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Abstract

This paper introduces a multi-parameter multiplicative regularization for

force reconstruction problems. This approach allows exploiting the local

prior information available on the sources to identify, while determining the

related regularization parameters in an elegant and e�cient manner. The aim

of this paper is to assess the applicability of a multi-parameter regularization

strategy compared to a single parameter formulation for reconstructing the

external sources acting on a mechanical structure. A particular attention is

also paid to the practical resolution of the regularization problem by imple-

menting an original Iteratively Reweighted algorithm derived from the direct

application of the �rst-order optimality condition. The performance of the

proposed algorithm in terms of solution accuracy is compared with a more

classical implementation based on an Iteratively Reweighted Least-Squares

procedure. The interest of the proposed multi-parameter strategy is assessed

numerically. Obtained results demonstrates that consistent reconstructions

are obtained for high and moderate measurement noise level whatever the

formulation considered (i.e. single or multi-parameter) provided that the

∗Corresponding author. E-mail address: mathieu.aucejo@lecnam.net

Preprint submitted to Journal of Sound and Vibration December 26, 2019



suitable resolution algorithm is implemented. For very and extremely noisy

input data, the single parameter strategy is more robust than the multi-

parameter approach.

Keywords: Linear inverse problem, Force reconstruction, Multi-parameter

multiplicative regularization, Iteratively Reweighted algorithm.

1. Introduction

For solving force reconstruction problems, additive regularizations are

commonly implemented. Among all this class of methods, the most popular

technique is certainly the Tikhonov regularization, a.k.a. `2-regularization

[1�6]. It should however be noted that this approach generally promotes

smooth solutions [7, 8], which generally leads to qualitatively poor recon-

structions when the excitation �eld or the excitation signal is rather sparse.

In the latter situation, the LASSO regularization, a.k.a. `1-regularization,

has been proposed to enforce the sparsity of the regularized solutions [9�12].

In the context of force reconstruction, these approaches have been uni�ed

and generalized by Aucejo through the introduction of the `q-regularization,

which allows the resolution of non-convex sparse minimization problems [13].

However, all the above-mentioned procedures assumes a global a priori on

the sources to identify. Incidentally, poor reconstructions can be obtained

in situations where a structure is excited by several sources having di�er-

ent spatial distributions. From a theoretical standpoint, the corresponding

regularization term, encoding all the prior information on the sources to

identify, is not perfectly adapted to properly re�ect the actual distribution

of each source. To overcome this weakness, Aucejo and De Smet have sought
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to exploit any local prior information available by de�ning several identi-

�cation regions, for which a local `q-regularization term is employed [14].

Despite their e�ciency for solving force reconstruction problems, all these

additive regularization techniques requires a proper tuning of the regulariza-

tion parameter appearing in their mathematical formulation. Because this

task proves to be di�cult in practice, a multiplicative `q-regularization has

been recently introduced for reconstructing mechanical sources [15]. Initially

developed by Van den Berg et al. [16], this regularization technique consists

in including the regularization term as a multiplicative constraint in the for-

mulation of the inverse problem. The main advantage of this regularization

strategy is to avoid the preliminary de�nition of any optimal regularization

parameter, since it is de�ned and computed during the resolution process.

In Ref. [15], the proposed multiplicative regularization, called ordinary mul-

tiplicative regularization (OMR) in the rest of this paper, is established by

assuming that the structure is excited in di�erent regions by local excitation

�elds of various types. In the latter contribution, the regularization term

is de�ned as the sum of local regularization terms, encoding available prior

information on the excitation �eld to identify in each region.

A potential drawback of the above-mentioned strategy is the de�nition of a

single regularization parameter for all the regions considered. A thorough

analysis of the existing literature indeed suggests that, when the solution to

identify exhibits several distinct features simultaneously, multi-parameter ad-

ditive regularization may perform better than a single parameter regulariza-

tion parameter, because each individual feature can be emphasized through

the de�nition of a corresponding regularization parameter [17�24]. Despite
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these encouraging results, one of the main challenges is the selection of suit-

able regularization parameters. In this regard, several approaches have been

proposed. Generally, they are a generalization of the corresponding one pa-

rameter procedure, such as the L-hypersurface [25], the multivariate GCV

[26], the generalized discrepancy principle [27, 28] or the generalized Regi«ska

criterion [29].

Based on this extensive literature, it seems legitimate to develop a multi-

parameter regularization strategy for force reconstruction problem, combin-

ing the advantages of a multi-parameter formulation and the multiplicative

regularization. This idea, which is at the core of the present paper, gives

rise to a particular form of the multiplicative regularization, named multi-

parameter multiplicative regularization (MPMR) in the rest of the paper.

