Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide
Marie-Rose Abdo, Pascale Joseph, Rose-Anne Boigegrain, Jean-Louis Montero, Stephan Köhler, Jean-Yves Winum

To cite this version:

HAL Id: hal-02424977
https://hal.archives-ouvertes.fr/hal-02424977
Submitted on 8 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide

Marie-Rose Abdo, Pascale Joseph, Rose-Anne Boigegrain, Jean-Louis Montero, Stephan Köhler & Jean-Yves Winum

To link to this article: https://doi.org/10.1080/14756360701617107

Published online: 04 Oct 2008.
Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide

MARIE-ROSE ABDO¹, PASCALE JOSEPH², ROSE-ANNE BOIGEGRAIN², JEAN-LOUIS MONTERO¹, STEPHAN KÖHLER², & JEAN-YVES WINUM¹

¹Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France, and ²Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France

(Received 1 March 2007; in final form 3 May 2007)

Abstract

Histidinol dehydrogenase (HDH, EC EC1.1.1.23) catalyses the final step in the biosynthesis of histidine and constitutes an attractive novel target for the development of new agents against the pathogenous bacteria *Brucella suis*. A small library of new HDH inhibitors based on the L-histidinylphenylsulfonyl hydrazide scaffold has been synthesized and their inhibitory activity investigated. The obtained results demonstrate that modification of the group between the histidinyl moiety and the phenyl ring constitutes an important structural factor for the design of effective HDH inhibitors.

Keywords: Brucella suis, histidinol dehydrogenase, enzyme inhibitors, histidinylphenylsulfonyl hydrazide

Introduction

Brucella sp. is the causative agent of brucellosis, the most important anthropozoonotic disease worldwide [1–3]. This extremely infectious pathogen is traditionally considered as a biological warfare agent classified in the category B [4]. It is responsible for a highly disabling and incapacitating disease that, without treatment, is lethal in 5 to 10% of the cases. There is currently no vaccine available for humans, and even if antibiotic treatment is actually efficient, occurrence of resistant strains is easy. However, human brucellosis remains a threat because curing of the disease is long and persistent forms may appear [5].

Brucella sp. is a facultative intracellular pathogen that multiplies inside the macrophages of its host [6], The “virulome” of this bacteria has been defined as the whole set of genes required for its virulence, i.e. involved in the invasion of the host by the pathogen and in the adaptation to the environment provided by the host [7]. Among them, the gene *hisD* (BR0252) encoding the enzyme histidinol dehydrogenase, was recently identified [7–8].

Histidinol dehydrogenase (HDH, EC1.1.1.23) is a dimeric metalloenzyme containing one Zn$^{2+}$ ion in each subunit, which catalyzes the last two steps in the biosynthesis of L-histidine: sequential NAD-dependent oxidations of L-histidinol to L-histidine, via L-histinal. This enzyme is present only in bacteria and in plants. To date, histidinol dehydrogenases have been cloned and characterized from only two species of bacteria, *Salmonella typhimurium* and *Escherichia coli* [9–11].
The histidine biosynthesis pathway being absent in mammalian cells, this metalloenzyme represents a selective and promising target for the development of new antibacterial agents avoiding secondary effects of potential inhibitors on the host. Therefore, the potential attractiveness of HDH as a target for antibacterial agents encourages the development of selective and promising target for the development of mammalian cells, this metalloenzyme represents a bition profiles with inhibition constants (IC50) in the nanomolar range [12]. We designed and developed a series of inhibitors. We report here the effect of methyl Nα-(tert-butoxycarbonyl)-Nγ-methoxytrityl-L-histidine hydrazide (2). To a solution of methyl Nα-(tert-butoxycarbonyl)- Nγ-methoxytrityl-L-histidinate 1 (1eq.) (prepared as previously described [12]) in methanol was added 10 eq. of hydrazine monohydrate and the solution was stirred at room temperature. The reaction was monitored by TLC until complete consumption of the starting material. The crude product was then co-evaporated with toluene to give yellowish oil which was used in the next step without further purification. 1H NMR (DMSO- d6, 400 MHz) 7.37 (s, 6H), 7.22 (s, 1H), 7.00 (dd, J = 30.4, 6.9 Hz, 8H), 6.74–6.6 (s, 1H), 4.13 (s, 1H), 3.75 (s, 3H), 3.37 (dd, J = 13.3, 6.5 Hz, 1H), 2.71 (td, J = 22.7, 14.1, 14.12 Hz, 2H), 1.31 (s, 9H). 13C NMR (DMSO-d6, 101MHz) 170.74, 158.58, 154.95, 142.67, 137.45, 136.95, 134.05, 130.60, 129.08, 128.00, 127.78, 118.92, 113.28, 77.68, 73.84, 54.93, 52.88, 30.88, 28.09; MS ESI+ m/z 542.26 (M + H)+ 564.24. ESI− m/z 541.19 (M − H)−, 576.20 (M + Cl)−.

