in individual features. On the other hand, 5(a) shows clusters differing from
language genealogy: for instance, English and Czech are merged although they belong
to different genera (Germanic and Slavic). However, this feature set fails to account for
fine-grained differences among related languages: For instance, French, Spanish, and
Italian receive the same encoding.7

To sum up, this section’s survey on typological feature sets reveals that most ex-
periments have taken into account a small number of databases and features therein.
However, several studies did utilize a larger set of coherent features or full databases.

6 Clustering was performed through the complete linkage method.
7 Notwithstanding they have different preferences over word orders (Liu 2010).

15



Computational Linguistics Volume 45, Number 3

Although well-documented languages do not suffer much from coverage issues, we
showed how difficult it is to select typological features that are non-redundant with
genealogy, fully discriminative, and informative. The next section addresses these prob-
lems proposing automatic prediction as a solution.

4.3 Automatic Prediction of Typological Features

The partial coverage and coarse granularity of existing typological resources sparked
a line of research on automatic acquisition of typological information. Missing feature
values can be predicted based on: i) heuristics from morphosyntactic annotation that
pre-exists, such as treebanks, or is transferred from aligned texts (§ 4.3.1); ii) unsuper-
vised propagation from other values in a database based on clustering or language
similarity metrics (§ 4.3.2); iii) supervised learning with Bayesian models or artificial
neural networks (§ 4.3.3); or iv) heuristics based on co-occurrence metrics, typically
applied to multi-parallel texts (§ 4.3.4). These strategies are summarized in Table 2.

With the exception of Naseem, Barzilay, and Globerson (2012), who treated ty-
pological information as a latent variable, automatically acquired typological features
have not been integrated into algorithms for NLP applications to date. However, they
have several advantages over manually crafted features. Unsupervised propagation
and supervised learning fill in missing values in databases, thereby extending their
coverage. Moreover, heuristics based on morphosyntactic annotation and co-occurrence
metrics extract additional information that is not recorded in typological databases.
Further, they can account for the distribution of feature values within single languages,
rather than just the majority value. Finally, they do not make use of discrete cross-lingual
categories to compare languages; rather, language properties are reflected in continuous
representations, which is in line with their gradient nature (see § 2)

4.3.1 Heuristics Based on Morphosyntactic Annotation. Morphosyntactic feature values can
be extracted via heuristics from morphologically and syntactically annotated texts. For
example, word order features can be calculated by counting the average direction of
dependency relations or constituency hierarchies (Liu 2010). Consider the tree of a
sentence in Welsh from Bender et al. (2013) in Figure 6. The relative order of verb–
subject, and verb–object can be deduced from the position of the relevant nodes VBD,
NNS, and NNO (highlighted).
Morphosyntactic annotation is often unavailable for resource-lean languages. In such
cases, it can be projected from a source directly to several target languages through
language transfer. For instance, Östling (2015) projects source morphosyntactic anno-
tation directly to several languages through a multilingual word alignment. After the
alignment and projection, word order features are calculated by the average direction
of dependency relations. Similarly, Zhang et al. (2016) transfer PoS annotation with a
model transfer technique relying on multilingual embeddings, created through mono-
lingual mapping (see § 3.3). After the projection, they predict feature values with a
multiclass support vector machine using PoS tag n-gram features.

Finally, typological information can be extracted from Interlinear Glossed Texts
(IGT). Such collections of example sentences are collated by linguists and contain gram-
matical glosses with morphological information. These can guide alignment between
the example sentence and its English translation. Lewis and Xia (2008) and Bender et al.
(2013) project chunking information from English and train context free grammars on
target languages. After collapsing identical rules, they arrange them by frequency and
infer word order features.
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Table 2
An overview of the strategies for prediction of typological features.

Author Details Requirements Langs Features

M
or

ph
os

yn
ta

ct
ic

A
nn

ot
at

io
n Liu (2010) Treebank count Treebank 20 word order

Lewis and Xia
(2008)

IGT projection IGT, source
chunker

97 word and
morpheme
order,
determiners

Bender et al. (2013) IGT projection IGT, source
chunker

31 word order
and case
alignment

Östling (2015) Treebank projection Parallel text,
source tagger
and parser

986 word order

Zhang et al. (2016) PoS projection source tagger,
seed dictionary

6 word order

U
ns

up
er

vi
se

d
Pr

op
ag

at
io

n Teh, Daumé III,
and Roy (2007)

Hierarchical
typological cluster

WALS 2150 whole

Georgi, Xia, and
Lewis (2010)

Majority value
from k-means
typological cluster

WALS whole whole

Coke, King, and
Radev (2016)

Majority value
from genus

Genealogy and
WALS

325 word order
and passive

Littel, Mortensen,
and Levin (2016)

Family, area,
and typology-based
Nearest Neighbors

Genealogy and
WALS

whole whole

Berzak, Reichart,
and Katz (2014)

English as a Second
Language-based
Nearest Neighbors

ESL texts 14 whole

Malaviya, Neubig,
and Littell (2017)

Task-based
language vector

NMT data set 1017 whole

Bjerva and Augen-
stein (2018)

Task-based
language vector

PoS tag
data set

27-824 phonology,
morphology,
syntax

Su
pe

rv
is

ed
Le

ar
ni

ng Takamura, Nagata,
and Kawasaki
(2016)

Logistic regression WALS whole whole

Murawaki (2017) Bayesian + feature
and language
interactions

Genealogy and
WALS

2607 whole

Wang and Eisner
(2017)

Feed-forward
Neural Network

WALS, tagger,
synthetic treebanks

37 word order

Cotterell and Eis-
ner (2017)

Determinant Point
Process with
neural features

WALS 200 vowel
inventory

Daumé III and
Campbell (2007)

Implication
universals

Genealogy and
WALS

whole whole

Lu (2013) Automatic discovery Genealogy and
WALS

1646 word order

C
ro

ss
-l

in
gu

al
di

st
ri

bu
ti

on

Wälchli and
Cysouw (2012)

Sentence edit
distance

Multi-parallel
texts, pivot

100 motion verbs

Asgari and Schütze
(2017)

Pivot alignment Multi-parallel
texts, pivot

1163 tense markers

Roy et al. (2014) Correlations in
counts and
entropy

None 23 adposition
word
order
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Figure 6
Constituency tree of a Welsh sentence.