This formulation is based on the work of Bazàn et al., suggesting that the

regularization term can be expressed as the product of the local regularization

terms [29].

The basic motivation of this paper is to assess the applicability and the

performances of the MPMR for identifying mechanical sources in the fre-

quency domain compared to the OMR previously proposed by the authors

in Ref. [15]. To this end, the paper is divided into three parts. In section 2,

the mathematical formulations of the OMR and the MPMR are presented

to clearly highlight the main di�erences between both regularization strate-

gies. Section 3 is dedicated to the description of the algorithms used to solve

each formulation. More speci�cally, an original Iteratively Reweighted algo-

rithm is derived for each of them from the direct application of the �rst-order

optimality condition. This approach di�ers from the standard approach con-
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sisting in implementing IRLS1-like algorithms, in which the considered reg-

ularization term is recast into a weighted `2-regularization term. Finally,

the applicability of the proposed multi-parameter approach for consistently

reconstructing mechanical sources is illustrated numerically in section 4 by

comparison with the related single parameter strategy. In particular, ob-

tained results reveals that the OMR is more robust than the MPMR with

respect to the measurement noise level, while the comparisons of the imple-

mentations of both formulation indicate that the proposed resolution algo-

rithms perform better than the related IRLS versions in terms of solution

accuracy.

2. Formulation of the ordinary and multi-parameter multiplicative

regularizations

From a very general standpoint, the multiplicative regularization is math-

ematically expressed as:

F̂ = argmin
F\{0}

F(X−HF) · R(F), (1)

where:

• F(X − HF) is the data-�delity term controlling the a priori on the

noise corrupting the data [30�32]. The argument of the data-�delity

term assumes a linear reconstruction model de�ned such that:

X = HF, (2)

1Iteratively Reweighted Least-Squares.
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where X is the vibration �eld, F is the excitation �eld, while H is the

transfer functions matrix of the structure.

• R(F) is the regularization term encoding any prior information on the

excitation �eld F [33�35].

The previous relation clearly indicates that the quality of the recon-

structed excitation �eld is strongly in�uence by the choice data-�delity and

regularization terms, which have to re�ect the actual noise and the actual

source characteristics. In this respect, the de�nition of the data-�delity term

classically assumes that the vibration �eld X is corrupted by an additive

Gaussian white noise. It results that the data-�delity term can be expressed

as [36�38]:

F(X−HF) = ‖X−HF‖22. (3)

The de�nition of the regularization term is less obvious and requires more

attention, since it has to re�ect the a priori experimenter's knowledge of the

sources to identify. Generally, forces of di�erent nature and locations can

act simultaneously on a structure. This is for this particular reason that

it is supposed that the structure is excited in R di�erent regions by local

excitation �elds Fr of various types (localized or distributed, for instance).

Formally, this naturally leads to introduced local regularization termsR(Fr),

which are de�ned such that [14, 15]:

R(Fr) = ‖Fr‖qrqr , (4)

where qr is the norm parameter de�ned on R+∗, ‖ • ‖qr is the `qr -norm or
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quasi-norm.

Practically, there are two ways of combining these local regularization

terms to form the regularization termR(F). The �rst one consists in de�ning

the regularization term as the sum of the local regularization terms. This

regularization term, derived from the Bayesian framework [14], is at the root

of the ordinary multiplicative regularization (OMR) introduced in Ref. [15],

namely:

F̂ = argmin
F\{0}

‖X−HF‖22 ·
R∑

r=1

‖Fr‖qrqr . (5)

The second possibility consists in considering the regularization term as

the product of the local regularization terms, as suggested by Bazàn et al. in

Ref. [29]. Such a formulation gives rise to the multi-parameter multiplicative

regularization (MPMR), de�ned such that:

F̂ = argmin
F\{0}

‖X−HF‖22 ·
R∏

r=1

‖Fr‖qrqr . (6)

It is clear, from Eqs. (5) and (6), that the OMR and the MPMR reduce

to the same regularization problem when only one identi�cation region is

de�ned. Actually, the main noticeable di�erence between both formulations

appears when several identi�cation regions are considered. In this situation,

the de�nition of the adaptive regularization parameter2 α associated to each

resolution algorithm di�ers. As it will be made clearer in the next section,

the resolution of the OMR leads to the de�nition of a unique adaptive reg-

2This name has been given because the value of the regularization parameter of the

multiplicative regularization is automatically adapted throughout the iterative process.
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ularization parameter for all the considered identi�cation regions, while the

MPMR leads to the de�nition of R adaptive regularization parameters, i.e.

one per identi�cation region. Consequently, the MPMR has more degrees of

freedom than the OMR for solving the inverse problem, which is potentially

bene�cial in terms of solution accuracy. These speci�cities are at the origin

of the present contribution and their implications will be carefully analyzed

in section 4.