Synthesis of substituted N-L-histidinyl-phenylsulfonylhydrazide. General procedure. To 1eq. of Nα-(tert-butoxycarbonyl)-1-methoxytrityl-L-histidine hydrazide 2 in distilled pyridine was added 1eq. of the corresponding substituted phenylsulfonylchloride. The reaction was stirred for two hours. Upon completion, the solvent was evaporated under reduced pressure. The crude product was purified on silica gel (CH2Cl2/ Methanol: 95/5) to afford the expected compound as a white powder. The different compounds were deprotected under acidic conditions (HCl solution in dioxane 4M) to remove both the methoxytrityl and the tert-butoxycarbonyl groups.

Materials and methods

Chemistry

All reagents and solvents were of commercial quality and used without further purification. All reactions were carried out under an inert nitrogen atmosphere. TLC analyses were performed on silica gel 60 F254 plates (Merck Art.1.05554). Spots were visualized under 254 nm UV illumination, or by ninhydrin solution spraying. Melting points were determined on a Büchi Melting Point 510 and are uncorrected. 1H and 13C NMR spectra were recorded on Bruker DRX-400 spectrometer using DMSO-d6 as solvent and tetramethylsilane as internal standard. For 1H NMR spectra, chemical shifts are expressed in δ (ppm) downfield from tetramethylsilane, and coupling constants (J) are expressed in Hertz. Electron Ionization mass spectra were recorded in positive or negative mode on a Water MicroMass ZQ.

Preparation of Nα-(tert-butoxycarbonyl)-Nγ-methoxytrityl-L-histidine hydrazide (2). To a solution of methyl 3a. mp 141–143°C; 1H NMR (DMSO-d6, 400MHz) 14.67 (s, 1H), 10.70 (s, 1H), 10.11 (d, J = 1.5 Hz, 1H), 9.10 (d, J = 0.97 Hz, 1H), 8.66 (s, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.37 (d, J = 8.1 Hz, 2H), 4.21 (s, 1H), 3.13 (dd, J = 6.3, 3.01 Hz, 2H), 2.38 (s, 3H). 13C NMR (DMSO-d6, 101MHz) 166.68, 143.36, 135.96, 133.83, 129.41, 127.41, 126.16, 117.58, 49.53, 26.09, 21.03; MS ESI+ m/z 324 (M + H)+, 364.22 (M + K)+. ESI− m/z 322.15 (M − H)−, 358.14 (M + Cl)−.