4.3.2 Unsupervised Propagation. Another line of research seeks to increase the coverage
of typological databases borrowing missing values from the known values in other
languages. One approach is clustering languages according to some criterion and prop-
agating the majority value within each cluster. Hierarchical clusters can be created
either according to typological features (e.g., Teh, Daumé III, and Roy 2007) or based on
language genus (Coke, King, and Radev 2016). Through extensive evaluation, Georgi,
Xia, and Lewis (2010) demonstrate that typology based clustering outperforms ge-
nealogical clustering for unsupervised propagation of typological features. Among the
clustering techniques examined, k-means appears to be the most reliable as compared
to k-medoids, the Unweighted Pair Group Method with Arithmetic mean, repeated
bisection, and hierarchical methods with partitional clusters.

Language similarity measures can also rely on a distributed representation of each
language. These language vectors are trained end-to-end as part of neural models for
downstream tasks such as many-to-one Neural Machine Translation (NMT). In partic-
ular, language vectors can be obtained from artificial trainable tokens concatenated to
every input sentence, similarly to Johnson et al. (2017), or from the aggregated values of
the hidden state of a neural encoder. Using these language representations, typological
feature values are propagated using k nearest neighbors (Bjerva and Augenstein 2018)
or predicted with logistic regression (Malaviya, Neubig, and Littell 2017).
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Figure 7
Language representations dimensionality-reduced with t-SNE.
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Language vectors can be conceived as data-driven, continuous typological repre-
sentations of a language, and as such provide an alternative to manually crafted typo-
logical representations. Similarly to the analysis carried out in § 4.2, we can investigate
how much language vectors align with genealogical information. Figure 7 compares
continuous representations based on artificial tokens (Figure 7(a)) and encoder hidden
states (Figure 7(b)) with vectors of discrete WALS features from URIEL (Figure 7(c)).
All the representations are reduced to two dimensions with Distributed Stochastic
Neighbor Embedding, and color-coded based on their language family.

As the plots demonstrate, the information encoded in WALS vectors is akin to
genealogical information, partly because of biases introduced by family-based propa-
gation of missing values (Littel, Mortensen, and Levin 2016) (see § 4.3.2). On the other
hand, artificial tokens and encoder hidden states cannot be reduced to genealogical
clusters. Yet, their ability to predict missing values is not inferior to WALS features (as
detailed in § 4.3.5). This implies that discrete and continuous representations appear to
capture different aspects of the cross-lingual variation, while both being informative.
For this reason, they are possibly complementary and could be combined in the future.

4.3.3 Supervised Learning. As an alternative to unsupervised propagation, one can learn
an explicit model for predicting feature values through supervised classification. For
instance, Takamura, Nagata, and Kawasaki (2016) use logistic regression with WALS
features and evaluate this model in a cross-validation setting where one language is
held out in each fold. Wang and Eisner (2017) provide supervision to a feed-forward
neural network with windows of PoS tags from natural and synthetic corpora.

Supervised learning of typology can also be guided by non-typological information
(see § 2). Within the Bayesian framework, Murawaki (2017) exploits not only typolog-
ical but also genealogical and areal dependencies among languages to represent each
language as a binary latent parameter vector through a series of autologistic models.
Cotterell and Eisner (2017, 2018) develop a point-process generative model of vowel
inventories (represented as either IPA symbols or acoustic formants) based on some
universal cognitive principles: dispersion (phonemes are as spread out as possible in
the acoustic space) and focalization (some positions in the acoustic space are preferred
due to the similarity of the main formants).

An alternative approach to supervised prediction of typology is based on learning
implicational universals of the kind pioneered by Greenberg (1963), with probabilistic
models from existing typological databases. Using such universals, features can be
deduced by modus ponens. For instance, once it has been established that the presence
of “High consonant/vowel ratio” and “No front-rounded vowels” implies “No tones,”
the latter feature value can be deduced from the premises if those are known. Daumé III
and Campbell (2007) proposes a Bayesian model for learning typological universals that
predicts features based on the intuition that their likelihood does not equal their prior
probability, but rather is constrained by other features. Lu (2013) casts this problem as
knowledge discovery, where language features are encoded in a directed acyclic graph.
The strength of implication universals is represented as weights associated with the
edges of this graph.

4.3.4 Heuristics Based on Cross-Lingual Distributional Information. Typological features can
also emerge in a data-driven fashion, based on distributional information from multi-
parallel texts. Wälchli and Cysouw (2012) create a matrix where each row is a parallel
sentence, each column is a language, and cell values are lemmas of motion verbs occur-
ring in those sentences. This matrix can be transformed to a (Hamming) distance matrix
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Figure 8
Wälchli and Cysouw’s (2012) cross-lingual sentence visualization for Mapungundun. In the
top-right corner is the legend of the motion verbs taken into consideration. Each data point is an
instance of a verb in a sentence, positioned according to its contextualized sense. English glosses
are the authors’ interpretations of the main clusters.

between sentence pairs, and reduced to lower dimensionality via Multidimensional
scaling. This provides a continuous map of lexical semantics that is language-specific,
but motivated by categories that emerge across languages. For instance, Figure 8 shows
the first two dimensions of the multidimensional scaling similarity matrix in Mapudun-
gun, where the first dimension can be interpreted as reflecting the direction of motion.

Asgari and Schütze (2017) devised a procedure to obtain markers of grammatical
features across languages. Initially, they manually select a language containing an un-
ambiguous and overt marker for a specific typological feature (called head pivot) based
on linguistic expertise. For instance, ti in Seychellois Creole (French Creole) is a head
pivot for past-tense marking. Then, this marker is connected to equivalent markers in
other languages through alignment-based χ2 tests in a multi-parallel corpus and n-gram
counts.

Finally, typological features can be derived from raw texts in a completely unsu-
pervised fashion, without multi-parallel texts. Roy et al. (2014) use heuristics to predict
the order of adpositions and nouns. Adpositions are identified as the most frequent
words. Afterwards, the position of the noun is established based on whether selectional
restrictions appear on the right context or the left context of the adposition, according
to count-based and entropy-based metrics.

4.3.5 Comparison of the Strategies. Establishing which of the above-mentioned strategies
is optimal in terms of prediction accuracy is not straightforward. In Figure 9, we collect
the scores reported by several of the surveyed papers, provided that they concern
specific features or the whole WALS data set (as opposed to subsets) and are numerical
(as opposed to graphical plots). However, these results are not strictly comparable,
because language samples and/or the split of data partitions may differ. The lack of
standardization in this respect allows us to draw conclusions only about the difficulty
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Figure 9
Accuracy of different approaches (see legend on the right) in predicting missing values of WALS
typological features (specified on the vertical axis).

of predicting each feature relative to a specific strategy: For instance, the correct value
of passive voice is harder to predict than word order, as claimed by Bender et al. (2013)
and seen in Figure 9.

