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Abstract: In this work, we consider the time-harmonic Galbrun’s equation under spherical
symmetry in the context of the wave propagation in the Sun without flow and rotation, and
neglecting the perturbations to the gravitational potential. The model parameters are taken from
the solar model S for the interior of the Sun, and we introduce the model AtmoCAI (ideal atmospheric
behavior with constant adiabatic index) to extend them into the atmosphere. This atmospheric
extension is based on the model Atmo used for the scalar wave propagation where, in addition, we
assume a constant adiabatic index in the atmosphere. Due to the spherical symmetry, by writing
the original equation in a vector spherical harmonic basis, we obtain the ODE for the modal radial
and tangential coefficients of the unknown displacements. We then construct the outgoing modal
solutions, the 3D Green’s kernel, and radiation boundary conditions. The construction is justified
by indicial and asymptotic analysis of the modal radial ODE. While the singular set in the presence
of attenuation only consists of the origin, our analysis shows that without attenuation, there are also
other singular points which, however, have positive indicial exponents. Our asymptotic analysis
makes appear the correct wavenumber and the high-order terms of the oscillatory phase function,
which we use to characterize outgoing solutions. The radiation boundary conditions are built for the
modal radial ODE and then derived for the initial equation. We approximate them under different
hypothesis and propose some formulations that are independent of the horizontal wavenumber and
can thus easily be applied for 3D problems.

Key-words: vectorial helioseismology, Galbrun’s equation, outgoing solutions, radiation bound-
ary conditions, indicial analysis, Green tensor, Whittaker functions, Coulomb potential



Solutions sortantes et conditions de radiation pour I’équation des
ondes vectorielles en héliosismologie avec un modéle
d’atmosphére idéal

Résumé : Dans ce travail, nous considérons 1’équation harmonique de Galbrun en symétrie sphérique
pour la propagation d’ondes dans le soleil, sans flot ni rotation, et en négligeant les perturbations du po-
tentiel de gravité. Les paramétres sont extraits du modéle S pour l'intérieur du soleil, et nous introduisons
un modeéle AtmoCAI (comportement atmosphérique idéal avec un indice adiabatique constant) pour leur
extension dans I’atmosphére solaire. Cette extension est basée sur le modéle Atmo utilisé dans le cas
scalaire, que nous enrichissons en prenant l'indice adiabatique constant. De part la symétrie sphérique,
en écrivant le probléme dans une base harmonique sphérique vectorielle, nous obtenons 'EDO modale
pour les coefficients radiaux et tangentiels du déplacement. Nous construisons les solutions sortantes
modales, le noyau de Green en 3D et obtenons des conditions aux limites de radiation. La construction
est motivée par l'analyse indicielle et asymptotique de 'EDO radiale modale. En présence d’atténuation,
la seule singularité est & l'origine, alors que dans le cas sans atténuation, nous identifions les autres sin-
gularités qui, cependant, ont un exposant indiciel positif. Notre analyse asymptotique fait apparaitre
un nombre d’onde approprié et les termes d’ordres élevés de la phase, qui nous servent & caractériser
les solutions sortantes. Les conditions aux limites de radiation sont construites pour ’'EDO modale puis
étendues au probléme initial. Nous les approximons sous différentes hypothéses et proposons plusieurs
approximations independantes du nombre d’onde horizontal qui peuvent étre facilement utilisées pour les
problémes 3D.

Mots-clés : équations vectorielles pour I’héliosismologie, équantion de Galbrun, solutions sortantes,
conditions aux limites absorbantes, analyse indicielle, tenseur de Green, fonctions de Whittaker, potentiel
de Coulomb
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1 Introduction

In this work, we consider a version of the time-harmonic Galbrun’s equation under spherical symmetry
for applications in helioseismology. We carry out indicial and asymptotic analysis in order to define
outgoing solutions and radiation boundary conditions. The adiabatic wave motion due to a time-harmonic
perturbation of frequency w/(27) is modeled by the vector field &(x,w) € R? on top of a stationary
background (i.e., the physical parameters do not vary with the time), and solves the following form of
the Galbrun’s equation,

—po (W + 2iwD) & + P(&) + po(€-V)VEy = f inR?, (1.1)

where we omit the space dependency for clarity. Here, ®y denotes the background gravity potential that
satisfies,
A®y = 47 Gpg, (1.2)

where G is the gravitational constant. The operator P is defined as

P¢ = —V[ypoV-€ + (Vpo)(V-&) — VI[(&-V)po] + (£-V)Vpo, (1.3)

Here, we ignore flows, rotation and the perturbations due to the gravitational potential using the Cowling
approximation [14]. The stationary background is characterized as a hydrodynamical system and is given
in terms of the following scalar quantities that depend only on the position x: the density pg, the pressure
Po, the attenuation I" and the adiabatic index -, and the background is further assumed to be spherically
symmetric. While we have in mind solar applications, (1.1) is also employed in aeroacoustics to describe
the propagation of the acoustic sound produced by an aircraft engine in the presence of (air) flow around
this engine, see [33, 24]. One particularity of (1.1) is that the unknown £ is a Lagrangian displacement in
terms of an Eulerian variable x, such that this formulation is also called Eulerian-Lagrangian description
of the perturbation. The Galbrun’s equation was introduced by Galbrun in [19] in the 1930s, and re-
derived by Poirée in [30]; we refer to [33] for a brief history of the equation and to [24] for a more recent
derivation in the context of aeroacoustics. The derivation of the equation in the context of stellar physics
is given by [26, Eqn 28-30].

For application in helioseismology, the unknown £(x,w) represents the displacement of the solar
material observed at the (geometrical) position x € R3 in the photosphere (the Sun’s surface layer),
cf. [21, Section 2.3|, [8, Eqn 4-5] and [22, Eqn 5]. The projection along a line-of-sight 1 € R3 of the
solution & (corresponding to a stochastic source f), —iwé - i, simulates the line-of-sight Dopplergrams
which are crucial input data for time-distance helioseismology, cf. [22, Eqn 15] and [9, Eqn 3]. In our
specific problem, up to 500 km above the “surface” of the Sun, the background quantities are given by
the model S of [12]. To establish to model parameters in the atmosphere after this height of 500 km, we
introduce the AtmoCAI model (ideal atmospheric behavior with constant adiabatic index) which is built
from the model Atmo employed in [17, 3, 5, 6] for the atmosphere when studying a scalar wave equation
for helioseismology. While the model Atmo determines the extension of the parameters such that (i) the
sound speed ¢o and attenuation I' are constant in the atmosphere, (ii) the density po is exponentially
decaying in the atmosphere, the vectorial equation needs additional specifications to extend pg, v and

0, see our discussion in Section 3.

While the oscillations in the Sun are driven by stochastic convection below the surface, the main input
for time-distance helioseismology is the expectation value of the cross-covariance which is a deterministic
quantity that can be estimated numerically from the deterministic Green’s kernel of (1.1). The main
task is to numerically compute a suitable Green’s function of (1.1). To complicate the matter, the
phenomenon occurs in an infinite spatial domain. Depending on the purposes of the analysis, suitable
boundary conditions have to be imposed to obtain uniqueness of solutions, which also comes as a necessity
for numerical resolution based on domain discretization, which requires the finiteness of domain. With
this general goal discussed, there are three main groups of results obtained in our work, which also serve
as its novelty.

1. We provide a global analysis of the resulting radial ODE. In particular, we carry out a detailed indicial
analysis of the coefficients both in the presence and absence of attenuation, and an asymptotic analysis
at infinity. We show that the singular sets are all reqular singular. While the singular set in the presence
of attenuation only consists of the origin, our analysis shows that without attenuation, there are also

Inria



Outgoing solutions in vectorial helioseismology 7

other singular points which however have positive indicial exponents, cf. Table 1. Only the indicial
roots at the origin were studied in the litterature by [35] (for £ > 0) under more restrictive hypothesis
on the background coeflicients. The asymptotic analysis provides a means to define outgoing solution,
and characterizes the oscillator behavior of such a solution. In particular, our analysis makes appear
an appropriate wavenumber (given in (9.12)) and the high-order terms of the oscillatory phase function
(see (9.22) and (9.27)).

2. We construct the modal radial Green’s kernel, from which we obtain the outgoing 3D Green’s kernel
in (9.89). This quantity is the main ingredient to compute Born sensitivity kernels that are used
in helioseismology in order to interpret the observations. See for example [21, 8] for a discussion in
Cartesian geometry (small patch of the Sun) and [9] in spherical.

3. Regarding boundary conditions, our work extends the RBCs from [5, 6, 4] to the vectorial case in
a spherically symmetric background, and thus also benefits from the ODE techniques of [2]. We
obtain low-order radiation boundary conditions both in modal form (i.e. for the coefficient of the
decomposition in vector spherical harmonics) and in 3D form. They are built by approximating the
square root of the operator and keeping the terms up to order r—2. However, we noticed numerically
that including the gravity term that is of order »—2 greatly improves the accuracy of the boundary
conditions. Physically, surface gravity waves (f-mode) are located in the first megameters below the
surface while acoustic modes (p-mode) propagate deeper in the solar interior. It could explain the
importance of this term in the quality of the approximate boundary conditions. We propose several
boundary conditions under the hypothesis of small wavenumber or small angle of incidence by including
or not the gravity term.

Before the work of [20, 17], a common practice was to impose a free-surface boundary condition
at the surface of the Sun (Lagrangian pressure perturbation vanishes on the surface) [10], which is
adequate for describing trapped waves and waves at low-frequencies, but is however not suitable for high-
frequencies at which waves can propagate to infinity. To describe the infinite phenomenon, most results
in helioseismology work with a scalar wave equation with a new unknown u = poc2V - €, that solves,

1 o?
-V {—Vu| — sU = source term, (1.4)
Po Po Cp

where cg denotes the sound speed and 02 = (w? + 2iwT). This is obtained from (1.1) under simplifying
assumptions, cf. [20, 17, 3, 5, 6]. [20] uses the model Atmo to extend the model S up to 4 Mm above the
surface of the Sun, allowing the use of the Sommerfeld condition, d,u = i0/cs u, thus with wavenumber
0/coo at the boundary, with c. the constant value of the sound speed in the atmosphere. This approach
increases the computational domain and thus the computational cost. Also working with the scalar
equation (1.4), new radiation boundary conditions (RBC) are constructed in [3] under the Atmo extension,
which allow for an exponential decay of the background density in the atmosphere, and placement of the
artificial boundary right after the end of the model S (500 km above the surface). These conditions are
called non-local, small-angle approximation (SAI) and high-frequency (HF) approximation. The non-
local and SAI results directly from the factorization of the scalar wave operator and provide satisfactory
results. On the other hand, the HF families are obtained from approximation of the non-local condition
with (0/cg)™! as the small quantity. Low-order HF conditions, while offering lower precision, have the
advantage of being readily implementable in 3D or non-spherical geometry and even in the time-domain,
without the intervention of tangential derivatives. We also refer to [23] for another technique to truncate
the discretization domain using perfectly matched layers, which is also the approach taken by [24, 15] for
the vectorial equation.