3. Resolution algorithms

By construction, the resolution of the OMR and the MPMR requires the

implementation of an iterative procedure. In general, an adapted IRLS al-

gorithm is implemented for this purpose. In the present paper, we propose a

novel Iteratively Reweighted (IR) algorithm for each formulation by directly

applying the �rst-order optimality condition. In the rest of the paper, these

algorithms will be respectively referred to as OMR-IR and MPMR-IR al-

gorithms. Schematically, whatever the algorithm considered, the resolution

process is divided into three main steps:

1. Set k = 0 and initialize F̂
(0)

2. while convergence is not reached

a. Main iteration - Compute F̂
(k+1)

b. Monitor the convergence

end while

3. return F̂
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To help the reader to have a global overview of the resolution process,

each step of the proposed IR algorithms is introduced in a chronological

order.

3.1. Initialization of the resolution algorithms

The de�nition of the initial solution can be one of the keys of the conver-

gence of the proposed iterative procedures, especially when the functional to

minimize is non-convex3. From our previous works, it has been shown that

the solution of the standard Tikhonov regularization [13�15, 38�40] provides

a reasonable initial solution to allow the convergence of the iterative pro-

cess to a mechanically consistent reconstruction. Mathematically, the initial

solution is consequently computed from the following equation:

F̂
(0)

=
(
HHH+ α(0) I

)−1
HHX, (7)

where I is the identity matrix, while α(0) is the initial adaptive regularization

parameter.

The order of magnitude of the optimal regularization parameter being

unknown from the data only, a rough estimate of α(0) is practically hard to

de�ne a priori, without using any selection procedures or large computational

e�orts. The only thing we know is that its value is generally set in the in-

terval de�ned between the smallest and the largest singular values of H [41].

To bypass this di�culty and preserve the advantage of the multiplicative

strategy in terms of computational e�ciency, some heuristics can be used.

3This situation arises for any qr < 1.
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In the present paper, we propose to apply the heuristic procedure introduced

in Ref. [15]. Because this estimation procedure is heuristic, it may however

fail to give a good starting point for the iterative process. In such a situation,

α(0) can be selected using one of the automatic selection procedures available

in the literature [42�45]. It should however be noted that the suitability of

the value of α(0) (and that of F̂
(0)

by extension) can only be judged from

the excitation �eld �nally identi�ed, that can be analyzed from the exper-

imenter's knowledge and any available prior information on the sources to

identify4.

3.2. Main iteration

The main iteration consists in computing the solution at iteration k+1

of the resolution process from the knowledge of the solution at the previous

iteration of the algorithm.

3.2.1. Main iteration for the OMR

For the OMR, the solution at iteration k+1 of the iterative process is

obtained by applying the �rst-order optimality condition5 to the functional:

JOMR(F) = ‖X−HF‖22 ·
R∑

r=1

‖Fr‖qrqr . (8)

In doing so, one obtains, after some calculations, the following explicit

expression:

F̂
(k+1)

=
(
HHH+ α(k+1)W(k+1)

)−1
HHX, (9)

4Such information can be roughly obtained from the analysis of the mechanical system.
5The �rst-order optimality condition consists in setting the gradient of the considered

functional with respect to the sought quantity, here F, to zero.
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where the adaptive regularization parameter α(k+1) is written:

α(k+1) =

∥∥∥X−HF̂(k)
∥∥∥2
2

R∑
r=1

∥∥∥F̂(k)

r

∥∥∥qr
qr

, (10)

while the global weighting matrix W(k+1) is de�ned such that:

W(k+1) = diag
(
W

(k+1)
1

, . . . ,W
(k+1)
R

)
. (11)

In the previous equation, each local weighting matrix W(k+1)
r

is a diagonal

matrix, given by:

W(k+1)
r

= diag
[
w

(k+1)
r,1 , . . . , w

(k+1)
r,i , . . . , w

(k+1)
r,Nr

]
(12)

with:

w
(k+1)
r,i =

qr
2
max

(
εr,
∣∣∣f (k)

ri

∣∣∣)qr−2 , (13)

where Nr is the number of identi�cation points in the zone r, f
(k)
ri is the

ith component of the vector F̂
(k)

r
and εr is a small positive number avoiding

in�nite weights when
∣∣∣f (k)

ri

∣∣∣→ 0 and qr < 2. Practically, εr is chosen so that

5% of the values of
∣∣∣F̂(0)

r

∣∣∣ are less than or equal to εr [13, 46].