However, some papers carry out comparisons of the different strategies within the
same experimental setting. According to Coke, King, and Radev (2016), propagation
from the genus majority value outperforms logistic regression among word-order typo-
logical features. On the other hand, Georgi, Xia, and Lewis (2010) argue that typology-
based clusters are to be preferred in general. This apparent contradiction stems from the
nature of the target features: Genealogy excels in word order features because of their
diachronic stability. As they tend to be preserved over time, they are often shared by
all members of a family. In turn, majority value propagation is surpassed by supervised
classification when evaluated on the entire WALS feature set (Takamura, Nagata, and
Kawasaki 2016).

In general, there appears to be no “one-size-fits-all” algorithm. For instance, Coke,
King, and Radev (2016) outperform Wang and Eisner (2017) for object–verb order (83A)
but are inferior to it for adposition–noun (85A). In fact, each strategy is suited for
different features, and requires different resources. Based on Figure 9, the extraction
of information from morphosyntactic annotation is well suited for word order features,
whereas distributional heuristics from multi-parallel texts are more informative about
lexicalization patterns. On the other hand, unsupervised propagation and supervised
learning are general-purpose strategies. Moreover, the first two presuppose some anno-
tated and/or parallel texts, whereas the second two need pre-existing database docu-
mentation. Strategies may be preferred according to which resources are available for a
specific language.

Many strategies have a common weakness, however, as they postulate incorrectly
that language samples are independent and identically distributed (Lu 2013; Cotterell
and Eisner 2017). This is not the case, due to the interactions of family, area, and im-
plicational universals. The solutions adopted to mitigate this weakness vary: Wang and
Eisner (2017) balance the data distribution with synthetic examples, whereas Takamura,
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Nagata, and Kawasaki (2016) model family and area interactions explicitly. However,
according to Murawaki (2017), these interactions have different degrees of impact on
typological features. In particular, inter-feature dependencies are more influential than
inter-language dependencies, and horizontal diffusibility (borrowing from neighbors)
is more prominent than vertical stability (inheriting from ancestors).

Finally, a potential direction for future investigation emerges from this section’s sur-
vey. In addition to missing value completion, automatic prediction often also accounts
for the variation internal to each language. However, some strategies go even further,
and “open the way for a typology where generalizations can be made without there
being any need to reduce the attested diversity of categorization patterns to discrete
types” (Wälchli and Cysouw 2012). In fact, language vectors (Malaviya, Neubig, and
Littell 2017; Bjerva and Augenstein 2018) and distributional information from multi-
parallel texts (Asgari and Schütze 2017) are promising insofar they capture latent prop-
erties of languages in a bottom–up fashion, preserving their gradient nature. This offers
an alternative to hand-crafted database features: In § 6.3 we make a case for integrating
continuous, data-driven typological representations into NLP algorithms.

5. Uses of Typological Information in NLP Models

The typological features developed as discussed in § 4 are of significant importance
for NLP algorithms. Particularly, they are used in three main ways. First, they can be
manually converted into rules for expert systems (§5.1); second, they can be integrated
into algorithms as constraints that inject prior knowledge or tie together specific param-
eters across languages (§ 5.2); and, finally, they can guide data selection and synthesis
(§ 5.3). All of these approaches are summarized in Table 3 and described in detail in the
following sections, with a particular focus on the second approach.

5.1 Rule-Based Systems

An interesting example of a rule-based system in our context is the Grammar Matrix
kit, presented by Bender (2016), where rule-based grammars can be generated from
typological features. These grammars are designed within the framework of Minimal
Recursion Semantics (Copestake et al. 2005) and can parse a natural language input
string into a semantic logical form.

The Grammar Matrix consists of a universal core grammar and language-specific
libraries for phenomena where typological variation is attested. For instance, the mod-
ule for coordination typology expects the specification of the kind, pattern, and position
of a grammatical marking, as well as the phrase types it covers. For instance, the Ono
language (Trans–New Guinea) expresses it with a lexical, monosyndetic, pre-nominal
marker so in noun phrases. A collection of pre-defined grammars is available through
the Language CoLLAGE initiative (Bender 2014).

5.2 Feature Engineering and Constraints

The most common usage of typological features in NLP is in feature engineering and
constraint design for machine learning algorithms. Two popular approaches we con-
sider here are language transfer with selective sharing, where the parameters of languages
with similar typological features are tied together (§ 5.2.1), and joint multilingual learning,
where typological information is used in order to bias models to reflect the properties
of specific languages (see § 5.2.2).
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Table 3
An overview of the approaches to use typological features in NLP models.

Author Details Number of
Languages /
Families

Task

Rules Bender (2016) Grammar
generation

12 / 8 semantic parsing

Fe
at

ur
e

en
gi

ne
er

in
g Naseem, Barzilay,

and Globerson
(2012)

Generative 17 / 10 syntactic parsing

Täckström,
McDonald, and
Nivre (2013)

Discriminative
graph-based

16 / 7 syntactic parsing

Zhang and
Barzilay (2015)

Discriminative
tensor-based

10 / 4 syntactic parsing

Daiber, Stanojević,
and Sima’an
(2016)

One-to-many MLP 22 / 5 reordering for
machine
translation

Ammar et al.
(2016)

Multi-lingual
transition-based

7 / 1 syntactic parsing

Tsvetkov et al.
(2016)

Phone-based
polyglot language
model

9 / 4 identification of
lexical borrowings
and speech
synthesis

Schone and
Jurafsky (2001)

Design of
Bayesian network

1 / 1 word cluster
labeling

D
at

a
M

an
ip

ul
at

io
n Deri and Knight

(2016)
Typology-based
selection

227 grapheme to
phoneme

Agić (2017) PoS divergence
metric

26 / 5 syntactic parsing

Søgaard and Wulff
(2012)

Typology-based
weighing

12 / 1 syntactic parsing

Wang and Eisner
(2017)

Word-order-based
tree synthesis

17 / 7 syntactic parsing

Ponti et al. (2018a) Construction-
based tree
preprocessing

6 / 3 machine
translation,
sentence similarity

5.2.1 Selective sharing. This framework was introduced by Naseem, Barzilay, and
Globerson (2012) and was subsequently adopted by Täckström, McDonald, and Nivre
(2013) and Zhang and Barzilay (2015). It aims at parsing sentences in a language
transfer setting (see § 3.1) where there are multiple source languages and a single
unobserved target language. It assumes that head–modifier relations between PoS pairs
are universal, but the order of parts of speech within a sentence is language-specific.
For instance, adjectives always modify nouns, but in Igbo (Niger–Congo) they linearly
precede nouns, and in Nihali (isolate) they follow nouns. Leveraging this intuition,
selective sharing models learn dependency relations from all source languages, while
ordering is learned from typologically related languages only.