While the theoretical question of characterizing outgoing solutions is interesting in its own right,
understanding the asymptotic behavior of the exact outgoing solution allows to calculate the correct
dominant oscillatory behavior of the solution. In particular, solutions are approximately described at in-
finity by spherical waves whose propagation speed is described by a pertinent wavenumber. Working with
the right wavenumber has direct repercussion in high-order approximations of the non-local condition,
i.e., the HF families. The radiation conditions in [17, 3| are justified theoretically in [5, 6, 1] by using
long-range scattering theory for Schrodinger equation. Additionally, [5, 6] also identify the appropriate
wavenumbers which in fact also depends on the density scale height in the atmosphere, and thus offers
a better performance for high-frequency approximations of the non-local condition, as shown in [5, 6, 4].

RR n° 9335
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In a different setting, working with the vectorial equations, based on the work of [18, section 3.3 p. 89] in
the absence of flow, [34, 33, 29| apply a non-reflective condition, which takes the form of an impedance
condition relating the Lagrangian pressure perturbation to the normal direction of the displacement, and
is equivalent to V - & = i(0/cx) € - 1, see Subsection 10.3.3 for further discussion. As mentioned above,
this is the wavenumber associated to a uniform (i.e., constant) background, and this condition should
work well under this assumption. However, in order to work with the Atmo assumptions, one would expect
the wavenumber to also depend on the rate of decay in the atmosphere of the density background, as
shown in our work.

The report is organized as follows. After some discussion on the Galbrun’s equation and more precise
statement of our working assumptions in Sections 2 and 3, we write the unknown displacement £ in the
vectorial spherical harmonic basis, and we obtain the decoupled systems in Section 4, cf. Proposition 3.
These systems are solved by the radial and the tangential coefficients of & in the aforementioned basis.
It is shown that the solution of the vectorial equation is completely determined by its radial coefficient.
We also reduce the radial modal ODE into a Schrodinger form, called conjugate modal radial equation,
which facilitates the construction of outgoing solution. In order to construct the outgoing solution,
we carry out an analysis of singularity in Section 7 and an asymptotic analysis in Section 8 for the
coefficients of the modal ODE. These ingredients are used in the construction of the modal Green’s
kernel in Subsection 9.1.4 and of the 3D Green’s kernel in Subsection 9.2. The analysis of this section
also makes appear the appropriate wavenumber, given by (9.12), which controls the oscillations of the
outgoing solution at infinity (under AtmoCAI assumption). In Section 10, we follow the same procedure
as in [5] to construct the nonlocal RBC and its low-order SAI and HF approximations. These are first
obtained for the modal conjugate radial unknown in Subsection 10.1 and then obtained for the radial
coefficients and tangential ones in Subsection 10.2. We also put these into 3D forms in Subsection 10.3,
that can be applied in a direct 3D discretization of equation (1.1).

2 Notations

In this section, we review the main notation and quantities that are used throughout the report.
We denote by v the square root branch that uses the argument branch [0, 27) while (-)'/2 uses
the argument branch (—m, 7.

2.1 Physical parameters and scaled variables

We consider the propagation of time-harmonic waves in the Sun defined by

R is the Sun’s radius, with approximation Ro = 695.510 x 10° m.

R is the (non-scaled) position along the Sun’s radius.

e 7 is the scaled radius position such that r = R/Rg.

r, denotes the scaled position at which the solar atmosphere begins, given in the model S by
ro = 1.000 712 6, which corresponds to about 4.96 x 10° m above Rg.

e w is the angular frequency.

£ is the Lagrange vectorial displacement perturbation.

® is the background gravity potential given from (1.2).

Therefore, in the following of the document, we mostly work with the scaled radius, such that r = 1
corresponds to the solar position Rg.

Next, the physical parameters are considered as radial quantities, only varying with the radius, they
are extracted from the model S of [12].

e ¢( is the scaled background velocity (also referred to as sound speed or wave speed), shown in
Figure la. Here, we work with the scaled quantity, co = co/Re given in s™1, with ¢y the original
solar sound speed in ms~! given in model S.

Inria



Outgoing solutions in vectorial helioseismology 9

po is the background density given in kgm™3.

~ is the adiabatic index, in the model S, ~ is not constant, except in the atmosphere and
1<y <2, (2.1)
as illustrated in Figure 3.

e I is the attenuation coefficient.

Po is the scalar pressure field.

G is the gravitational constant, G = 6.67408 x 10~ m3kg~1s72.

e o is the complex frequency that encodes the attenuation such that

a:w,/1+2i£. (2.2)
w

We also refer Remark 13 for the dimensionless of the coefficients of our working ODE.

Attenuation model For the representation of I', it commonly follows the power law

w
Pw) = o | 2| 5, (23
w
with, cf. [20, Eqn. 79],
FO wo
— = 4.29 nHz, — =3 mHz, B =5.17T. (2.4)
s 27

As an alternative, one can also consider a constant attenuation model with

r
or = 20 pHz, constant attenuation as an alternative to the power law. (2.5)
™

Scale height functions Scale height functions are defined as the derivative of the logarithmic of the
model parameter. These are defined for the density, the velocity and the adiabatic index, such that

/

p
Oé(: aPO) = 7;27
¢
Qcy = _iv (26)
/
o =1,

2.2 Numerical representation

The values of the physical parameters are given, point-wise, in the model S from [12]. Because we also
need the derivative of the parameters (via the scale height), we first create a spline representation of the
parameters, which are then explicitly defined, including their derivatives. Namely, from the couples (r,
values) given in model S, we deduce a basis of cubic splines, where we guarantee that the error between
the spline representation and the original model is less than 0.1%. The partition of the interval is not
homogeneous, in order to have the slowest number of splines as possible. In Appendix F, we provide
the resulting representation. In Figures 1 to 3, we illustrate the physical quantities. In particular, we
observe that the profiles are relatively stable at the beginning, while drastic changes appear near the
surface region.

RR n° 9335
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(a) Velocity profile from model S. (b) a = —p'/p profile from model S.

Figure 1: Profiles of the solar parameters with the model S. In our analysis, we consider the scaled velocity

co = ¢o/Re, given in terms of the scaled radius r = R/Rg.
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(a) Derivative of the velocity given by model S. (b) Profile of r/co from model S.

Figure 2: Quantities used for the analysis associated with the solar model S. In our analysis, we consider
the scaled velocity co = ¢o/Rg, given in terms of the scaled radius r = R/Rg, therefore, we have
R/co = r/co.

1.2 |~ — 2 -
| |

0 0.5R@) Rg 0.95R s Rg

R R

(b) Zoom near R = R for the Solar adiabatic
index vy

(a) Solar adiabatic index ~ from model S.
Figure 3: Adiabatic index profile extracted from the solar model S.

2.3 Surface operators and vector spherical harmonics
2.3.1 Coordinate systems and derivatives

The Cartesian basis is denoted by e;, es, e3. The spherical basis is denoted e,, ey, ey, with 0 < ¢ < 27
and 0 < 0 < 7, such that

e, = sinfcos¢ e; + sinfsingey + cosbes,

eg = cosf cos¢ e; + cosf singpes; — sinfes, (2.7)
e, = —singe; + cospey.
For a scalar f, we have
sz@rferJrag—fe %%
r r sin 6
1 1 1 (2.8)
_ . 2 . 2
Al = r2 (70 ) + r2 sin 6 Dp(sin 60y f) + 72 sin 62 %7

Inria



Outgoing solutions in vectorial helioseismology 11
For a vector v, we have
vV =uv.e + vges + Vg€, (2.9)
in 6
Vv = —8 (1" vr) + ag(sn'l vo) + 3¢'v¢ ) (2.10)
rsin 6 r sin 6
The material derivative is defined such that
F F,
(v-V)F = (v~VFT — y _ w%)e
Fy F,
+ (V.VFG _ Y7 otp 4+ 0 )eg (2.11)
r r
F, F,
+ (V-VF¢ + %T 4 20 Cot@)e¢
Remark 1. Another way to think about material derivative is using
(v-V)F = VF . | v. (2.12)
material derivative of F along v tensor contraction
The gradient of a vector F in spherical coordinates is
OpFy F 0y F F,
VF = (GTFT)er®er+ ( o 9>er®e9+ ( ¢ ¢)er®e¢,
r r rsind 1
OpFy F, 0y Fi F.
+ (ang)ef)@er + ( 70 4 —)ee®e9 n (M - —"’cote)eg ®eq (2.13)
r r 7 sin 6 r
OpF, 04 F, F, F,
+ <8TF¢)e¢®er + ( 97’ ¢)e¢®eg + (ﬁ +-+ %coté’)e(ﬁ@e(ﬁ.
Contracting with v = v.e, 4+ vges + vg€y to the right gives
Oy F, F, 0y by F,
VF-V=<7)T€‘)F + vy 4 —vg—e—i—’% ¢ — Vg ¢>er
r rsin 6
F F, Oy Fl F,
+ (vra Fy + vy oy + vg— + vy ¢ o _ v¢—¢cot9)e9
rsin 6 r
0 F 0y F, F, Fi
+ (vra Fy + v 79 4 Vg 070 4 Vp— + v¢—6cot9>e¢
rsin 6 r r
7 (2.14)
(V VF - U@i - 1}¢f¢>e,«
F, Fy
( v-V)Fy + vg— — v¢—cot9)
r
F, Fy
( v-V)Fy + v¢77 + v¢,—cot9)
A
2.3.2 Surface differential operators
The unit sphere is referred to by S?, along which we have
Vs2f = Ogfep + ¢f6‘ €y, (2.15a)
69 (sin 0 ’Ug) 6¢U¢
2 -V = 2.15b
VeV sin 6 * sinf ’ ( )
1
Ag: f = 9 Op(sinf 0pf) + s a4 f, (2.15¢)
curlng = —n x Vg f, (2.15d)
curlszv = n-curlv. (2.15e)
In addition, we have that
Vg2 -curlge f = 0,
Cuﬂgz VSZ = O, (216)

Ag2 = Vg2 - Vg2 = —curlge curlge f.