3.2.2. Main iteration for the MPMR

For the MPMR, the solution at iteration k+1 of the iterative process is

obtained by applying the �rst-order optimality condition to the functional:

JMPMR(F) = ‖X−HF‖22 ·
R∏

r=1

‖Fr‖qrqr . (14)

In doing so, one obtains the following explicit expression:

F̂
(k+1)

=
(
HHH+ LH

W
Λ(k+1) LW

)−1
HHX, (15)
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where LW = W(k+1)1/2 [see Eqs. (11) and (12) for the de�nition of W(k+1)]

and Λ(k+1) is the adaptive regularization matrix de�ned such that:

Λ(k+1) = diag
(
α
(k+1)
1 11, . . . , α

(k+1)
R 1R

)
with α(k+1)

r =

∥∥∥X−HF̂(k)
∥∥∥2
2∥∥∥LrF̂(k)

r

∥∥∥qr
qr

,

(16)

where 1r is the unit vector of dimension Nr.

3.3. Convergence monitoring - Stopping criterion

As any iterative procedure, the proposed algorithm must be stopped ei-

ther after a certain stopping criterion is satis�ed or after a certain number of

iterations �xed by the user is reached. In the present paper, the convergence

of the iterative process is monitored via the variation of relative error of the

force vector between two successive iterations. Mathematically, the relative

error δ is de�ned such that:

δ
(
F̂

(k−1)
, F̂

(k)
)
=

∥∥∥F̂(k)
− F̂

(k−1)∥∥∥
1∥∥∥F̂(k−1)∥∥∥

1

. (17)

In such a case, the iterative process is classically stopped when δ reaches

some tolerance, set here to 10−4, which allows obtaining a fair compromise

between the solution accuracy and the computational e�ciency.

4. Numerical validation

The proposed numerical validation intends to assess the pertinence of

the MPMR for identifying the excitation sources acting on a mechanical

structure by comparing the results it provides with those stemming from the
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OMR. More speci�cally, the overall performances of both formulation with

respect to the measurement noise level, as well as the resolution algorithm

implemented to solve the reconstruction problem will be carefully studied.

The latter point aims at providing further insights regarding the importance

of the de�nition of the resolution procedure used to solve the OMR and

the MPMR. Consequently, this numerical validation allows focusing on the

intrinsic behavior of the compared algorithms by avoiding any experimental

bias (modeling error, geometrical uncertainties, location uncertainties of the

measurement points, . . . ).

4.1. Problem description

In the present numerical validation, we are interested in the identi�cation

a harmonic point force of unit amplitude exciting, at 350 Hz6, a thin simply

supported steel plate with dimensions 0.6 m×0.4 m×0.005 m as well as the

related reaction forces. The coordinates of the point force, measured from

the lower left corner of the plate, are (x0, y0) = (0.42 m, 0.25 m). The main

interest of this test case is to exhibit two types of spatial distribution over the

structure, namely a smooth distribution of the reaction forces at boundaries

and a sparse distribution around the location of the point force. It results

that this numerical validation is perfectly adapted to assess the pertinence

of the proposed multi-parameter strategy.

To implement this numerical validation, the synthesized vibration �eld as

well as the transfer functions matrix must be de�ned. The simulation of the

6This frequency has been chosen, because it lies outside the resonance frequencies of

the plate.
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experimental data is performed in two steps. First, the exact displacement

�eld Xexact is computed from a FE mesh of the plate made up with 187

shell elements, assuming that only bending motions are measurable. Then,

a Gaussian white noise with a prescribed SNR is added to the exact data to

simulate measurement errors, related to the transducers quality. Regarding

now the de�nition of the transfer functions matrix H, it has been chosen to

compute it from the FE model of the plate with free boundary conditions,

assuming, here again, that only bending motions are measured. Such an ap-

proach makes the identi�cation of the point force excitation and the reaction

forces at boundaries possible. From a theoretical standpoint, this is eas-

ily explained by recalling that the system considered for the reconstruction

is, in that case, the plate without its supports. Consequently, the reaction

forces induced by the supports to ensure the mechanical connection are then

considered as external forces.

4.2. Application

To numerically validate any force reconstruction strategy, it is �rst nec-

essary to de�ne the force vector Fref that could serve as a proper reference.