Selective sharing was originally implemented in a generative framework, factor-
izing the recursive generation of dependency tree fragments into two steps (Naseem,
Barzilay, and Globerson 2012). The first one is universal: The algorithm selects an
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unordered (possibly empty) set of modifiers {M} given a head h with probability
P({M}|h), where both the head and the modifiers are characterized by their PoS tags.
The second step is language-specific: Each dependent m is assigned a direction d (left
or right) with respect to h based on the language l, with probability P(d|m, h, l). Depen-
dents in the same direction are eventually ordered with a probability drawn from a
uniform distribution over their possible unique permutations. The total probability is
then defined as follows:

P(n|h,θ1) · σn

∑
mi∈M

P(mi|h,θ2)

 · ∏
mi∈M

σ (w · g(m, h, l, fl)) · 1
||MR||||ML||

(1)

In Equation (1), the first step is expressed as two factors: the estimation of the number n
of modifiers, parametrized by θ1, and the actual selection of modifiers, parametrized by
θ2, with the softmax function σ converting the n values into probabilities. The second
step, overseeing the assignment of a direction to the dependencies, is parametrized by
w, which multiplies a feature function g(), whose arguments include a typology feature
vector fl. The values of all the parameters are estimated by maximizing the likelihood
of the observations.

Täckström, McDonald, and Nivre (2013) proposed a discriminative version of the
model, in order to amend the alleged limitations of the original generative variant. In
particular, they dispose of the strong independence assumptions (e.g., between choice
and ordering of modifiers) and invalid feature combinations. For instance, the WALS
feature “Order of Subject, Verb, and Object” (81A) should be taken into account only
when the head under consideration is a verb and the dependent is a noun, but in
the generative model this feature was fed to g() regardless of the head–dependency
pair. The method of Täckström, McDonald, and Nivre is a delexicalized first-order
graph-based parser based on a carefully selected feature set. From the set proposed by
McDonald, Crammer, and Pereira (2005), they keep only (universal) features describing
selectional preferences and dependency length. Moreover, they introduce (language-
specific) features for the directionality of dependents, based on combinations of the PoS
tags of the head and modifiers with corresponding WALS values.

This approach was further extended to tensor-based models by Zhang and Barzilay
(2015), in order to avoid the shortcomings of manual feature selection. They induce
a compact hidden representation of features and languages by factorizing a tensor
constructed from their combination. The prior knowledge from the typological database
enables the model to forbid the invalid interactions, by generating intermediate feature
embeddings in a hierarchical structure. In particular, given n words and l dependency
relations, each arc h→ m is encoded as the tensor product of three feature vectors for
heads Φh ∈ Rn, modifiers Φm ∈ Rn, and the arcs Φh→m ∈ Rl. A score is obtained through
the inner product of these and the corresponding r rank-1 dense parameter matrices for
heads H ∈ Rn×r, dependents M ∈ Rn×r, and arcs M ∈ Rl×r. The resulting embedding is
subsequently constrained through a summation with the typological features Tuφtu :

S(h l−→ m) =
r∑

i=1

[Hcφhc ]i[Mcφmc ]i�

{[Tlφtl
]i + [Lφl]i�(

[Tuφtu ]i + [Hφh]i[Mφm]i[Dφd]i
)
}

(2)

24



Ponti et al. Modeling Language Variation and Universals

Equation (2) shows how the overall score of a labeled dependency is enriched (by
element-wise product) with (1) the features and parameters for arc labels Lφl con-
strained by the typological vector Tlφtl

; and (2) features and parameters for head con-
texts Hcφhc and dependent contexts Mcφmc . This loss is optimized within a maximum
soft-margin objective through online passive–aggressive updates.

The different approaches to selective sharing presented here explicitly deal with
cases where the typological features do not match any of the source languages, which
may lead learning astray. Naseem, Barzilay, and Globerson (2012) propose a variant
of their algorithm where the typological features are not observed (in WALS), treat-
ing them as latent variables, and learning the model parameters in an unsupervised
fashion with the Expectation Maximization algorithm (Dempster, Laird, and Rubin
1977). Täckström, McDonald, and Nivre (2013) tackle the same problem from the side
of ambiguous learning. The discriminative model on the target language is trained on
sets of automatically predicted ambiguous labels ŷ. Finally, Zhang and Barzilay (2015)
utilize semi-supervised techniques, where only a handful of annotated examples from
the target language is available.

5.2.2 Multi-lingual Biasing. Some papers leverage typological features to gear the shared
parameters of a joint multilingual model toward the properties of a specific language.
Daiber, Stanojević, and Sima’an (2016) develop a reordering algorithm that estimates the
permutation probabilities of aligned word pairs in multi-lingual parallel texts. The best
sequence of permutations is inferred via k-best graph search in a finite state automaton,
producing a lattice. This algorithm, which receives lexical, morphological, and syntactic
features of the source word pairs and typological features of the target language as
input, has shown to benefit a downstream machine translation task.

The joint multilingual parser of Ammar et al. (2016) shares hidden-layer parameters
across languages, and combines both language-invariant and language-specific features
in its copious lexicalized input feature set. This transition-based parser selects the next
action z (e.g., SHIFT) from a pool of possible actions given its current state pt, as defined
in Equation (3):

P(z|pt) = σ(gz
>max(0, W st ⊕ bt ⊕ at ⊕ lit + b) + qz) (3)

P(z|pt) is defined in terms of a set of iteratively manipulated, densely represented data
structures: a buffer bt, a stack st, and an action history at. The hidden representation
of these modules are the output of stack-LSTMs, that are in turn fed with input word
feature representations (stack and buffer) and action representations (history). The
shared parameters are biased toward a particular language through language embed-
dings lit. The language embeddings consist of (a non-linear transformation of) either a
mere one-hot identity vector or a vector of typological properties taken from WALS.
In particular, they are added to both input feature and action vectors, to affect the
three above-mentioned modules individually, and concatenated to the hidden module
representations, to affect the entire parser state. The resulting state representation is
propagated through an action-specific layer parametrized by gt and qt, and activated by
a softmax function σ over actions.