RR n° 9335



12 Barucq, Faucher, Fournier, Gizon & Pham

2.3.3 Spherical harmonics

The spherical basis is of dimension 2¢ + 1, cf. [28, 9.3.1] or [28, Theorem 9.11 p. 238], and comprises of

2 1 (¢ — ! ;
Y7 (0, 6) ::\/£+ MPLm‘(COSH)GIqu , teNm=—(,...

ir (0 |m])!

It has property
AgY7' = —0(0+1) Y

Remark 2. As in [28, Remark 9.12], we also use the notation
Yi' (%)

for X the unit vector with spherical coordinates 6, ¢.

v (2.17)

(2.18)

(2.19)

A

Vector spherical harmonics These are defined by, see [28, Eqn. 9.56, Section 9.3.3] or [27, Definition

3.336, p. 107],
P}'(X) = Y[ (@) e,
Cl(x) = _ curle Yy = B e X Vg YY"
(0+1) (0+1)
1
B'R) = —— VY , (=1,2,....
7'(X) R

We note that C}* can also be written as,
Cy' = —e, x Bf".
They have the following properties.
1. Properties with the divergence and the curl,
Vs - C* =0,

and

1 1

Ve Bl'= — Ve Ve Y = ———— AuY" = —

W+1) W+1)

2. From their definitions, they are point-wise perpendicular, cf. [27, Eqn. 3.132].

3. The following set

7.BY o, 4=1,2..., m=—(...

(2.20)

(2.21)

(2.22)

)Yy (2.23)

(2.24)

forms a complete orthonormal basis for the set of tangent vectors' LZ(S?), cf. [28, Lemma 9.15 p.

241].

4. Together with the fact that Y;* for £ = 0,1,... and m = —¢,...,¢ forms a complete orthonormal

basis for L%(S?), cf. [28, 9.11],

P),Cl' B, (=1,2,..., m=—{,...

(2.26)

forms a complete orthonormal basis for L?(S?)3, the space of surface vectors on the unit sphere S?

whose components are L?(S?).

'For a bounded domain with C? connected boundary 99, the space of surface tangential vector fields in L2(99) is

defined as, cf. [28, Eqn. 3.13],

L2(8Q) := {u € L?(60)3 |vaq - u = 0 almost everywhere on BQ} .

(2.25)

Inria



Outgoing solutions in vectorial helioseismology 13

3 Equations of motion for model S+AtmoCAI

We have introduced the main equation for the propagation of time-harmonic waves, in terms of the
Lagrangian perturbation &:

—po (W? + 2iwT) € + P(€) + po(€- V)V = f, in R?, (3.1)

with
PE = —V[ypoV-&] + (Vpo)(V-€) — V[(&-V)po] + (£-V)Vpo, (3.2)

and
A(I)Q = 47TGp0 . (33)

As mentioned in the introduction, we work in a context of helioseismplogy and take a simplification
of the full Galbun’s equation see Remark 3. We detail in Assumption 1 the simplification involved.

Remark 3 (Full Galbrun’s equation). The original equation in time-harmonic regime from Lyndell-Bell’s
paper [26, Eqn. 17, 28-30], also called Galbrun’s equation is

polic + vo V)¢ + RE + P&+ GE = f, (3.4)

where & is the Lagrangian perturbation to the background, and

1. the operator P is defined as,
PE = —V[vpoV -&] + (Vpo)(V-£&) — VI(&-V)po] + (§-V)Vpo, (3.5)

2. the complete gravity operator G (in the opposite sign convention?® to [26, Eqn. 23]) is defined as

G€ = poVS(§) + po(§-V)V(Do), (3.6)
with the perturbation in gravitational potential S satisfying the relation,
AS(§) = —4nG'V - (pof), (3.7)
and
A(I)() = 47TGp(] . (38)
Since the fundamental solution for the Laplacian is _ﬁlxl’ we have
—G/ 3.9
|x — yl (39)
8. The rotation operator R around azis in ) direction, is given as,
RE == 2pp X (iw + vo-V)E + po QA x (A XE). (3.10)
Coriolis force Centrifugal force
A

Remark 4. The following quantity denotes the Eulerian perturbations of the density, fluid pressure,
and gravitational potential denoted respectively by 5 5 , see, e.g., [24, Eqn 1.66,1.68 p.30], [11, Eqn.
3.44,3.45,3.41, 3.50 p. 50-51],

55 = =V -(p&) = =(Vpo)-& — poV -&; (3-11a)
oF = ¢ voﬂp‘)( + € Vpo) = —€ Vpy — po} V- €; (3.11b)
65 =S =  As =47G 5. (3.11c)

A

2In [26, Eqn. 23], G€ = —pové(g) — po (&- V)V(Z)O where ¢ = —Pg and S = —S.

RR n° 9335



14 Barucq, Faucher, Fournier, Gizon & Pham

3.1 Assumptions

In order to work with the problem made of (3.1) and (3.2) instead of the full equation (3.4), we have the
following set of assumptions.

Assumption 1 (General assumption). In our study, we assume that
1. We assume that there is no rotation involved, 2 = 0.
2. We work in a region where there is no flow, that is vog = 0.

3. The first term in the gravity is ignored (i.e., no perturbation in gravity), such that we leave out

S(§).
From these three assumptions, (3.4) and (3.5) reduce to (3.1) and (3.2).
Assumption 2. We further assume that,

1. the background parameters py and pg have a radial dependence, thus
Vpo = (0rpo) e, = Dy e (3.12)

2. The adiabatic equation of state for the parameters pg, po and co with v the adiabatic index is given
by
c2po = vpo- (3.13)

3. We assume that the external source f is of compact support.

3.1.1 Representation in the interior of the Sun: model S
In the interior of the Sun, we follow model S, illustrated in Figures 1 and 2. The physical quantities pg,
co, po and ®q are radial, and the hydrostatic support reduces to

po = —po®, , r<r,. (3.14)

See Subsection 3.3 and Remark 5 below for more discussion on the hydrostatic equilibrium in the interior.
The background sound speed in model S sastifies the following assumption,

Assumption 3.

res — s strictly increasing on [0, rg]. (3.15)
co(r)

In fact, in the model S, the sound speed c¢( increases slightly close to the center of the Sun before it takes
on a steep decrease as one moves towards the surface, see Figure 1. However, the function r — r/co(r)
is strictly increasing on [0, r,] as observed in Figure 2.

3.1.2 Representation in the solar atmosphere: model AtmoCAI

We define the AtmoCAI, also called ideal atmospheric behavior with constant adiabatic background. At
500 km above the surface of the Sun, which coincides the end of the model S, the density pg is imposed
to be exponentially decaying and the background sound speed ¢y and adiabatic index v are extended by
constants. The extension of the fluid pressure pg follows by maintaining the adiabatic condition in the
atmosphere.

Definition 1 (Model AtmoCAI). In the atmosphere region, described by r > 14, the model AtmoCAI defines
the physical parameters such that:

1. the sound speed cqy is constant,
2. the adiabatic coefficient v is constant,

3. po is exponentially decreasing, such that the density scale height o, (= ) is constant.

Inria



Outgoing solutions in vectorial helioseismology 15

Remark 5. We note that the hydrostatic support, in particular in its radial version (3.14), is not com-
patible with the assumption that pg is exponentially decreasing. In particular in this case, equation (4.12)
does not hold. A

Remark 6 (model AtmoHE). We also have the option of assuming hydrostatic equilibrium in the atmo-

sphere, at the expense of letting go the assumption of constant adiabatic index in the atmosphere. This
model is called AtmoHE. A

3.2 Equivalent forms of the operator P

Proposition 1. The operator P defined in (3.2) can also be written as
PE = V[(l —¥)poV - £] —poV(V-&) — V[(&-V)po] + (£€-V)Vpg (3.16a)
= —V[ypoV-£&] + (Vpo)(V-€&) — V'€ Vpg (3.16b)
=-V-T, (3.16¢)
with
7= (y = 1)po(V-€)I3x3 + po V&, (3.17)
where I3x3 is the identity matriz.

Here, (3.16a) corresponds to [26, Eq. (25)], and (3.16b) is [24, Eq (1.65), p.30].

Proof. Starting from (3.2), since pgVV - & = V(poV - €) — (Vpo)(V - §), we can rewrite
V1 =7)poV -&] —poV(V - &) = =V [1poV - €] + (Vpo)(V - €) . (3.18)

Next, we compare with [24, Eq. (1.65) p.30],

3 3
V'€ - Vpy = Z (02, mi) (02, p0) = Zax, [(75€)(02,10)] — (7€) (0,02, 10)
3 3
= 00,3 (i) Ourpo) + 3 (7iE) (0a,0a,p0)
i=1 i=1

In the second term, we have interchanged the order of differentiation, and use the definition of the material
derivative in the Cartesian coordinates,

3 3
(£-V)Vpo = Z(Wiﬁ) (02,04,p0) = Z(ﬁE) (02,02, P0)
i=1 i=1 (3.19)
= (£-V)Vpy = &- zy, po== (VVpg)-&.
Hessian
As a result, we have,
V'€ - Vpo = V[€-Vpo] — (€-V)Vpo, (3.20)
and P can be written as
PE = —V[vpoV-&] + (Vpo)(V-€) — VE-Vpy. (3.21)
‘We now define
7= (y = 1)poV - &lzxz + po V'E, (3.22)

RR n° 9335



16 Barucq, Faucher, Fournier, Gizon & Pham

where I35 is the 3 x 3 identity matrix. We consider V - 7, we have (V!&);; = 0;€; and

3
V- (po V'€) Za po V'E),, Zajpoasj

=1

= Z(ajp()) 05 + ZPO 0;(0
j=1 j=1

= (V'€) - Vpo + poV - V¢

= (Vtﬁ) -Vpo + poVV -€.