This reference force vector is obtained from the transfer functions matrix H

and the exact displacement �eld Xexact by applying the following relation:

Fref = H−1Xexact. (18)

As shown in Fig. 1, the reference force vector exhibits smooth reaction

forces at boundaries of the plate as well as a unit point force F0 at (x0, y0) =

(0.42 m, 0.25 m) as expected from the description of the test case. This

consequently suggests the de�nition of two identi�cation regions in order to
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apply the OMR and the MPMR: (i) a central region associated to the norm

parameter q1 and including the point force only and (ii) a region associated

to the norm parameter q2 and corresponding to the boundaries of the plate

[see Fig. 2]. Regarding the choice of norm parameters q1 and q2, their values

are set in order to re�ect one's prior knowledge of the sources to identify in

each region. In the present case, the value of the norm parameter q1 has

to enforce the sparsity of the solution vector in this region, i.e. by setting

q1 ≤ 1 [47, 48]. On the contrary, the value of the norm parameter q2 must

be chosen in order to promote distributed sources, which is generally done

by de�ning q2 = 2 [7]. From what precedes and from our experience of this

kind of problems, it has been chosen to set (q1, q2) = (0.5, 2).

Figure 1: Reference force vector Fref at 350 Hz

15



0 0.1 0.2 0.3 0.4 0.5 0.6

x (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y
 (

m
)

Figure 2: De�nition of the identi�cation regions - (◦) region 1 (Point force), (×) region 2

(Reaction forces) and (♦) location of the point force

4.3. In�uence of the measurement noise level

One of the main question for any inverse method is the robustness of the

results identi�ed with respect to the noise corrupting the data. To obtain

further insights regarding this important question, let us �rst consider the

identi�cation of the excitation �eld from a vibration �eld having a SNR equal

to 35 dB. For this relatively high SNR, the excitation �elds reconstructed

from the OMR-IR and MPMR-IR algorithms are presented in Fig. 3. The

visual inspection of this �gure suggests that the reconstructed excitation �eld

is in good agreement with the reference one, whatever the formulation and

the associated resolution algorithm considered.

To con�rm this qualitative observation, the accuracy of the reconstructed
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Figure 3: Reconstructed excitation �eld at 350 HZ from vibration data having a SNR

equal to 35 dB � (a) OMR-IR algorithm and (b) MPMR-IR algorithm � (q1, q2) = (0.5, 2)

solutions are quanti�ed from the global relative error (GRE), the relative er-

ror on the identi�cation of the reaction forces (RERF) and the peak error

(PE). Formally, the global relative error is a global indicator of the recon-

struction quality, de�ned by the relation:

GRE =

∥∥∥F̂− Fref

∥∥∥
1

‖Fref‖1
. (19)

In the same vein, the relative error on the reaction forces is an indicator of

the reconstruction quality of the reaction forces. Its mathematical de�nition

is similar to the relative error, since:

RERF =

∥∥∥F̂(2)
− F(2)

ref

∥∥∥
1∥∥∥F(2)

ref

∥∥∥
1

(20)

where F̂
(2)

is the force vector identi�ed in region 2, while F
(2)
ref

is the reference

force vector in the same region.
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Contrary to the previous indicators, the peak error is a local indicator describ-

ing the reconstruction quality of the point force amplitude. Mathematically,

it is de�ned such that:

PE =
F̂p − F ref

p

F ref
p

, (21)

where F ref

p is the point force amplitude associated to the reference force vec-

tor Fref, while F̂p is the point force amplitude associated to the identi�ed

solution F̂ at point (x0, y0).

The results gathered in Table 1 allows going further in the analysis of the

overall performances of the proposed regularization strategies and the related

resolution algorithms. In particular, it is shown that the reconstruction of

the point force excitation is properly carried out by both approaches. It is in-

teresting to note that the OMR-IR algorithm leads to a slight overestimation

of the point force amplitude, while the MPMR-IR algorithm tends to slightly

underestimate it. However, the analysis of the GRE and the RERF indica-

tors points out that the reconstruction of the reaction forces is not as good as

expected, especially for the OMR-IR algorithm. In terms of computational

e�ciency, it should be noticed that the MPMR-IR algorithm requires half as

much iterations as the OMR-IR algorithm to reach the convergence. Finally,

it may be noticed that the converged value of the adaptive parameters for

the MPMR-IR algorithm is about one order of magnitude greater than the

adaptive regularization parameter estimated from the OMR-IR algorithm.