Similarly, typological features have been used to bias input and hidden states of
language models. For example, Tsvetkov et al. (2016) proposed a multilingual phoneme-
level language model where an input phoneme x and a language vector ` at time t are
linearly mapped to a local context representation and then passed to a global LSTM.
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This hidden representation G`
t is factored by a non-linear transformation of typological

features t`, as shown in Equation (4):

G`
t = LSTM(Wcx xt + Wc`x` + b, gt−1)⊗ tanh(W` t` + b`)> (4)

P(φt|φ<t, `) = σ(W vec(G`
t ) + b) (5)

As described in Equation (5), G`
t is then vectorized and mapped to a probability dis-

tribution of possible next phonemes φt. The phoneme vectors, learned by the language
model in an end-to-end manner, were demonstrated to benefit two downstream appli-
cations: lexical borrowing identification and speech synthesis.

Moreover, typological features (in the form of implicational universals) can guide
the design of Bayesian networks. Schone and Jurafsky (2001) assign part-of-speech
labels to word clusters acquired in an unsupervised fashion. The underlying network is
acyclic and directed, and is converted to a join-tree network to handle multiple parents
(Jensen 1996). For instance, the sub-graph for the ordering of numerals and nouns is
intertwined also with properties of adjectives and adpositions. The final objective max-
imizes the probability of a tag Ti and a feature set Φi given the implicational universals
U as argmaxTP({Φi, Ti}n

i=1|U).

5.3 Data Selection, Synthesis, and Preprocessing

Another way in which typological features are used in NLP is to guide data selection.
This procedure is crucial for (1) language transfer methods, as it guides the choice of
the most suitable source languages and examples; and (2) multilingual joint models, in
order to weigh the contribution of each language and example. The selection is typically
carried out through general language similarity metrics.

For instance, Deri and Knight (2016) base their selection on the URIEL language
typology database, considering information about genealogical, geographic, syntactic,
and phonetic properties. This facilitates language transfer of grapheme-to-phoneme
models, by guiding the choice of source languages and aligning phoneme inventories.

Metrics for source selection can also be extracted in a data-driven fashion, without
explicit reference to structured taxonomies. For instance, Rosa and Zabokrtsky (2015)
estimate the Kullback–Leibler divergence between PoS trigram distributions for delex-
icalized parser transfer. In order to approximate the divergence in syntactic structures
between languages, Ponti et al. (2018a) utilize the Jaccard distance between morpholog-
ical feature sets and the tree edit distance of delexicalized dependency parses of similar
sentences.

A priori and bottom–up approaches can also be combined. For delexicalized parser
transfer, Agić (2017) relies on a weighted sum of distances based on (1) the PoS diver-
gence defined by Rosa and Zabokrtsky (2015); (2) the character-based identity predic-
tion of the target language; and (3) the Hamming distance from the target language
typological vector. In fact, they have different weaknesses: Language identity (and
consequently typology) fails to abstract away from language scripts. On the other hand,
the accuracy of PoS-based metrics deteriorates easily in scenarios with poor amounts of
data.

Source language selection is a special case of source language weighting where
weights are one-hot vectors. However, weights can also be gradient and consist of real
numbers. Søgaard and Wulff (2012) adapt delexicalized parsers by weighting every
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training instance based on the inverse of the Hamming distance between typological
(or genealogical) features in source and target languages. An equivalent bottom–up
approach is developed by Søgaard (2011) who weighs source language sentences based
on the perplexity between their coarse PoS tags and the predictions of a sequential
model trained on the target language.

Alternatively, the lack of target annotated data can be alleviated by synthesizing
new examples, thus boosting the variety and amount of the source data. For instance,
the Galactic Dependency Treebanks stem from real trees whose nodes have been per-
muted probabilistically according to the word order rules for nouns and verbs in other
languages (Wang and Eisner 2016). Synthetic trees improve the performance of model
transfer for parsing when the source is chosen in a supervised way (performance on tar-
get development data) and in an unsupervised way (coverage of target PoS sequences).

Rather than generating new synthetic data, Ponti et al. (2018a) leverage typological
features to pre-process treebanks in order to reduce their variation in language transfer
tasks. In particular, they adapt source trees to the typology of a target language with
respect to several constructions in a rule-based fashion. For instance, relative clauses in
Arabic (Afro–Asiatic) with an indefinite antecedent drop the relative pronoun, which
is mandatory in Portuguese (Indo–European). Hence, the pronoun has to be added,
or deleted in the other direction. Feeding pre-processed syntactic trees to lexical-
ized syntax-based neural models, such as feature-based recurrent encoders (Sennrich
and Haddow 2016) or TreeLSTMs (Tai, Socher, and Manning 2015), achieves state-of-
the-art results in Neural Machine Translation and cross-lingual sentence similarity
classification.

5.4 Comparison

In light of the performance of the described methods, to what extent can typological
features benefit downstream NLP tasks and applications? To answer this key question,
consider the performance scores of each model reported in Figure 10. Each model has
been evaluated in the original paper in one (or more) of the four main settings, with
otherwise identical architecture and hyper-parameters: with gold database features
(Typology), with latently inferred typological features (Data-driven), or without both
(Baseline), and with otherwise identical architecture and hyper-parameters.

It is evident that typology-enriched models consistently outperform baselines
across several NLP tasks. Indeed, the scores are higher for metrics that increase (Unla-
beled Attachment Score, F1 Score, and BLEU) and lower for metrics that decrease (Word
Error Rate, Mean Average Error, and Perplexity) with better predictions. Nevertheless,
improvements tend to be moderate, and only a small number of experiments support
them with statistical significance tests. In general, it appears that they fall short of the
potential usefulness of typology: in § 6 we analyze the possible reasons for this.

Some of the experiments we have surveyed investigate the effect of substituting
typological features with features related to Genealogy and Language Identity (e.g.,
one-hot encoding of languages). Based on the results in Figure 10, it is unclear whether
typology should be preferred, as it is sometimes rivaled by other types of features.
In particular, it is typology that excels according to Tsvetkov et al. (2016), genealogy
according to Søgaard and Wulff (2012) and Täckström, McDonald, and Nivre (2013),
and language identity according to Ammar et al. (2016). However, drawing conclusions
from the last experiment seems incautious: In § 4.2, we argued that their selection of
features (presented in Figure 5) is debatable because of low diversification or noise.
Moreover, it should be emphasized that one-hot language encoding is limited to the
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Figure 10
Performance of the surveyed algorithms for the tasks detailed in Table 3. The algorithms are
evaluated with different feature sets: no typological features (Baseline), latently inferred
typology (Data-driven), Genealogy, Language Identity, and gold database features (Typology).
Evaluation metrics are reported right of the bars: Unlabeled Attachment Score (UAS), Perplexity
(PPL), F1 Score, BiLingual Evaluation Understudy (BLEU), Word Error Rate (WER), and Mean
Absolute Error (MAE).

joint multilingual learning setting: Because it does not convey any information, it is of
no avail in language transfer.