In the last equality, we have assumed that £ is regular enough for interchanging the order of integration,
in order to obtain

3 3
V-ViE =) 0i(0:) = > 0i(9;¢;) = VV-£. (3.23)
j=1 j=1

The above calculation gives

Vir =V((v=1)poV-&) + V- (poV'€) = V((y—=1)poV - &) + (V'€) - Vpo + poVV -&. (3.24)
We next use (3.18), which gives
V[(v=1)poV -&] +poV(V - &) = V[ypoV - €] = (Vpo)(V - €), (3.25)
to group together the first and third term in the right-hand-side of (3.24),
V.1 = V[V -&| — (Vpo)(V-€) + (V'€) - Vpo.
As a result of the above calculation, we can write P as

P=-V- -1, with 7 := (y—1)po (V- &) I3x3 + po V€. (3.26)

3.3 Hydrostatic equilibrium (for the interior)

Following?® |11, Eqn. 3.30 p. 48], the equation of motion of a background at equilibrium without flow
and with only gravity as external force reduces to the equation of hydrostatic support,

vpo = —po Vq)o . (3.29)

Then, one can further rewrite (3.4), in particular by writing the term P& + G€ in terms of Eulerian
perturbation 65. This is the Equation (3.43) of [11].

Proposition 2. Given the hydrostatic equilibrium (3.29), the operator P defined in (3.2) and the
full gravity operator G defined in (3.6) can be written in terms of the Eulerian perturbation quantities
(3.11) as

PE + GE=V3 + 55V + po Vi . (3.30)

As a result of this, with Eulerian perturbations 6% defined in (3.11), the Galbrun’s equation (3.1) can

3The Euler’s equation with adiabatic state for the background in Eulerian quantities, cf. [24, Eqn 1.14-1.17 p. 22] with
exterior force (in this case gravity) Fo := —poV®g is

Otpo + V- (pv) =0, Convervation of mass,
Or(povo) + V- (pv®vVv + poId) = —poVPo, Equation of motion, (3.27)
YPo = pPo cg , Adiabatic equation of state.

At equilibrium, and assuming no background flow (vo = 0), then

V- (pv) =0, Vpo = —poV®o, YPo = pocp- (3.28)
In particular, the equation of motion (3.27) takes the form of (3.29).

Inria



Outgoing solutions in vectorial helioseismology 17

be written as
—poo® & + VO + 0, Vo + po Vég = £

3.31
Vpy (3.31)

= —p002€+v5§—55?

+ poV(SE, =f.

Proof. Taking the gradient on both sides of (3.29)

VVpy = —V(po V)
= VVpo = —(Vpo) @ (VB) — poVV P, (3.32)
=& VVpy = =€ [(Vpo) @ (V®g)| — po€ - VV .

From (3.19), we have

(&-V)Vpy = &- YV po = (VVpo) - €, (3.33)
Hessian
and thus,
(€-V)Vpo + £ [(Vpo) @ (V®0)| + (po€) - VV R = 0. (3.34)

Next, the first and third terms in the defining expression (3.2) of P combined can be expressed in
terms of 45,

PE = —V[vpoV-&] + (Vpo)(V-€) — VI[(€-V)po] + (£ V)Vpo
= Vo + (Vpo)(V-€) + (£-V)Vpo

20 G581 (—po VOo)(V-€) + (£-V)Vpy

U2 58 1 55EV®y + € (Vpo) @ (Vo) + (£ V)Vpo.

For the last equality we have used
(=0 V®)(V-&) = —(po V- &) (VPo) = =V - (po§) (V®o) + (Vpo) - §(VPo)
= (=po V®0)(V - &) = 6,V + & (Vo) @ (Vo) .

On the other hand, in the notation of the Eulerian gravity perturbation(3.11c), the full gravity operator
G defined in (3.11) is written as

GE = poVos + po (& V)V (Do),

such that,
PE + GE =V6) + 65V + poVig
+ & (Vpo) @ (V®o) + (£-V)Vpo + po (§-V)V(Do) . (3.35)

=0 due to (3.34)

4 Galbrun equation in spherical symmetry

4.1 Decompositions of &

We write the displacement & and source f in basis made up of vector spherical harmonics Py", B}" and
C7" introduced in (2.20),

£=¢& +&,, (4.1)

where

00 )4
£ (r7) = m€& = ag()Po + Y Y af(NPP@E)
l=1m=—¢

[e%S) 14

oo 14
€ = mttmet =3 S WOBI@ + Y Y ) Cr @)

=1 m=—4 =1 m=—~¢
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18 Barucq, Faucher, Fournier, Gizon & Pham

Remark 7. To alleviate the notation in the harmonic expansion, we use the convention that
By = C) =0. (4.2)
and thus all of the coefficients tangential coefficients at £ = 0 are zero,

by =c) =0. (4.3)

We have (using convention in Remark 7),
1., 1
Vﬁzﬁar(r 71—7"5) + *V§2'£h

—ZZ [”f e(z+1)bfm}ygﬂ

=0 m=—/

(4.4)

Here, in the first term we have used 7§ = a}* Y. In the second term, we used (2.22) and (2.23).
We also have a similar decomposition for the source f (using convention in Remark 7)

[’} 4

[eS) 14 oo 14
=y Z PR@) + ) Y g'()BP@ + Y Y hP(r)CP@). (4.5)
£=0 m=

— =0 m=—~ £=0 m=—/¢

4.2 Decomposition of P
We decompose
PE = —V[ypoV €] + (Vpo)(V-€) = VI[(&-V)po] + (€ V)Vpo (4.6)

in the basis of vector spherical harmonics. We also follow the convention in Remark 7.
e Consider the second term in PE. Using (4.4), the second term in PE can be written as

(Vpo)V - & = Z Z P [(7" ag')

£=0 m=—/¢

bm
00+ 1) 7{} Y/ e,

e Consider the first term in P&

b

0 2 m\/
VoV - €] = ZZMM%?H»WHUPT
=0 m——¢

2 m

:i > Y'Y WPO(@ (e+1) )} Z > vpo[ raf) _ e(£+1)b§} Yy

=0 m=—¢ =0 m=—¢

:i 3 o {ypo(@f)/ RNVA(ESY l’?)]n ,+Z > = (% e(zz+1)b Ve vy

=0 m=—/¢ =0 m=—/¢

e Consider the fourth term in P€&. This is the material derivative of vector Vpg = ppe; in the direction

£.
(£-V)Vpo=(£-V)(pper)

= (¢-Vph)e, + eo + (7€) Po e

r

(m0€) Py
'

/

=G (6~ er) e + 22 [(mo€) ep + (mo€) €] -

Thus the fourth term in PE is
/
(€-V)Vpo = pgg, + Oéh- (4.7)
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e Consider the third term in P&. Since

[e'S) 14
(gv)p0:p6£e7:p6€r22 Z p{)a’Znan’

=0 m=—/¢

we have

V(pyay' Y7) = (Vpoa" )Y + poay’ VY] = (Vpgay') Y7

m m Poa
= (pgai )/Ye er 0 VS Y[ .

As a result of this, the third term in PE is written as

0o 1 oo 14
~VI[(&-V)po] = —Z (phay’) Y e, — Z Z
=0 m=—¢ =0 m=—¢

By assembling the terms, we obtain

LR b -

=0 m=—/

- Z Z ™= ( - aé £(£+1)b )vSQY(’

=0 m=—¢

- ;[ (rPay’) b | yvm
+Zzp0 £(£+1)7 Y£ e,

=0 m=—4¢

Po
+pg€r + 7€h

—Z Z (poas’) Y, e, — i é pé)aZnVSzY?’
r

=0 m=—4¢ =0 m=—1¢

4.3 Gravitational contribution
Following (4.7),

/

GE = o (6 V)V(®0) = po @Y€, + po -0 €,

we further obtain explicit the expressions of ®( and ®{ by using equation

A(I)O = 47TG/)0.

Under the radial assumption, the left-hand-side reduces to
2 1
ADy = Of + ~0) = 5 (r* )’

Thus (1.2) is written as

1
’[“2( @/)/:4’/TG,00.

From (4.14), for both the atmosphere and interior of the Sun, we have

4 r
# =T [ os)ds.
0

2

and

2
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4.3.1 In the interior of the Sun
We recall from (3.14)

po — po®y =0 , r<r, = Py — po®y — po®y = 0. (4.17)

In addition to expression (4.15) and (4.16), in the interior of the Sun, the first and second-order radial
derivatives of ®( are also written as,

pl p// p/ 1:)// p/ p/
o, =2 | gr_Po _Pog _Po _ PoPo (4.18)

Po Po Po Po Po Po

4.3.2 In the atmosphere with model AtmoCAI

We have assumed that py decreases exponentially for r > r,, i.e.
po(r) = po(ra)e @0 ("=ra) > constant oy, > 0. (4.19)

Since

e %o’ 2 2 :
O | — (et 8)% + 250, + 2) | = s?e0

G T
Dy (r) = —2/ s2po(s) ds

™ Jo
AnG [T 4G ) "

= T2 [ oot ds + T plrayennrn [ sterenras
r 0 r Ta
4G [T 4G e po(s—7a) Ta

= 7-2 /0 52p0(8) dS =+ TTPO(T’Q) <((1)3 ((O{po 3)2 + 250po + 2) ) .

PO T

This means that ® is a sum of a multiple of 7~2 and a term that is exponentially decaying at oo.