Perhaps more interesting is the behavior of the considered resolution al-

gorithms when the SNR gets lower. All the results obtained for SNR values

ranging from 30 dB to 5 dB are respectively given in Table 2 and Fig. 4
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Table 1: Performances of the OMR-IR and MPMR-IR algorithms for high-SNR data

(SNR = 35 dB) � Nit: Number of iterations of the algorithm, αi: Converged value of the

adaptive regularization parameter in the region i

Resolution algorithm

OMR-IR MPMR-IR

PE (%) 0.6 -0.01

RERF (%) 35.75 19.65

GRE (%) 34.83 18.67

α1
9.32×10−16

2.25×10−15

α2 4.15×10−15

Nit 26 12

for the OMR-IR strategy and in Table 3 and Fig. 5 for the MPMR-IR ap-

proach. A careful analysis of the results of the OMR-IR algorithm indicates

that the reconstruction is rather constant in terms of solution accuracy and

number of iterations from high (30 dB) to low (10 dB) SNR values. How-

ever, in case of extremely noisy vibration data, the point force location is

not properly identi�ed [see PE in Table 2 and Fig. 4d], while the estimation

of the reaction forces is similar to that obtained for higher SNR values. A

closer look at Fig. 4d actually shows that the identi�ed point force is lo-

cated at (x̂0, ŷ0) = (0.46 m, 0.25 m) with an amplitude of 0.81 N instead of

(x0, y0) = (0.42 m, 0.25 m) and 1 N for the reference excitation. All things

considered, the results obtained for such a low SNR is quite satisfying, since

the PE, computed from the amplitude obtained at the identi�ed point force

location, is equal to -20%, while the location error is less than 10% (here 4
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cm along the length of the plate). It should be noted that the previous result

can be improved in terms relative errors and location error by selecting α(0)

from standard automatic selection procedures. For the sake of completeness,

the corresponding results are presented in Appendix A.

Table 2: Performances of the OMR-IR algorithm for with respect to the noise corrupting

the data

SNR (dB)

30 25 20 15 10 5

PE (%) 0.88 1.48 2.11 2.45 0.24 -99

RERF (%) 36.35 33.98 33.32 31.96 32.22 35.37

GRE (%) 33.98 31.97 31.97 31.16 32.33 53.51

α 3.24×10−15 1.09×10−14 3.33×10−14 1.09×10−13 3.28×10−13 8.44×10−13

Nit 16 13 13 13 15 17

Contrary to what it is observed for the OMR-IR algorithm, Table 3 and

Fig. 5 show that the MPMR-IR algorithm behaves rather di�erently as the

SNR gets lower. Indeed, one can observed that satisfying reconstruction are

obtained for high and moderate SNR values, i.e. above 20 dB. Between 20 dB

and 15 dB, the amplitude of the identi�ed point force decreases signi�cantly.

Below this SNR value, the MPMR-IR algorithm converges to the zero vector,

since the converged values of α1 and α2 tends to in�nity. It should be noted

here that selecting α(0) from standard automatic selection procedures does

not improve the quality of the identi�ed solutions.
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(a) (b)

(c) (d)

Figure 4: Reconstructed excitation �eld at 350 HZ from OMR-IR for di�erent SNR values

� (a) 20 dB, (b) 15 dB, (c) 10 dB and (d) 5 dB � (q1, q2) = (0.5, 2)
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(a) (b)

(c) (d)

Figure 5: Reconstructed excitation �eld at 350 HZ from MPMR-IR for di�erent SNR

values � (a) 20 dB, (b) 15 dB, (c) 10 dB and (d) 5 dB � (q1, q2) = (0.5, 2)
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Table 3: Performances of the MPMR-IR algorithm for with respect to the noise corrupting

the data

SNR (dB)

30 25 20 15 10 5

PE (%) -0.18 -1.56 -6.25 -30.68 -100 -100

RERF (%) 19.18 18.73 18.84 20.31 100 100

GRE (%) 18.51 18.36 18.83 22.41 100 100

α1 8.40×10−15 3.14×10−14 8.85×10−14 3.12×10−13 +∞ +∞

α2 1.37×10−14 4.57×10−14 1.55×10−13 6.51×10−13 +∞ +∞

Nit 12 12 13 23 25 19

In the light of these results, it seems that in case low-SNR data the

MPMR-IR algorithm has too many degrees of freedom to ensure a proper

estimation of both the point force excitation and the reaction forces. In this

respect, the greater �exibility in the tuning of the adaptive regularization

parameters o�ered by the MPMR is not as bene�cial as expected at �rst

sight.

4.4. In�uence of the resolution algorithm

Practically, several algorithms can be implemented to solve the OMR

and the MPMR formulations. One of the classical way to solve these regu-

larization strategies is the Iteratively Least-Squares algorithm [49, 50]. To

provide further insights regarding the importance of the de�nition of the

resolution procedure used to solve the OMR and the MPMR, this section

aims at analyzing the results obtained from an IRLS implementation for
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both the formulations. These resolution algorithm are respectively referred

to as OMR-IRLS and MPMR-IRLS in the rest of the paper. For the sake of

brevity, OMR-IRLS and MPMR-IRLS algorithms are described in Appendix

B. It should be mentioned here that the OMR-IRLS is the algorithm we have

implemented in Ref. [15].