Finally, let us consider the effectiveness of these above methods with respect to
incorporating typological features in NLP models. In case of selective sharing, the
tensor-based discriminative model (Zhang and Barzilay 2015) outperforms the graph-
based discriminative model (Täckström, McDonald, and Nivre 2013), which in turn
surpasses the generative model (Naseem, Barzilay, and Globerson 2012). With regard
to biasing multilingual models, there is a clear tendency toward letting typological
features interact not merely with the input representation, but also with deeper levels
of abstraction such as hidden layers.
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Overall, this comparison supports the claim that typology can potentially aid in
designing the architecture of algorithms, engineering their features, and selecting and
pre-processing their data. Nonetheless, this discussion also revealed that many chal-
lenges lie ahead for each of these goals to be accomplished fully. We discuss them in the
next section.

6. Future Research Avenues

In § 5 we surveyed the current uses of typological information in NLP. In this section we
discuss potential future research avenues that may result in a closer and more effective
integration of linguistic typology and multilingual NLP. In particular, we discuss: (1) the
extension of existing methods to new tasks, possibly exploiting typological resources
that have been neglected thus far (§ 6.1); (2) new methods for injecting typological
information into NLP models as soft constraints or auxiliary objectives (§ 6.2); and (3)
new ways to acquire and represent typological information that reflect the gradient and
contextual nature of cross-lingual variation (§ 6.3).

6.1 Extending the Usage to New Tasks and Features

The trends observed in § 5 reveal that typology is integrated into NLP models mostly
in the context of morphosyntactic tasks, and particularly syntactic parsing. Some excep-
tions include other levels of linguistic structure, such as phonology (Tsvetkov et al. 2016;
Deri and Knight 2016) and semantics (Bender 2016; Ponti et al. 2018a). As a consequence,
the set of selected typological features is mostly limited to a handful of word-order
features from a single database, WALS. Nonetheless, the array of tasks that pertain to
polyglot NLP is broad, and other typological data sets that have thus far been neglected
may be relevant for them.

For example, typological frame semantics might benefit semantic role labeling, as
it specifies the valency patterns of predicates across languages, including the number
of arguments, their morphological markers, and their order. This information can be
cast in the form of priors for unsupervised syntax-based Bayesian models (Titov and
Klementiev 2012), guidance for alignments in annotation projection (Padó and Lapata
2009; Van der Plas, Merlo, and Henderson 2011), or regularizers for model transfer in
order to tailor the source model to the grammar of the target language (Kozhevnikov
and Titov 2013). Cross-lingual information about frame semantics can be extracted, for
example, from the Valency Patterns Leipzig database (ValPaL).

Typological information regarding lexical semantics patterns can further assist var-
ious NLP tasks by providing information about translationally equivalent words across
languages. Such information is provided in databases such as the World Loanword
Database (WOLD), the Intercontinental Dictionary Series (IDS), and the Automated
Similarity Judgment Program (ASJP). One example task is word sense disambiguation,
as senses can be propagated from multilingual word graphs (Silberer and Ponzetto
2010) by bootstrapping from a few pivot pairs (Khapra et al. 2011), by imposing
constraints in sentence alignments and harvesting bag-of-words features from these
(Lefever, Hoste, and De Cock 2011), or by providing seeds for multilingual Word-
Embedding-based lexicalized model transfer (Zennaki, Semmar, and Besacier 2016).

Another task where lexical semantics is crucial is sentiment analysis, for similar rea-
sons: Bilingual lexicons constrain word alignments for annotation projection (Almeida
et al. 2015) and provide pivots for shared multilingual representations in model transfer
(Fernández, Esuli, and Sebastiani 2015; Ziser and Reichart 2018). Moreover, sentiment
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analysis can leverage morphosyntactic typological information about constructions that
alter polarity, such as negation (Ponti, Vulić, and Korhonen 2017).

Finally, morphological information was shown to aid interpreting the intrinsic diffi-
culty of texts for language modeling and neural machine translation, both in supervised
(Johnson et al. 2017) and in unsupervised (Artetxe et al. 2018) set-ups. In fact, the degree
of fusion between roots and inflectional/derivative morphemes impacts the type/token
ratio of texts, and consequently their rate of infrequent words. Moreover, the ambiguity
of mapping between form and meaning of morphemes determines the usefulness of
injecting character-level information (Gerz et al. 2018a, 2018b). This variation has to be
taken into account in both language transfer and multilingual joint learning.

As a final note, we stress that the addition of new features does not concern just
future work, but also the existing typology-savvy methods, which can widen their
scope. For instance, the parsing experiments grounded on selective sharing (§ 5.2) could
also take into consideration WALS features about Nominal Categories, Nominal Syntax,
Verbal Categories, Simple Clauses, and Complex Sentences, as well as features from
other databases such as SSWL, APiCS, and AUTOTYP. Likewise, models for phonolog-
ical tasks (Tsvetkov et al. 2016; Deri and Knight 2016) could also extract features from
typological databases such as LAPSyD and StressTyp2.

6.2 Injecting Typological Information into Machine Learning Algorithms

In § 5, we discussed the potential of typological information to provide guidance to NLP
methods, and surveyed approaches such as network design in Bayesian models (Schone
and Jurafsky 2001), selective sharing (Naseem, Barzilay, and Globerson 2012, inter alia),
and biasing of multilingual joint models (Ammar et al. 2016, inter alia). However, many
other frameworks (including those already mentioned in § 3) have been developed
independently in order to allow the integration of expert and domain knowledge into
traditional feature-based machine learning algorithms and neural networks. In this
section we survey these frameworks and discuss their applicability to the integration
of typological information into NLP models.

Encoding cross-language variation and preferences into a machine learning model
requires a mechanism that can bias the learning (i.e., training and parameter estimation)
and inference (prediction) of the model towards some pre-defined knowledge. In prac-
tice, learning algorithms, both linear (e.g., structured perceptron [Collins 2002], MIRA
[Crammer and Singer 2003] and structured support vector machine [Taskar, Guestrin,
and Koller 2004]) and non-linear (deep neural models) iterate between an inference step
and a step of parameter update with respect to a gold standard. The inference step is
the natural place where external knowledge could be encoded through constraints. This
step biases the prediction of the model to agree with the external knowledge which, in
turn, affects both the training process and the final prediction of the model at test time.