Lemma 1. Under the assumption (4.19) i.e. py decreases exponentially in r > r,, with ®y defined
by (1.2) and r > r,, we have

G e %o (r=Ta) (a, 1) 4 271, + 2
I — p p
(PO(T) - ﬁm - 47TGP0(TG) r2 : (apo)g : ) (420)
where the constant m (depending on 1, and c,, ),
o (apo Ta)? + 2700, +2
m = 47 s°po(s)ds + 4w po(ra) 3 . (4.21)
0 (aﬂ())

Remark 8. We note that the first term in the definition (4.21) of m

47 / s2po(s) ds
0

1s the mass of the Sun until the beginning of the atmosphere, while the second term which can be written
as

2 0o
Qp, T 2r,a 2
47TPO(7"a)( o) ¥ T = / s”po(s) ds
(aPO) Ta
can be considered as the exterior mass of the Sun (to infinity). In this way, the constant m is the mass
of the ‘infinite’ Sun. VAN
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4.4 System of ODEs

We employ the convention in Remark 7. Putting together result of (4.10) for P& and (4.11) for G&, we
obtain

0 £ n
ZZfe Yeer+zz NS ZZ A (e x Ve YY)
=0 m=—¢ =0 m=—/ €+ =0 m= €+1
= —poo’é
o0 o
G '\ o ((r?af) by
-3 S g, [’ypo( - e(zz+1)7) Yie -3 T( 5 1)L )VSQYE
£=0 m=—¢ £=0 m=—¢
oo bm
DI E CEmEC R
£=0 m=—¢ "
/ + (I)/
(0 + po B €, + P00 g,
S J4 0o J4 p, am
Y Gl e -3 Y By
=0 m=—¢ =0 m=—¢
(4.22)
In particular, the coefficient of Yj'e, is
2 m\/ m 2 m\/ m
. 24 (Tae)_ bL / (7"%)_ bL
mate, = o lan(HL - VG L |4y | - Vi
+ po®gap + poa;’ — (phar')’ -
—_—————
—pg Oral®
ODE in the radial direction obtained as coefficients of Y}* e, in (4.22),
7”2am ’ pm
(0% po + po ®() ay’ — O, {VPO(( r; ' _ (L+1) f,)]
(T2am)/ pm (423)
oy | VI | - o = g
ODE in the tangential direction obtained as coefficients of Vg Y7* in (4.22),
bm
— o2py—l
L+ 1) (4.24)
_@((TQGT)/ N 1)@) L Potpo® b poa g '
r r2 r r ((C+1) r (+1)
and coefficients of —e, X Vg Y7*
/ / m m
2 Po + Po®o C hi
—o2py + ) - . (4.25)
( r VEl+1) il +1)
Equation (4.25) implies that
hm
ct = 5 £ (p)erO(I) , T 2T
— Q 0
oot T (4.26)
c = hi (r) r<T
(G .
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For the equation in the interior, we have used the relation (3.14), which gives that pj + po®; = 0
for r < r,. See also Remark 9 for the equation at ¢ = 0.

For the rest of the work, we will focus on a}* and by'. Using the identities

2 my/
rTa 2
( l) r{n arfn’

r2
r2am / 2
8r |:’7p0( 7)21 ) :| = ar |:7rp20 (27‘(1{[1 + 7“287‘@?1)} = 87“ |:’7p0(ra'fn + arafn):l

2 m m 2 m 2 m m
= (vpo)’ (Ta'l + Ora > +vpo( — =t ;5#11 + 92a)

2 2 2
= [(VPO)/; - 7]@072} a” + [('YPO)/ + ;'YPO} Oral™ + ypo O2a™

we rewrite (4.23) and (4.24) in matrix form,

am
0= —7Po 0 82 ¢
L0 o)

N
2
~(ypo) — T2 POy ) o'
r T o m
o 0 G
, NazE)
2 !/ 2 2 / _ !
o%py + podll — (vpo)’ | 2%0P0 | 2Py o) (2P E (vpo)"  Po N
T 2 r T 72 ay
+ / / !/ bzn ’
2 o NG
~20 Do —o2py + 04 1) 4+ Lo P00 e
T T r T
(4.27)
Dividing both sides of (4.27) by vpg , we obtain
m m (po) 2 Ll+1)
R -1 0 e - “r T ay’
o | = ( 0 o) o I I L O\
7Po Ve(l+1) V(1) S 0 £(£+1)
T
2 oy 2 ! 2 2 pt 1 1 pg ! 1
_9%p0  po®G 2 (ypo) TEREN T ({_poJr(vpo)}_Q)
4 YPo YPo T YPo r Y Po [ 7 DPo YPo r (4.28)
2 1 pt {41 1 ‘ D
S22 1p _Uzpo+<2>+(Po+pOo>
r Y Po TPo T ™7 \Po Po
ag
by
NIz
For convenience, we define matrix B and C' so that (4.28) is written as
1 flm -1 0 a?l ay a?l
,-yip g;n = ( 0 O) 83 bZn —+ Ba’r‘ bzn —+ C bzn . (429)
O\ Vet et oSy oSy
Remark 9 (Radial equation at £ = 0). We note that for £ =0 (recall the convention in Remark 7),
b) =) =g5 =h) =0. (4.30)
Equation (4.23) is only in terms of aJ,
2 YPo 2 PO 2
(=0o%po + po®))ay — O: (T—Q O (r ag)) + T—QB,,(T ad) — pyoray = fJ. (4.31)

Inria



Outgoing solutions in vectorial helioseismology 23

Following the same algebraic steps as above, or equivalently taking the first row of (4.28) (or equivalently
(4.29)) at £ =0, we arrive at

2
—02af + (2%0 - > Oray + Cria) = 0. (4.32)
T
A
We next rewrite (4.29) in terms of the various scale height functions introduced in (2.6),
BN — _% _
a(_ al)o) - 00 ) aCo T Co ) O"Y - o ?

4.4.1 1In the interior of the Sun

Using hydrostatic equilibrium (3.14), the last term in the component Cyo vanishes. Additionally, in using
the adiabatic equation of state, one can replace ypg by c3pg, or vice versa. With these two ingredients,
one can rewrite (4.28) as

/
f}rz azn, _ ('7p0) . 2 E(f + 1) azn
1 g (=1 0\ 42 YPo r r
o \—z ] = Lo o) | |+ 1 i
\L(+1) L(E+1) —_ 0 \L(L+1)
T
o2 oy 2 2 29l 1] 19p ! 1
Lo P 20 2 2R ) ( {_ o, (vpo) ] 2) o
Co Co T 7YPo r Y Po r 7Y Po YPo r ¢
e
2 1 pj o2 Ul +1) y
-5 - ==L = : Ve(e+1)
T 7Y Po CO T

(4.33)
In terms of the scale height functions (2.6), system (4.33) takes the following form. We note that the
adiabatic exponent 7y is not constant here.

In the interior of the Sun, for r < r,, the system (4.29) has the following explicit form
1 /i B <—1 0> e
—_— gZYL p— 0 O r bz’t
TPo\ e (e+1)
) 000 +1 4.34
2aCO +a— — w azn azn ( )
+ . r r a’r b;n +C b;'n s
2 0 NaEs) Ve
where
2 foY4 2
Chy = _% + =0 4 om0 = - Yo (4.35a)
c§ c§ r T Ty
o « 1
Cig = £(£+1) [ 2 — R0 _ ). 4.35b
= 1) (22 -t Y (4.350)
2 1
021 = —ﬁ + Eapo; (435C)
o I+ 1)
022 = _C72 + ’/’2 . (435(21)
0

4.4.2 In the atmosphere with model AtmoCAI

In the atmosphere, v and ¢ are constant. With the assumption of ideal atmospheric pressure, the scale
height associated the background density « is constant, while the other scale heights are zeros. We have

(C(Q) po) = C(Q) P -
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2
From the equation of state (3.13), Lo W—Q, we have
YPo <o
/ / 2 /

Po ¥ Po czpo po

This means that py decays exponentially at the same rate as pg for r > r,. To treat the term with ®f
we use (4.16),

o 4Gpy — 20| 47 G 2 471G 2
po®5 _ po(4rGpo To):po;r P2 gy AG 2O (4.37)
YPo YPo €H Po rCh < G T
In the atmosphere,
~1 0 o’ a-3 A0 o’ o'
- ( 0 0) o B I B O\ _op | FC| o |, (438)
Naz=Y - 0 NaG=Y, Vet
where
2 P 2 2 2«
Cn=-Z +20 42,42 22 (4.39a)
CO CO T T Ty
2 2 « 2 2 ®! 4G
-2 4= <a ) = - S0 Ty (4.39b)
g T vy r cg T co
1 « 1
Cra = (L +1) (7“ <—Oé + 7) - 7”2) ; (4.39¢)
2 1
Cop = -5 + ,g; (4.39d)
T ry
o2 al 0+ 1 ®) 1
O =0 - 2L D) Bl (4.39)
CO yr T CO r

4.5 Decoupled system

After the simplification in Subsection 4.4.1 and Subsection 4.4.2, the system of equation (with unknowns
ay* and b} )(4.38) for the atmosphere, and (4.34) for the interior can be unified as

1[I ~1 0\, (4 200 +a— 7 G ey
e = 0 0 ar ~ + or | .
Po\ Ve by -1 0 by"

Ci Ci2\ [a}
+ [eY a— « > ’
—Z 4 Pmdtem o o) \ip

with Cq1, C12 and Cys given by (4.35) for the interior and by (4.39) for the atmosphere. We note that in
the atmosphere r > r,,

(4.40)

gy =y =0 |, r2>7,. (4.41)
Proposition 3. With the scale height quantities o defined in (2.6), the radial coefficient a(r) =
ay*(r) solves the ODE
(Ge(r) 07 + qer) Oy + Ge(r) ) af" = F7'(r). (4.42)
where the right-hand side is given as
Ci2 90" ((+1) 1 97" "
mo_ 712 - o | —— — 9 )4 e 4.43
Te Caz2 ypo /(L +1) r Caz2 ypo /(L +1) 7 Po (4.43)
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and coefficients,

o e+
Go(r) = —1+4-3 Cry (4.44a)
_ 2 Ci L+ 1\ l+1) (2 ap) 1
qe(r) = yp, ;T 7 Coy A r Cao T r v ) rCa’ (4.44b)
- 2 Qp, Cio g(ﬁ + 1) 2 Qp, 1 !
_ 2 2 _ : 4.44
Qlr) = Cu + (7" o ) r Cag L r v ) rCa] ’ (4.44c)
(4.444)

by 11 2 1 1 m
¢ = ———0.a]" + ( — ap0> mo4 9 (4.45)
'

—_— a — .
Ve +1) T Cag v ) rCan " Caz ypo/L(L+ 1)

Remark 10 (Radial equation at £ = 0). As a continuation of Remark 9, the ODE (4.42) is consistent
at £ =0, i.e. evaluated at £ =0, it gives back (4.32). Note that Ci2|p=0 = 0 and Cos|p=o = _a A

> .
€0

Remark 11 (In the atmo). Another equivalent form of the above equations can be obtained by writing
Qp, = 20, + o — ay. For convenience, in using (4.41), we note here the form taken by expression
(4.44b) and (4.44c) in the atmosphere, i.e. for r > r,,