The results obtained from the OMR-IRLS algorithm and presented in

Table 4 show that for high and moderate SNR values, i.e. above 20 dB,

the algorithm behaves relatively well, since consistent reconstructions are

obtained. As observed for the MPMR-IR algorithm, between 20 dB and 15

dB, the amplitude of the identi�ed point force is greatly underestimated (see

Fig. 6). Even worse, for very low SNR values, the OMR-IRLS algorithm

returns a NaN vector, meaning that the value of the adaptive regularization

parameter becomes undetermined along the iterations.

Table 4: Performances of the OMR-IRLS algorithm for with respect to the noise corrupting

the data

SNR (dB)

30 25 20 15 10 5

PE (%) -0.25 -1.50 -7.91 -99 NaN NaN

RERF (%) 22.68 21.44 20.85 26.25 NaN NaN

GRE (%) 21.67 20.79 20.77 33.81 NaN NaN

α 9.16×10−15 3.10×10−14 1.06×10−13 1.65×10−12 NaN NaN

Nit 14 13 14 25 24 17
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(a) (b)

Figure 6: Reconstructed excitation �eld at 350 HZ from OMR-IRLS for di�erent SNR

values � (a) 20 dB and (b) 15 dB � (q1, q2) = (0.5, 2) � For SNR values equal to 10 dB

and 5 dB the OMR-IRLS algorithm returns a NaN vector

In the case of the MPMR-IRLS algorithm, consistent results are obtained

up to a SNR equal to 25 dB. Below this value, unreliable results are obtained,

since one or both adaptive regularization parameters tends to in�nity (see

Table 5 and Fig. 7). As a side note, It is worth noting that selecting α(0)

from standard automatic selection procedures has no impact on the solutions

�nally identi�ed from the OMR-IRLS and MPMR-IRLS algorithms.

This study clearly points out that the choice of the resolution algorithm

is not neutral in terms of solution accuracy. In the present application, it

appears that the OMR and the MPMR performs equally well for high-SNR

data, whatever the resolution algorithm used to solve them. However, OMR-

IR and MPMR-IR algorithms are more robust than their IRLS counterpart

with respect to the measurement noise level. Indeed, in case of low-SNR data,
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(a) (b)

(c) (d)

Figure 7: Reconstructed excitation �eld at 350 HZ from MPMR-IRLS for di�erent SNR

values � (a) 20 dB, (b) 15 dB, (c) 10 dB and (d) 5 dB - (q1, q2) = (0.5, 2)
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Table 5: Performances of the MPMR-IRLS algorithm for with respect to the noise cor-

rupting the data

SNR (dB)

30 25 20 15 10 5

PE (%) -2.98 -12.49 -100 -100 -100 -100

RERF (%) 18.24 17.49 22.39 26.55 100 100

GRE (%) 18.05 18.20 30.31 34.04 100 100

α1 3.79×10−14 1.42×10−13 +∞ +∞ +∞ +∞

α2 1.54×10−14 5.57×10−14 8.71×10−13 1.73×10−12 +∞ +∞

Nit 12 17 18 18 18 15

the OMR associated to the OMR-IR algorithm is the better option, even if

the MPMR solved from the MPMR-IR algorithm remains, to a certain extent,

a viable alternative.

5. Conclusion

This paper has been focused on the applicability of a multi-parameter

multiplicative regularization (MPMR) for solving force reconstruction prob-

lems, compared to a more classical single parameter approach recently pub-

lished by the authors, called ordinary multiplicative regularization (OMR).

From a numerical standpoint, each formulation is solved from an original It-

eratively Reweighted (IR) algorithm obtained from the direct application of

the �rst-order optimality condition. In this contribution, the resulting resolu-

tion procedures are named OMR-IR and MPMR-IR algorithms respectively.

To assess the ability of each formulation in properly reconstructing excita-
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tion sources acting on a mechanical structure, a numerical experiment has

been conducted. In particular, it has been demonstrated that OMR-IR and

MPMR-IR algorithms are more robust than the corresponding IRLS ver-

sions with respect to the measurement noise level. Consequently, regarding

the initial motivation of this work, both the OMR and the MPMR are viable

alternatives, provided that a suitable resolution algorithm is implemented.

For high and moderate measurement noise levels, the MPMR-IR algorithm

provides more accurate results than the OMR-IR algorithm. In case of very

noisy data, however, only the OMR-IR algorithm, allows obtaining consistent

reconstruction. To sum up, it may be concluded that the MPMR formula-

tion, associated to the IR algorithm introduced in this paper, is interesting if

the measurement vibration data are rather clean. From a general standpoint,

the OMR-IR strategy is however the safer option if the measurement noise

level is unknown, because it provides a good compromise in terms of solution

accuracy for a large range of measurement noise level.