N-L-histidinyl-4-methylphenylsulfonyl hydrazide (3a). mp 141–143°C; 1H NMR (DMSO-d6, 400MHz) 14.69 (s, 1H), 10.64 (d, J = 0.6Hz), 10.10 (d, J = 0.6Hz), 9.10 (d, J = 1.3Hz), 8.70 (s, 2H), 7.67 (d, J = 8.7Hz), 7.60 (d, 2H, J = 8.8Hz), 7.45 (d, 1H, J = 1.2Hz), 4.20 (t, 1H, J = 6.8Hz), 3.15 (d, 2H, J = 6.9Hz), 1.30 (s, 9H). 13C NMR
Histidinol dehydrogenase inhibitors

N-L-histidinyl-4- trifluoromethylphenylsulfonyl hydrazide (3g). mp 195°C (decomposition);
1H NMR (DMSO-d$_6$, 400MHz) 14.71 (s, 1H), 10.90 (s, 1H), 10.53 (s, 1H), 9.10 (d, 1H, $J = 1.3$Hz), 8.72 (s, 2H), 7.97 (s, 4H), 7.48 (d, 1H, $J = 1.0$Hz), 4.23 (t, 1H, $J = 6.8$Hz), 3.17 (d, 2H, $J = 6.7$Hz). 13C NMR (DMSO-d$_6$, 101MHz) 166.97, 143.12 (d, $J_{C-F} = 1.32$Hz), 134.17 (s,1C), 133.85, 132.51 (dd, $J_{C-F} = 64.18$, 31.94Hz), 128.40, 126.217, 117.68, 49.60, 26.06; MS ESI$^+$ m/z 376.24 (M + H)$^+$, ESI$^-$ m/z 376.24 (M – H)$^–$, 789.10 (2M + Cl)$^–$.

N-L-histidinyl-4-nitrophenylsulfonyl hydrazide (3h). mp 205°C (decomposition);
1H NMR (DMSO-d$_6$, 400MHz) 14.56 (s, 1H), 10.97 (s, 1H), 10.65 (s, 1H), 9.07 (d, 1H, $J = 1.1$Hz), 8.66 (s, 2H), 8.40 (m, 2H), 8.02 (m, 2H), 7.46 (d, 1H, $J = 0.7$Hz), 4.22 (t, 1H, $J = 6.9$Hz), 3.14 (d, 2H, $J = 6.9$Hz). 13C NMR (DMSO-d$_6$, 101MHz) 166.92, 149.81, 144.64, 133.87, 129.14, 126.16, 124.26, 117.66, 49.55, 26.04; MS ESI$^+$ m/z 355.14 (M + H)$^+$, ESI$^-$ m/z 353.16 (M – H)$^–$, 398.22 (M + Cl)$^–$, 707.16 (2M – H)$^–$, 734.17(2M + Cl)$^–$.

N-L-histidinyl-4-fluorophenylsulfonyl hydrazide (3i). mp 222–224°C;
1H NMR (DMSO-d$_6$, 400MHz) 14.70 (s, 1H), 10.81 (s, 1H), 10.27 (s, 1H), 9.10 (d, 1H, $J = 1.3$Hz), 8.69 (s, 2H), 7.80 (dd, 2H, $J = 5.2$Hz, 8.9Hz), 7.47 (d, 1H, $J = 0.9$Hz), 7.42 (t, 2H, $J = 8.9$Hz), 4.23 (t, 1H, $J = 6.8$Hz), 3.14 (d, 2H, $J = 6.9$Hz). 13C NMR (DMSO-d$_6$, 101MHz) 166.76, 164.53 (d, $J_{C-F} = 251.1$Hz), 135.19, 133.84, 130.56 (d, $J_{C-F} = 9.4$Hz), 126.21, 117.60, 116.19 (d, $J_{C-F} = 22.9$Hz), 49.55, 26.10; MS ESI$^+$ m/z 328.16 (M + H)$^+$, 655.20 (2M + H)$^+$, ESI$^-$ m/z 326.14 (M – H)$^–$, 362.14 (M + Cl)$^–$, 689.14 (2M + Cl)$^–$.