B 2 1C; | L(l+1) 1\ /2 a\ 1 7
a(r) = a 7‘+ng2+ r [ r Oy + r y TC’QQ]’

0e+1) (2 17 2 C (4:46)
. . + 2 o) 1 2« 12
&lr) = Cu + r [(7” ’Y) 7“022} " (7“ 7) rC
The tangential coefficent b* is obtained by
e+1) 1 2 o« L(0+1)
ym Ly, 2_«a S 4.4
¢ T 0228 @ <7“ ’}/) ’I“CQQ @ ( 7)
A
Proof. We use the second equation of (4.40) to eliminate b}* from a}”.
1 2 2 — ~ ik
— 8l + (_2 n W) al + Coob = — L
r r Yy Ypo AL+ 1)
~ 11 2 200, + @ — « 1 1 g7t
N E N O T £ T D
rCyp " r v rCy " Cazypo /O + 1)
Thus
~ 1C 2 2 - C C 7
Cinb = =229 7 ( _ 20t @ %) 2gm 22 9 (4.48)
7 Caz v 7 C22 Ca2 ypo /(L +1)
and
~ 1 ' 1 2 20 + a0 — « 17
orb = Or 02 - - = X
(7”022> o (7"022) ne KT 0 ) 7’022] “
(4.49)
N (2_ 2aco+ozo¢,y> 1 .+ 0, 1 9" '
r gl rCo2 Ca2 ypo /(L +1)
O
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Explicit expressions of the coefficients in the interior The derivation is given in Appendix A.
We introduce the notation,

ko = % (4.50)
Lemma 2. For ¢ >0, forr <r,,
Cly 2 5 20% e, + iw(21) 20
= —— . 4.51
Caa L 00+ 1)ck troEa 00+ 1)ck (4:51)

Proposition 4. Forr <r,, the coefficients of the ODE (7.12) are given by the following expressions.

1. The coefficient of the first order term has the form,

T2022(j = k% 7"2 . (452)
Caa q(r) < 2% 1)r(2%§% oS g (4.53)
rCapq(r) = —Qyp,—5 7 + 2—5 — + .
PO 2 c? Z—j r2 — L(0+1)
0
or equivalently
- oo(en) 1
rOnalr) _ L, UMD 20T IO G g 2 (4.54)
2 YPo k2 2 £(£+1)
0 0 L

0

2. The coefficient of the Oth-term is given by,

2 2 " 2
9 - o (—o® + @f) o 02 [ p,T
r C’ggq(r):—%Tr +2% p; — Qype T — 1
o? o} [0}
— L+ 1)~ +£12+1°<—° + a )
)T+ DG (2 o w5
a2 o 20 a2
— 00+ 1) <2 ap”f) i T g )25
Y G2 —L(l+1)
0
A form entirely in terms of pg,co and @y , and kg is given as
T2 022 lj(T‘) (I)” (I)/
L(0+1) D ),
T e\ (4.56)

2

0e+1) P\ 20T+ 243
€

k2 2

Explicit expressions of the coefficient in the atmosphere The derivation is given in Appendix B.
We introduce the notation

« P!
Fhe = — 2 =0 4.57
he "}/ + C% ( )
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Proposition 5. Inr > r,, the coefficients of the ODE (7.12) are given by,

72 Cos q(r) = r(k’gr — Ehe), (4.58)

72 Cs q(r) = (apyr — 2) (—kE 7 + Ehe)
(k) 1% + 231 — (Bpe + %) (4.59)
0

(0+1 7
HAaey —kgr2 + L(L+1) + 7Ep,
and
1% Caa ()
@Il o o 1

= 0372 = rmw) (1 - ) + 2080 ) (<% 22 - )
‘I)N

+ e+1) (—k8+ S) — e+ 1) (O“’O - ap0> (4.60)
Co 2l vy

9 ap()) (k3)'r? + 2k3r — (Ehe + T%)

nN[= = =L
Tt )(7' v —kgr? + (L +1) + rEp,

4.6 Reduction to a Schrédinger equation

We first recall that the coefficient a = a}* of the radial part of £ solves the ODE (4.42)

Ge(r) 02a + qu(r)Ora + Go(r)a = fJ*(r). (4.61)
We first normalize the first coefficient, so that a(r) = a}*(r) solves
—0%a + by(r)dra + ge(r)a = fff (r) (4.62)
Ge(r)

with function h,(r) and g,(r) defined as

r) = —= , (1) 1= —= . 4.63
hf( ) q@(r) gf( ) qZ(r) ( )
We need to remove the first-order term,
Proposition 6. The ODFE
Ge(r) 0%a + qu(r)Ova + Ge(r)a = §7°(r). (4.64)
18 equivalent to the conjugate ODE
B ~ 1o f'rn(r)
—afa—i—Vgra:—e QIbf 4.65
") Ge(r) ( )
with unknown .
a(r) == e 2/ Yq(r). (4.66)
In the above expression, the new potential V is given as,
1, 1
Vi(r) Zhe(r) - §3rhz(7’) + ge(r) . (4.67)

Proof. For lightness of notation, in the current exposition, we drop the subscript ¢ from the coefficients.
We have

2
phtwn 50 drow L gpdios e gy g
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Thus
1
d.a = O, (aeth<s>ds> = e2/b(s)ds (ara + b(;)a) , (4.69)
and
—0%a = —e%fh(s)ds 0%a — 2 (8,.eéfb(s)ds> ora a@Qe%Ih(é)d‘s
1 2 d,
= eth(3>d3<—afa — bh(r)ora — L ha).
4 2
1
Substitute a by a = ae2 /" and the above identities into the ODE (4.62),
—afa 4+ bhora + ga =0,
we obtain the conjugate ODE satisfied by a
1 1 1 1 7
ez /b (-83& — b(r)ora — {26rh + 462} a+ hora + 5[)2& + gd) = —qué((:)) .
1
After dividing both sides by e2 I b we obtain,
1 1 _ Ly FR(r)
92 ~h2 — 29, — e fTo V)
fat (307 - 50+ )i = Ge(r)
O

Explicit expressions for coefficients in the interior
than iw(2T')’. For the derivative of fj, we use

For brevity of notation, we use (o)’ rather

o2 ! a2) o2 o2y
0y = (%) =+ oay =i (T 420 (@.10)
0 0 0
and , )
1 Loy 1 ((o%)
Proposition 7. Forr <r,, we have
24/
2 l+1) 2aer + Sl 42
h = « - - g , (4.72)
YPo k2 3 Z(t}%—l) ,
2 2 , (0_2)/ (0_2)// (0_2)/ 2
w2 e e TR P ) )
b = alp, — 5
o T 2 k2 3 4(4;%1) ,
24/
é(f-ﬁ* 1) 20,1 + (Z.z) r 4+ 2 2 2(0+1) 2(0+1) (02)’
K2 0 ey \? <3r A (2%0 * 7)) (4.73)
0 (r3 _ (1; )r>
0
24/

AR ((UQ)/ e ) 20¢,7 + Sy 4 2
k? o2 co r3 5(%1) r ’
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and
oy 2 (9 2+ ((L+1)
— 2 0 0
9——ko+cg—r<cg—%0—2‘%o)+ﬂ

(4.74)

ae+1)@g< @g> 1 0(0+1) (2 ¢61) Yagr + 2 +
po T T2

k2 2 ) r? k2 r2 _ LD

kg

Explicit expressions for coefficients in the atmosphere The derivation is given in Appendix B.

Proposition 8. Forr > r,, we have
(I)//
9 (k§) r* + 2k§r — Ep, — r2%

= - — + {41 0 , 4.75

b= r ( >(k§7“2 — ((l+1) — rEp.) (kir? — 7 Epe) (4.75)
2(ap — ) g B e (- ap) -

= —k? _ — (e+1 i 4.76

g o+ r +r2+ (€+1) k¢r2 — rEpe (4.762)
(PN
o/ 9 (kz)/T‘2 + 2k2r — Ehe — 7”?0
+§+ew+n<—am) — ’ SR E— (4.76D)
g r v ) (k3r? — Lt +1) — rEpe) (k3r? —r Epe)
and, under the hypothesis of constant attenuation,
s P51
3 243 — By — 251
b = 5+ +1) 75 % o :

r (kor - ll+1) - rEhe) (k12 — 1 Epe) w7

oe+1) (2kgr ~ B — r‘lo) (2521 — Bpe — r28)(2k3r% — €(C+1) — 2Ep.)

_ 0 0 .
(k3r2 — £(t+1) — rEhe)Q (k312 — rEp)?

5 Alternative to obtain the system of equations in the solar in-
terior

Another way to solve the Galbrun equation in the interior of the Sun is to work directly with the form
of the equation (3.31) given in Proposition 2 under the assumption of hydrostatic equilibrium (3.14).

—p00'2€ + Vép + 5PV<I>0 = f; (51&)
6 = =(Vpo)-& = poV-&; (5.1b)
§p = —€-Vpo — pocgV-&. (5.1c)

Here we ignore the perturbation in gravitation potential 6. For the rest of this section, to alleviate the
notation, we will drop the superscript E from the Eulerian perturbation §§. The main ideas are from
[11]. The main difference is that instead of working with vector harmonic bases ( P}*, C}*, and B}* cf.
(2.20)), the equation is rewritten in terms of only scalar unknowns and thus have the usual harmonic
expansion in Yj".