Appendix A. In�uence of the selection of the initial adaptive regu-

larization parameter for OMR-IR algorithm and low

SNR value

In case of extremely noisy vibration data, the choice of the initial adap-

tive regularization parameter α(0) is crucial. To demonstrate this statement,

Table A.1 and Fig. A.1 gather the results obtained by applying of the OMR-

IR algorithm from a displacement �eld having a SNR of 5 dB and selecting

α(0) from the L-curve principle (LC) [44], the Generalized Cross Validation

(GCV) [42] and the Bayesian Estimator (BE) [45]. Presented results high-
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light the in�uence of the procedure used to initialize α(0) in case of very low

SNR data. Indeed, when the parameter is selected from the GCV or the

BE, reasonable reconstructions are obtained considering the noise level ap-

plied to the displacement data. On the contrary, when the parameter α(0) is

picked by the L-curve, the OMR-IR algorithm is unable to properly identi-

�ed the point force, since in the corresponding region the solution vector is

the zero vector. The latter result can be explained by comparing for each

selection procedure the values α(0) and α (converged value of the adaptive

regularization parameter) given in Table A.1. While α(0) is about one order

of magnitude less than α for the GCV and the BE, it is actually greater

than α for the L-curve. This implies that the initial solution is probably to

smooth to expect the convergence of the OMR-IR algorithm to a meaningful

identi�ed solution.

Table A.1: Performances of the OMR-IR for low SNR data (SNR = 5 dB) with respect to

the selection procedure used to set α(0)

Selection procedure

LC GCV BE

PE (%) -99 -21.28 -26.30

RERF (%) 33.85 31.34 31.02

GRE (%) 40.87 32.08 31.96

α(0) 2.33×10−12 6.40×10−13 7.08×10−13

α 2.21×10−12 1.40×10−12 1.57×10−12

Nit 17 22 28

29



(a) (b)

(c)

Figure A.1: Reconstructed excitation �eld at 350 HZ from OMR-IR from vibration data

having a SNR equal to 35 dB after applying di�erent selection procedure to set the value of

α(0) � (a) L-curve principle, (b) Generalized Cross Validation and (c) Bayesian Estimator

� (q1, q2) = (0.5, 2)
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Appendix B. Description of the OMR-IRLS and MPMR-IRLS al-

gorithms

This appendix aims at presenting the necessary changes in the OMR-

IR and MPMR-IR algorithms to obtain the corresponding OMR-IRLS and

MPMR-IRLS algorithms. From a theoretical standpoint, the core idea of the

OMR-IRLS and the MPMR-IRLS algorithms is to recast at each iteration of

the iterative process the `qr -norm into a weighted `2-norm. In other words,

the sought excitation vector at iteration k + 1 is solution of:

F̂
(k+1)

= argmin
F\{0}

‖X−HF‖22 ·
R∑

r=1

‖W(k+1)
r

1/2
Fr‖22, (B.1)

for the OMR-IRLS algorithm, while for the MPMR-IRLS algorithm, it is the

solution of:

F̂
(k+1)

= argmin
F\{0}

‖X−HF‖22 ·
R∏

r=1

‖W(k+1)
r

1/2
Fr‖22, (B.2)

Appendix B.1. OMR-IRLS algorithm

To obtain the OMR-IRLS algorithm, one just has to modify the OMR-IR

algorithm by changing the de�nition of the coe�cients of the local weighting

matrix and the expression of the adaptive regularization parameter, given by

Eqs. (10) and (13). For the OMR-IRLS, one has:

α(k+1) =

∥∥∥X−HF̂(k)
∥∥∥2
2∥∥∥W(k+1)1/2F̂

(k)
∥∥∥2
2

, and w
(k+1)
r,i = max

(
εr,
∣∣∣f (k)

ri

∣∣∣)qr−2 . (B.3)

Appendix B.2. MPMR-IRLS algorithm

To obtain the MPMR-IRLS algorithm, one just has to modify the MPMR-

IR algorithm by changing the de�nition of the local adaptive regularization
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parameters, given by Eq. (16). For the MPMR-IRLS algorithm, one has:

α(k+1)
r =

∥∥∥X−HF̂(k)
∥∥∥2
2∥∥∥W(k+1)

r

1/2
F̂

(k)

r

∥∥∥2
2

, (B.4)

where the coe�cients of the local weighting matrices are de�ned in Eq. (B.3).
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