N-L-histidinyl-4-chlorophenylsulfonyl hydrazide (3j). mp 210°C (decomposition);
1H NMR (DMSO-d$_6$, 400MHz) 14.71 (s, 1H), 10.84 (s, 1H), 10.34 (s, 1H), 9.10 (s, 1H), 8.72 (s, 2H), 7.75 (d, $J = 8.4$Hz, 2H), 7.65 (d, $J = 8.4$Hz, 2H), 7.48 (d, 1H, $J = 6.5$Hz, 1H). 13C NMR (DMSO-d$_6$, 101MHz) 166.80, 137.91, 137.84, 133.79, 129.36, 129.14, 126.17, 117.62, 49.54, 26.08; MS ESI$^+$ m/z 344.14 (M + H)$^+$, ESI$^-$ m/z 342.16 (M – H)$^–$, 378.09 (M + Cl)$^–$, 723.09 (2M + Cl)$^–$.

N-L-histidinyl-4-bromophenylsulfonyl hydrazide (3k). mp 93–94°C;
1H NMR (DMSO-d$_6$, 400MHz) 14.60 (s, 1H), 10.80 (s, 1H), 10.34 (s, 1H), 9.08 (d, $J = 0.8$Hz, 1H), 8.65 (s, 2H), 7.80 (d, $J = 8.6$Hz, 2H), 7.67 (d, $J = 8.6$Hz, 2H), 7.46 (s, 1H), 4.20
(t, \(J = 6.6 \) Hz, 1H), 3.14 (d, \(J = 6.8 \) Hz, 2H). \(^{13}\)C NMR (DMSO-\(d_6 \), 101 MHz) 166.80, 138.26, 133.93, 132.07, 129.40, 127.03, 126.22, 117.63, 49.59, 26.06; MS ESI\(^+\) m/z 390.05 (M + H\(^+\)), ESI\(^-\) m/z 386.02 (M – H\(^-\)), 424.1 (M + Cl\(^-\)), 810.91 (2M + Cl\(^-\)).

\textbf{N-L-histidinyl-4-iodophenylsulfonyl hydrazide (3l).} mp 139–141\(^\circ\)C; \(^1\)H NMR (DMSO-\(d_6 \), 400 MHz) 14.65 (s, 1H), 10.79 (s, 1H), 10.30 (s, 1H), 9.09 (d, \(J = 1.1 \) Hz, 1H), 8.69 (s, 2H), 7.97 (d, \(J = 8.5 \) Hz, 2H), 7.50 (d, \(J = 8.5 \) Hz, 2H), 7.47 (s, 1H), 4.22 (t, \(J = 6.6 \) Hz, 1H), 3.15 (d, \(J = 6.7 \) Hz, 2H). \(^{13}\)C NMR (DMSO-\(d_6 \), 101 MHz) 166.82, 138.65, 137.86, 133.85, 129.03, 126.17, 117.65, 101.59, 49.57, 26.08; MS ESI\(^+\) m/z 436.03 (M + H\(^+\)), ESI\(^-\) m/z 434.05 (M – H\(^-\)), 469.99 (M + Cl\(^+\)), 719.31 (2M + H\(^+\)).

\textbf{Enzyme assays}

The activity and specificity of HDH were measured by monitoring the reduction of NAD\(^+\) to NADH directly at 340 nm (\(e_M = 6200 \) M\(^{-1}\)cm\(^{-1}\)) as previously described [15]. The enzymatic activity was studied at 30\(^\circ\)C in the presence of 0.5 mM histidinol, 5 mM NAD\(^+\) and 0.5 mM MnCl\(_2\) in 50 mM sodium glycine buffer at pH = 9.2. For kinetic studies, experiments were carried out with 150 mM sodium glycine (pH 9.2) and 2 mM NAD\(^+\). The \(K_m \) for the substrate was determined by varying the concentration of histidinol from 10 to 50 \(\mu \)M. Activity (1 unit) is defined as the amount of HDH producing 1 \(\mu \)mol of NADH per min in the reaction. To perform IC\(_{50}\) determinations of the different inhibitors, the latter were added at various concentrations, ranging from 1 \(\mu \)M to 400 \(\mu \)M, and preincubated for 5 min at 30\(^\circ\)C with the enzyme solution prior to the initiation of the reaction. The enzyme concentration in the assay system was \(4.5 \times 10^{-11} \) M.