Information about cross-lingual variation, particularly when extracted empirically
(see § 4), reflects tendencies rather than strict rules. As a consequence, soft, rather than
hard constraints are a natural vehicle for their encoding. We next survey a number of
existing approaches that can efficiently encode such constraints.

The goal of an inference algorithm is to predict the best output label according to
the current state of the model parameters.8 For this purpose, the algorithm searches the

8 Generally speaking, an inference algorithm can make other predictions such as computing expectations
and marginal probabilities. As in the context of this article we are mostly focused on the prediction of the
best output label, we refer only to this type of inference problems.
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space of possible output labels in order to find the best one. Efficiency hence plays a
key role in these algorithms. Introducing soft constraints into an inference algorithm,
therefore, posits an algorithmic challenge: How can the output of the model be biased
to agree with the constraints while the efficiency of the search procedure is kept? In
this article we do not answer this question directly but rather survey a number of
approaches that succeed in dealing with it.

Because linear models have been prominent in NLP research for a much longer
time, it is not surprising that frameworks for the integration of soft constraints into these
models are much more developed. The approaches proposed for this purpose include
posterior regularization (PR) (Ganchev et al. 2010), generalized expectation (GE) (Mann
and McCallum 2008), constraint-driven learning (CODL) (Chang, Ratinov, and Roth
2007), dual decomposition (DD) (Globerson and Jaakkola 2007; Komodakis, Paragios,
and Tziritas 2011) and Bayesian modeling (Cohen 2016). These techniques use different
types of knowledge encoding—for example, PR uses expectation constraints on the
posterior parameter distribution, GE prefers parameter settings where the model’s
distribution on unsupervised data matches a predefined target distribution, CODL
enriches existing statistical models with Integer Linear Programming constraints, and
in Bayesian modeling a prior distribution is defined on the model parameters.

PR has already been used for incorporating universal linguistic knowledge into an
unsupervised parsing model (Naseem et al. 2010). In the future, it could be extended
to typological knowledge, which is a good fit for soft constraints. As another option,
Bayesian modeling sets prior probability distributions according to the relationships
encoded in typological features (Schone and Jurafsky 2001). Finally, DD has been ap-
plied to multi-task learning, which paves the way for typological knowledge encoding
through a multi-task architecture in which one of the tasks is the actual NLP application
and the other is the data-driven prediction of typological features. In fact, a modification
of this archiecture has already been applied to minimally supervised learning and
domain adaptation with soft (non-typological) constraints (Reichart and Barzilay 2012;
Rush et al. 2012).

The same ideas could be exploited in deep learning algorithms. We have seen
in § 3.2 that multilingual joint models combine both shared and language-dependent
parameters, in order to capture the universal properties and cross-lingual differences,
respectively. In order to enforce this division of roles more efficiently, these models could
be augmented with the auxiliary task of predicting typological features automatically.
This auxiliary objective could update parameters of the language-specific component,
or those of the shared component, in an adversarial fashion, similarly to what Chen
et al. (2018) implemented by predicting language identity.

Recently, Hu et al. (2016a, 2016b) and Wang and Poon (2018) proposed frameworks
that integrate deep neural models with manually specified or automatically induced
constraints. Similarly to CODL, the focus in Hu et al. (2016a) and Wang and Poon
(2018) is on logical rules, while the ideas in Hu et al. (2016b) are related to PR. These
frameworks provide a promising avenue for the integration of typological information
and deep models.

A particular non-linear deep learning domain where knowledge integration is al-
ready prominent is multilingual representation learning (§ 3.3). In this domain, a num-
ber of works (Faruqui et al. 2015; Rothe and Schütze 2015; Mrkšić et al. 2016; Osborne,
Narayan, and Cohen 2016) have proposed means through which external knowledge
sourced from linguistic resources (such as WordNet, BabelNet, or lists of morphemes)
can be encoded in word embeddings. Among the state-of-the-art specialization methods
ATTRACT-REPEL (Mrkšić et al. 2017; Vulić et al. 2017) pushes together or pulls apart
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vector pairs according to relational constraints, while preserving the relationship be-
tween words in the original space and possibly propagating the specialization knowl-
edge to unseen words or transferring it to other languages (Ponti et al. 2018b). The
success of these works suggests that a more extensive integration of external linguistic
knowledge in general, and typological knowledge in particular, is likely to play a key
role in the future development of word representations.

6.3 A New Typology: Gradience and Context-Sensitivity

As shown in § 4.2, most of the typology-savvy algorithms thus far exploited features
extracted from manually crafted databases. However, this approach is riddled with
several shortcomings, which are reflected in the small performance improvements ob-
served in § 5.4. Luckily, these shortcomings may potentially be averted through the use
of methods that allow typological information to emerge from the data in a bottom-
up fashion, rather than being predetermined. In what follows we advocate for such a
data-driven approach, based on several considerations.

Firstly, typological databases provide incomplete documentation of the cross-lingual
variation, in terms of features and languages. Raw textual data, which is easily acces-
sible for many languages and is cost-effective, may provide a valid alternative that
can facilitate automatic learning of more complete knowledge. Secondly, database in-
formation is approximate, as it is restricted to the majority strategy within a language.
However, in theory each language allows for multiple strategies in different contexts
and with different frequencies, hence databases risk hindering models from learning
less-likely but plausible patterns (Sproat 2016). Inferring typological information from
text would enable a system to discover patterns within individual examples, including
both the frequent and the infrequent ones. Thirdly, typological features in databases
are discrete, utilizing predefined categories devised to make high-level generalizations
across languages. However, several categories in natural language are gradient (see for
instance the discussion on semantic categorization in § 2), hence they are better captured
by continuous features. In addition to being psychologically motivated, this sort of
gradient representation is also more compatible with machine learning algorithms and
particularly with deep neural models that naturally operate with real-valued multi-
dimensional word embeddings and hidden states.

To sum up, the automatic development of typological information and its possible
integration into machine learning algorithms have the potential to solve an important
bottleneck in polyglot NLP. Current manually curated databases consist of incomplete,
approximate, and discrete features that are intended to reflect contextual and gradient
information implicitly present in text. These features are fed to continuous, probabilistic,
and contextual machine learning models—which do not form a natural fit for the
typological features. Instead, we believe that modeling cross-lingual variation directly
from textual data can yield typological information that is more suitable for machine
learning.