We first make some initial remarks on the special feature of (5.1a). Decompose the unknown & and
the external source into the radial component and tangential one,

£ =6e + & , & = E-ep;

(5.2)
f:frer+fh ; fr = f-e,.
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We also decompose V into radial and tangential component, in particular for a scalar function f,
1
Vf = (arf) e, + ;VSQf

The decomposition of (5.1a) along e, and tangential one gives, after dividing both sides by po,

1 5, f,
—0%& + —8,6, + L@, = L. 5.3a
< £o P Po 0 £o ( )
1 ) f
—0%€), + — Vb, + L Ved, = . (5.3b)
T po poT Po

Under spherical symmetry of the background, we solve for scalar unknowns which can be represented in
harmonic expansion; in particular,

o] 4
- Y S ) Ve

- mom=t . (5.4)
= > Y d W Y0.9) . G = D D €l Yi0,0).
=0 m=—4 =0 m=—/¢

With V@9 = 0 under spherical symmetry assumption, and if f, = 0, then (5.3b) implies that the
tangential part &, exists solely along Vs2Y}", i.e. for some t]*(r),

= 2 Z D t(r) Ve Y{'(0,9). (5.5)

{=0 m=—/¢

Assumptions In addition to symmetric background pg, 7 and cg, we assume that the radial and
tangential divergence part of the source can be represented in harmonic expansion, i.e.

f’r‘:f'er s fh:f_frer s fh = Vg2 - fy;

o] 4 ) 4
=3 D IYPO,8) o fa= Y D ) Y0, 9).
£=0 m=—¢ £=0m=—¢
5.1 Approach 1 - A first order system
Given known quantities
po s c , Po , Po (5.7)
Thus we look for unknowns
E . o0 ., 6, (5.8)

which solves (5.1), and with the property,
g :S'er ) €h:€7§7“er ) gh = VSQ'gh;
Zzaz )Y (0,90) Zzbz )Y7(0,9).
£=0 m=—/¢ £=0 m=—/¢

Step 1 By taking the difference of the last two equations in (5.1), we obtain an equivalent system, which
under spherical symmetry simplifes to

1 1) f
—o%& + —08, + L, = I, 5.10a
< £o P Po 0 £o ( )

1 f
—o? — Vgdy = —; .10b
o2& + Vel = (5.10b)
, 2 1

5/; = —P 5»,« — pPo 87«57-4— ;57 + ;VSQ 'Sh (510(3)
C(Q)(sp — 0p = & - (Pf) - C(%P())~ (5.10d)
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In the second-to-last equality, we have used V - & = 0,&, + %fr + %VSQ &,

Step 2 : Take Vg2- of (5.10b)

1 Ve - f
—02Vge - &), + —Agel, = o (5.11)
T po Po

We can use (5.10c) to eliminate Vg2 - &, from (5.11) and obtain

1 1 Ve - f
o2 (6p L% ET + 0,6 + &) e Apb, = o (5.12)
Po = po T Po

Step 3 : We will use (5.12) together with (5.10a) and (5.10d) to solve for the three scalar unknowns &,
0, and dp. Obtain equations in terms of the coefficients of the harmonic expansions of these unknowns,

listed in order of (5.10a), (5.12) and (5.10d),
1 % 1S o
> < ot ap(r) + —0Ome]" + Odgﬁ) Y/ = 72 Z Y7 (5.13a)
Po Po Po =

o0
>
=0 m=—/ 0 e
9] 4 P 5 ( ) . - ;
e R aria) e AE
=0 m=—¢

2
r
po £=0 m=—¢

4

(5.13b)

Yod T (—Rdr + e+ vy — cGap)a) Y7 = 0. (5.13¢)
=0 m=—¢

In the second equation, we have used Ag2Y}" = —£(¢ 4+ 1)Y}*. We thus obtain a first order equation

@/
1 0 —0? -0
; 0 0 Po ’I"fm
0 B?L / 2 ey’ ¢
Ll+1 2 o ¢ 1
0 o2 0|0 |a"]| + (2 b (po + > — ||| = — |l (5.14)
m 7 Po Po r Po m T po
dy dy 0
0 0 0 1 LS. 1
c? c? Po
We can further eliminate d}"
Ao, | “ B ) = — (5.15)
ay’ ay® mpo \[fuli?
with
1 l% 702 + % gé o pl
— 0 0(2) Po Po Cg 0
A = | Po ., B = , ) . (5.16)
0 o A W;L 1) 02( Po_ 2)
PoCo = Po PoCqh r
Remark 12. Defining the buoyancy frequency N as
/
N? = @), ( PG ’)O) : (5.17)
YPo  Po
and the characteristic acoustic frequency S; (also called Lamb frequency by [35]) by
00+ 1)cd
sp= (5.18)
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we can rewrite the matriz B as

Po N2 _ 52
YPoPo
B = ) , (5.19)
1 2
S5 (22
PoCoy YPo r

where we have used the hydrostatic equilibrium po®(, + ph = 0 and adiabaticity poc2 = ypo. This system
is equivalent to Eqs.(4.61) and (4.62) in [11] and Fgs. (14.2) (14.3) in [35]. A

5.1.1 Recovering the decoupled ODE for the radial displacement

As a sanity check, we rederive the scalar wave equation satisfied by the radial displacement from the
system (5.15). For simplicity we consider the homogeneous equations. From the second line of the
system one gets

2 2 /
7 G (v (B D)) o
while the first line can be written as
iar = P et + (N2 — 02)a}” =0. (5.21)
Po YPopo

Combining these two equations gives

1 pocio? Py 2
78/’. 8r m Lo - m
Po {512 —0? e YPo " r “

pf) ,000(2)02 p6 2 2 2
—_ Ol Z)am N2 — g2)g" =0, 5.22
YPopo [Sf — &\ Gp ) + o )ai (5.22)

which is the second order equation satisfied by the coefficients a]" that we want to write on the form

A% + Bo,al™ + Ca” = 0. (5.23)
The coefficient A is given by
c2o? o?
A=_20 =, 5.24
Sl2 — 0’2 022 ( )

To evaluate B, we need to compute

L, (£ocko? Y _ Lo (o) bo?0r(S] o) (5.25)
Po Sp —o? po Sf —o? (Sf —0?)?
_ —acdo? + 2¢ocho? + 2iwedl’ N cgo? (2wl + 257 (e, + 1)) (5.26)
N 5% — 02 (87 — 02)? ’ ’
where we used that
2coch  2c? 1
O, (S7) =Lt +1) ( 3 2 _ 7«30> = 257 (aCO + r) . (5.27)
Thus,
1 pocio? 2 co?
C B=rC —0, - 5.28
T 22(7“) T 22(7”) (,Do (5120_2 +T512*0'2 ( )
o2 (2iwlr + 252 (ae,r + 1
=r (—ao® = 2a,0” + 2iwl”) + ( — 2( ° ) + 202, (5.29)
(57 —0?)
S? 2025 (aeyr + 1)
_ 2 : l 1\ 2
= —Qyp,0 T + 210./1'"7"Sl2 —— = ((’72) + 207, (5.30)
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where we used the relation between the different scale heights (6.3). Replacing S? by its definition (5.18),
it follows that

2 . 2
9 9 2r(20 Q. +21wI‘)+20
rCas(r)B = —yp,0°1 4+ 20° — (£ + 1)cj 021"207 S ,

= 1rC(r)q(r)c?, (5.32)

where the expression for rCa2q is given by (4.53).
The coefficient C' is given by

(5.31)

po L\SF—0%) \po 7 popo | SP —0? \ypo 7
- ia [ pocgo? } ( PO + 2> + cgo < o i QypoPy 2)
po  [Sf—0o?]\ o 1) St—0?\po  Apo 72
pycgo’ ( ) 2) 2 ( ) pB)
- =00 +2)-c*+0 _fo), 5.34
po(S7 —02) \vpo 7 "\ o ro (5:34)
Using the previous computation for rCs2 B, we obtain
2 202 /
2 2., %o 2 o S 20°S} (ag,r +1) Po
C. C=|- — 2iwl’ —_— 2 5.35
r 22(T) ( Qypy O T+ 7y oo+ 2w r512702 + 51270-2 ’Yp0r+ ( )
" / S2 _ 2 S2 _ L2
+ 02 <p0r2 4 SapoPo, 2 2) — ot — 7 4 P, ( o L ap0> r?=l— 7. (5.36)
YPo YPo €o gl €o

It follows that
2,.2
720y (r)C = ch (—=0® + ®f) + 20° (—ravpo + %r - 1)
0

202(1 + + 2iwI
+ (2_ 0‘1;””) sp20( Sogquﬂ e+ (—02 + @), (-O‘};O +a,,0>) . (5.37)
l

where we gathered and simplified the terms of order r? using the definition of ®) and ®{ from (6.9) and
(6.11) and used the definition of S; ((5.18)) for the last term. Replacing S; and using (6.9) to introduce
o

2 o’r? 2 " 2 Qpy
r°Caa(r)C = 2 (—U + q)o) +20° | —rayp, + Tr —-1
0

B _QpeT 2r (JZQCO + in') + 202 o , _%

LL+1) (2 S ) T2 — (1 1) +L0l+1) | —o= + @ 2 +oap, ) )
(5.38)

= 72Cg(r)c2q(r). (5.39)

The expression of 72Cy5q is given by (4.55). The obtained decoupled system is thus the same than the
one derived in Subsection 4.4.1.

5.1.2 Decoupled system satisfied by the pressure

We can proceed in a similar manner than in the previous section, in order to eliminate the radial dis-
placement and obtain a decoupled ODE for the Lagrangian perturbation of the pressure 6,. We first
express the coefficient a}" as a function of e using the second line of the system (5.15)

1 Py
af' = ————0pe]t — ———¢". 5.40

: po(0? — N?) : YPopo(c? — N?) : ( )
Here, we suppose for simplicity that T' # 0 so that the term (02 — N?) does not vanish. Then the second
line becomes

o2 1 P
— P2 20, [ —————18.em—02%9, | ———9 | en 5.41
(o2 Nyl oo <p0(02 - N%) P 70 S pee(o? — V2 ) © (541)
J2p6 1 9 0_2 ( p/ 2 p/
— e + 2 —8Hem 4 —— 0 4+ > (&em - =0 em) =0. (542
Ypopo(o2 — N2) ! POC(Q)( el po(02 = N?) \vpo Loapg ! (5.42)
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Multiplying by po(c? — N?) leads to

2 2\/
2 m (U -N ) Qp 2 m
Ole + <ap0 ~ i N 70 + - ore] (5.43)

p6 p6 (02 — Ng)/ p6 2 0.2 _ N2 ) ) .
’ B e e el [ vl C Al —0. (544
- (8 (7p0) * YPo (aPO 0% — N2 Ypo T + o2c2 (0= S7) e =0 (5.44)

This is a second order ODE satisfied by the Lagrangian perturbation of the pressure. This corresponds
to the scalar problem proposed by [20] for which the boundary conditions were proposed in [3, 17] and
which was studied theoretically in [5, 6]. The main difference is the incorporation of the gravity term.
One can recover the equation from [20] by setting N2 = 0 and pj, = 0 in (5.44).