\textbf{Results and discussion}

\textbf{Chemistry}

Substituted histidinyl phenylsulfonylhydrazide derivatives 3 were readily prepared according to the synthetic pathway depicted in Scheme 1. The precursor 1 was synthesized in four steps starting from L-histidine as previously described [12]. Reaction of compound 1 with hydrazine hydrate afforded the corresponding hydrazide 2 which was reacted with various substituted phenylsulfonyl chloride in the presence of pyridine to yield, after acidic treatment the corresponding hydrazides 3.

All the synthesized compounds 3 listed in Figure 2 were fully characterized by \(^1\)H-NMR, \(^{13}\)C-NMR and mass spectral data.

\textbf{Brucella suis HDH inhibitory activity}

All the newly synthesized compounds were assayed for their inhibitory activity against the purified \textit{B. suis} HDH. Inhibitory data are presented in Table I. The results show a decreased affinity for 3 compared to the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Scheme1.png}
\caption{The synthetic pathway of 2–3.}
\end{figure}
previously reported derivatives [12], with IC50 within the range of 25 to more than 400 μM. The most active derivatives in this series were compounds 3d and 3k with an IC50 of 25 μM and 70 μM respectively. Additionally, some compounds such as 3e, 3i, 3j, 3h were devoid of any inhibitory activity for concentration ≥ 400 μM.

The following SAR should be noted from data of Table I: among the compound series, the activity order was 3d > 3k > 3c > 3a > 3f, which might reflect the importance of the substituent bulkiness in the position 4 of the phenyl ring.

Compared with the previously reported series [12], compounds 3 are much less effective, indicating that the nature and the length of the linker between the histidinyl moiety and the phenyl ring is an important factor which can be modulated for the design and the discovery of new potential inhibitors.

In conclusion, a small library of substituted L-histidinyl phenylsulfonylhydrazide was synthesized as potential B. suis histidinol dehydrogenase inhibitors. The introduction of a hydrazinosulfonyl scaffold was shown to influence potencies of inhibitors. From these data, compound 3d demonstrated the best inhibitor activity. Nevertheless, this series of compounds remains less active compared to the one previously described. Informations derived from this study indicate that the linker between the histidinyl moiety and the phenyl ring constitute an important structural feature which could be subject to further modifications in order to design more potent inhibitors.

Acknowledgements
This work was supported by a grant from the German Sanitätsamt der Bundeswehr, No M SAB1 5A002.

Table I. Inhibition of B. suis histidinol dehydrogenase with compounds 3a to 3m.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HDH (Brucella suis) IC50 (μM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>160</td>
</tr>
<tr>
<td>3b</td>
<td>375</td>
</tr>
<tr>
<td>3c</td>
<td>135</td>
</tr>
<tr>
<td>3d</td>
<td>25</td>
</tr>
<tr>
<td>3e</td>
<td>> 400</td>
</tr>
<tr>
<td>3f</td>
<td>190</td>
</tr>
<tr>
<td>3g</td>
<td>> 400</td>
</tr>
<tr>
<td>3h</td>
<td>> 400</td>
</tr>
<tr>
<td>3i</td>
<td>> 400</td>
</tr>
<tr>
<td>3j</td>
<td>> 400</td>
</tr>
<tr>
<td>3k</td>
<td>70</td>
</tr>
<tr>
<td>3l</td>
<td>200</td>
</tr>
<tr>
<td>3m</td>
<td>140</td>
</tr>
</tbody>
</table>

*The values are the means of three independent assays. Variations were in the range of 5–10% of the shown data.

References