Several techniques surveyed in § 4.3 are suited to serve this purpose. In particular,
the extraction from morphosyntactic annotation (Liu 2010, inter alia) and alignments
from multi-parallel texts (Asgari and Schütze 2017, inter alia) provide information about
typological constructions at the level of individual examples. Moreover, language vec-
tors (Malaviya, Neubig, and Littell 2017; Bjerva and Augenstein 2018) and alignments
from multi-parallel texts preserve the gradient nature of typology through continuous
representations.
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The successful integration of these components would affect the way multilingual
feature engineering is performed. As opposed to using binary vectors of typological
features, the information about language-internal variation could be encoded as real-
valued vectors where each dimension is a possible strategy for a given construction and
its relative frequency within a language.

As an alternative, selective sharing and multilingual biasing could be performed
at the level of individual examples rather than languages as a whole. In particular,
model parameters could be transferred among similar examples and input/hidden rep-
resentations could be conditioned on contextual typological patterns. Finally, focusing
on the various instantiations of a particular type rather than considering languages
as indissoluble blocks would enhance data selection, similarly to what Søgaard (2011)
achieved using PoS n-grams for similarity measurement. The selection of similar sen-
tences rather than similar languages as source data in language transfer is likely to yield
large improvements, as demonstrated by Agić (2017) for parsing in an oracle setting.

Finally, the bottom–up development of typological features may address also rad-
ically resource-less languages that lack even raw textual data in a digital format. For
this group, which still constitutes a large portion of the world’s languages, there are
often available reference grammars written by field linguists, which are the ultimate
source for typological databases. These grammars could be queried automatically, and
fine-grained typological information could be harvested through information extraction
techniques.

7. Conclusions

In this article, we surveyed a wide range of approaches integrating typological informa-
tion, derived from the empirical and systematic comparison of the world’s languages,
and NLP algorithms. The most fundamental problem for the advancement of this line
of research is bridging the gap between the interpretable, language-wide, and discrete
features of linguistic typology found in database documentation, and the opaque, con-
textual, and probabilistic models of NLP. We addressed this problem by exploring a
series of questions: (i) for which tasks and applications is typology useful? (ii) Which
are the advantages and limitations of currently available typological databases? Can
data-driven inference of typological features offer an alternative source of information?
(iii) Which methods allow us to inject typological information from external resources,
and how should such information be encoded? (iv) By which margin do typology-savvy
methods surpass typology-agnostic baselines? How does typology compare to other
criteria of language classification, such as genealogy? (v) In addition to augmenting
machine learning algorithms, which other purposes do typology serve for NLP? We
summarize our key findings here:

1. Typological information is currently used predominantly for
morphosyntactic tasks, in particular dependency parsing. As a
consequence, these approaches typically select a limited subset of features
from a single data set (WALS) and focus on a single aspect of variation
(typically word order). However, typological databases also cover other
important features, related to predicate–argument structure (ValPaL),
phonology (LAPSyD, PHOIBLE, StressTyp2) and lexical semantics (IDS,
ASJP), which are currently largely neglected by the multilingual NLP
community. In fact, these features have the potential to benefit many tasks
addressed by language transfer or joint multilingual learning techniques,
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such as semantic role labeling, word sense disambiguation, or sentiment
analysis.

2. Typological databases tend to be incomplete, containing missing values for
individual languages or features. This hinders the integration of the
information in such databases into NLP models; and therefore, several
techniques have been developed to predict missing values automatically.
They include heuristics derived from morphosyntactic annotation;
propagation from other languages based on hierarchical clusters or
similarity metrics; supervised models; and distributional methods applied
to multi-parallel texts. However, none of these techniques surpasses the
others across the board in prediction accuracy, as each excels in different
feature types. A challenge left for future work is creating ensembles of
techniques to offset their individual disadvantages.

3. The most widespread approach to exploit typological features in NLP
algorithms is “selective sharing” for language transfer. Its intuition is that
a model should learn universal properties from all examples, but
language-specific information only from examples with similar typological
properties. Another successful approach is gearing multilingual joint
models towards specific languages by concatenating typological features
in input, or conditioning hidden layers and global sequence
representations on them. New approaches could be inspired by traditional
techniques for encoding external knowledge into machine learning
algorithms through soft constraints on the inference step, semi-supervised
prototype-driven methods, specialization of semantic spaces, or auxiliary
objectives in a multi-task learning setting.

4. The integration of typological features into NLP models yields consistent
(even if often moderate) improvements over baselines lacking such
features. Moreover, guidance from typology should be preferred to
features related to genealogy or other language properties. Models
enriched with the latter features occasionally perform equally well due to
their correlation with typological features, but fall short when it comes to
modeling diversified language samples or fine-grained differences among
languages.

5. In addition to feature engineering, typological information has served
several other purposes. Firstly, it allows experts to define rule-based
models, or to assign priors and independence assumptions in Bayesian
graphical models. Secondly, it facilitates data selection and weighting, at
the level of both languages and individual examples. Annotated data can
be also synthesized or preprocessed according to typological criteria, in
order to increase their coverage of phenomena or availability for further
languages. Thirdly, typology enables researchers to interpret and
reasonably foresee the difference in performance of algorithms across the
sampled languages.

Finally, we advocated for a new approach to linguistic typology inspired by the most
recent trends in the discipline and aimed at averting some fundamental limitations
of the current approach. In fact, typological database documentation is incomplete,
approximate, and discrete. As a consequence, it does not fit well with the gradient
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and contextual models of machine learning. However, typological databases are origi-
nally created from raw linguistic data. An alternative approach could involve learning
typology from such data automatically (i.e., from scratch). This would capture the
variation within languages at the level of individual examples, and to naturally encode
typological information into continuous representations. These goals have already been
partly achieved by methods involving language vectors, heuristics derived from mor-
phosyntactic annotation, or distributional information from multi-parallel texts. The
main future challenge is the integration of these methods into machine learning models,
as opposed to sourcing typological features from databases.

In general, we demonstrated that typology is relevant to a wide range of NLP tasks
and provides the most effective and principled way to carry out language transfer
and multilingual joint learning. We hope that the research described in this survey
will provide a platform for deeper integration of typological information and NLP
techniques, thus furthering the advancement of multilingual NLP.

Acknowledgments
This work is supported by ERC Consolidator
grant LEXICAL (no. 648909).

References
Adel, Heike, Ngoc Thang Vu, and Tanja

Schultz. 2013. Combination of recurrent
neural networks and factored language
models for code-switching language
modeling. In Proceedings of ACL,
pages 206–211.
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Korhonen. 2018b. Adversarial propagation
and zero-shot cross-lingual transfer of
word vector specialization. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing,
pages 282–293.

Ponti, Edoardo Maria, Ivan Vulić, and Anna
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