From the knowledge of €], one can recover the radial part of the displacement using (5.40) and the
horizontal part from (4.45). In the framework of [20] (without gravity), these coefficients are given by

1
5= ——=0.€" 4
a; p00'2 8761 , (5 5)
((C+1) 0y (r*a)™)
b = , (5.46)
! k2 — k2 r3

where kj, = \/¢({ + 1) /r is the horizontal wavenumber and k3 = 02 /cZ is the local wavenumber. Note that
in the presence of attenuation the denominator never vanishes and the coefficient " can be computed.

5.2 Approach 2 - a second order system

From the form of 6, in (5.10c), which is similar for J,, the radial equations of motion are in terms of
unknowns of & and Vg2 - §;,. Recall the definition of the radial and the tangential divergence of the
tangential part,

fr="Ff-e , £ =f— fie. , & = Vg fiu;
fr:é.'er ) é.h:g_g'r‘er ) gh = VSz'gh'

Taking Vgz- of the tangential equation (5.3b) provides another equation in these two variables.
9 1
—pPo 0 VS2 . é.h + ;AS2(5P = VS2 . fh N

which, in terms of &, and fj, is
. 1 _
—po o2 & + ; Ag2 (5p = fp. (547)

In this approach, one solely works with two scalar unknowns &, and &,. The similarity as in Approach
1 is that they are both scalar unknowns, and are supposed to have an expansion in spherical harmonics.
At the end, we will identify the resulting system with (4.33).

To solve for &, and éh, we use the above equation together with the radial part of the equation of
motion,

1 ) fr
—0%¢ + —0,0, + L@, = L, 5.48a
¢ Po P £o 0 Po ( )
_ 1 f)
— 02 + —Agd, = ﬁ, (5.48b)
T pPo Po
with
2p Po z
5P = - (pf) + T'0> & — poOr& — 70§h; (5493‘)
2 po c3 et -
op = — (p{) + p: O)&- — poch Ok — %fh- (5.49b)
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We next obtain explicit equation for the coeflicients a}* and 52”

We first consider the tangential equation (5.48b). From (5.49b), using As2Y}" = —4({ +1)Y}", we

have
2 2
;ASQ Z Z 0+ 1) <( + :0> al’ + 2ot + sz )Y’f. (5.50)
=0 m=—¢

Substituting this expression into (5.48b), we obtain

0o £ 2\ . / 2
r r £o r

=om=—t (5.51)
E(E + 1) 2 m fh Lhlg
+ TCOaraé Z Z Ye .
{=0 m=—/¢
Dividing both sides by c3, we have, on each mode (¢, m) the equation (which does not depend on m)
2 e+ L0+1) / 2 l+1 e
o r? r € PO r c3 po (5.52)

We now consider the radial equation (5.48a). From (5.49b), we have

1 " 1 /92 o/ ) N
—0pbp = — (po + (poco) ) ¢ — (pocg)’ 0,6, — (poco> :,
po po po X T Po po \ T

/ 2 2 ~
N (po + 260) a&r — Oz — &&ﬁh

Lo r

) ) o (5.53)
_ (Po <2P0C0)> ( + 2¢p + (po c5) > 0,£,
p r Po
c? 1 2\ -
—cg 026, — 03 En — — <p00> &n .
L0 T
!
We further expand the derivative of (p OCO) ,
Po nr P poT 2 " Po r Lo = 554
(roc3) Y : (554
— 078 — —aeh - <0 - g)éh.
T Po r
On the other hand, from (5.49a),
D <I>’ 2 DY -
706P = <p6 + PO) 67” - (b6 8T£7‘ - 70§h~
Po Po r r

Substitute the above expressions for 8 dp and 0 26, into (5.48a), we obtain the following equations (as

coefficients of Y} on each level),

/1 2 2\/ 22 (I)/ 2
—cg 0%a]t — <02 + Po + 7([)0%) ~ = + 0(})6 + T))a}fn

r r2
pl 92 2 (po C2)/ ’ CpQO R (po C2p)(/) c2 ‘I>/ f (5.55)
—(°+°+°+<I>g)8ra2”—°8rb;”—(° - 24 >b4, = i
Po r Po r T po r r Po
Taking the derivative of the hydrostatic equilibrium identity (3.14), we have
Po @ Po 1 py " Y "
D) = —— =5 = = -2 4+ py®, + py =0, 5.56
0 Po < Copo 7 Po 0 P00 0 ( )
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and using this to simplify the coefficient of a}* in (5.55) and dividing both sides from c3, we obtain

0.2 (I)N 2 C2/ 2 9 / 9 02 ,
o <_2 +E-Tpal 2y po)(l?”‘ -G+ (’)370))&@2”
Co Co Copor r 7 Po r 2 po (5 57)
1. - 2y 1 1 i\ . 3 .
-+ (s 5 i =
r 7 ¢3 po r 4 Po 2 po

Identification with (4.33) We will compare the system comprising of (5.57) and (5.52) in unknown
ay* and an’ with system (4.33) given by the main approach which uses directly the vector harmonic
basis. The a}* and f;" are exactly the same between the two sections. On the other hand, using (4.4),
the coefficient b} in Section 4 can be related to the b}, by

— I+ = b, = \Jll+1) gl = [f). (5.58)

With this identification, we replace c2po by vpo, then the two systems of equations are identical.

6 Computation of the vectorial quantities

In this section, we provide the numerical steps for the computation of the different quantities involved in
the vectorial potential with spherical symmetry, derived in Section 4. In particular, to compute V; from
Proposition 6, we need g, §¢ and g, of (4.44), that depend on the derivative of the coefficients C' given
in (4.35). Namely, those coefficients involve the derivative of the physical parameters, in particular,

’ / / /
Co? OéVPo ’ apo and aﬂo'

o (6.1)

These can be difficult to obtain numerically as, for instance, we loose accuracy if simply using a finite-
difference scheme onto the parameters given by the model S. Note that in our implementation, we first
represent the models via cubic splines, see Appendix F.

In the following, we investigate how to efficiently calculate the coefficients. For the sake of clarity, we
drop the index ¢ that indicates the dependency with mode in the coefficients, and give in Subsection 6.3
two approaches to compute the potential V; in the interior of the Sun. In Subsection 6.4, we give the
computational steps in the atmosphere. From discussion in Appendix D.1, we need to assume the a priori
computation of o/, and ag, .

6.1 Relation between scale heights

Let us first give the relation between the scale height associated to pg and vy pg. From the adiabatic
equation of state given in (3.13), we have

/ C2/ C2 / C2 !/ /
(rpo)’ _ <o'po | S0P _ (02) .y 6.2)
YPo YPo YPo €o £0
It means that
(vPo)’
« = — = 20, + Qp, - 6.3
YPo YPo Co Po ( )
The above identity also gives
i + Po = =200, — Qp, = Po = =20, — 0, — v = 20, —ap, + 0y, (6.4)
7 Po Po v
hence
I
Qp, = e 200, + Qpy — Q. (6.5)
0

We can take the derivatives on both sides of (6.5), we obtain

2
po (Do
oo \po) = 20, — o, + o, (6.6)



Outgoing solutions in vectorial helioseismology 37
such that
p//
p—z = —2a), + o), — ol + (2ac, + ay — o). (6.7)
6.2 Relation among parameters under the hydrostatic assumption
We recall the hydrostatic equilibrium identity (3.14) in the interior of the Sun,
Db+ po®y = 0. (6.8)
Equivalently, we have,
! ! 2
gy = 20 = _PoPo g g D (6.9)
Po Po Po v
By applying the derivative to the hydrostatic equilibrium identity (6.8),
p// p/
po®y + po®y = —py = B = -2 — 2P, (6.10)
Po Po
we have
" pg Cg !/
Q) = ——— + a,, 9. 6.11
0 Do Y pPo F0 ( )
In addition, from the definition of ®q from (1.2) and (4.13),
2 1
Y + 0y = 4nGpy & 5 (1P®)) = 47Gpy. (6.12)
r r
On the other, from (6.10), we can replace ®( by (6.8) and ®{ by (6.12), such that
/
o) = 20, (6.13a)
Po
B = 47Gpy — o) = 47G 2Pl 6.13b
o =4mGpo = =% = O*WPOJF;,O*O- (6.13b)
Therefore, we have
" Y " " , Po 2 po
Po + Po®y + po®y =Py — po— + po (47Gpo + ——
Po T po
2 6.14
= + <r+aﬂo> po + 47G pg (6.14)
= pg + (2logr — logpo) ph + 47G pj .
In the last equality, we have used the definition of a,, = f% = —(log po)’. Thus, we obtain
Py + (2logr — logpo) py + 47Gp2 =0 (6.15a)
2
& py + <r + apo) py + 471G p3 = 0. (6.15b)
We now multiply by e?1°87 —logro
e?lo8T =108 ro (pf + (2 logr — log po)’ pp) + 470G pge?'o8" 18P0 = (6.16)
this gives
(62 log r — log po p6)/ — 471G p(Q) 62 log r — log po (617)
On the other hand, since
2
62 logr —logpo _ L , (618)
Po
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we obtain the following ODE for py,

2 ! 2

re o T

— = 47Gpj—, 6.19
(po Po) Po Py ( )

which simplifies to

r? '
( p6> = 447G por?. (6.20)

Po

6.3 Computational steps for V, in the interior

We recall the given quantities from model S are pg, co and . Additionally, we also have a choice for
attenuation, either constant or from the power law, see Section 2. To compute the potential V; and the
coefficients of the radial ODE (4.42), we give the following steps, which are computed for all positions 7.

1. Start from the given background quantities cq, pg, v and I'.

2. Compute pg using (3.13): po = 2 poy~!.

3. Compute the scale height functions (e.g., using finite-difference formulas or from a cubic spline
representation of the models, see Appendix F):

ap,  and e, (6.21)
and their derivatives,
o, and ag . (6.22)

4. Compute the derivatives of the attenuation: IV and I'”.

5. The complex frequency given by

or 1/2
c=w|l+i— , (6.23)
w
and we also need the derivatives of o:
(0%) =iw(2l), (6.24a)
(0*)" = iw(2D)", (6.24b)
1 (0_2)/
== 24
o 5 5 (6.24¢)
2\ '/ 2 2\/
<J2) - 207@00 + (02) g (6.24d)
€o Co Co
2\ " 2\’ 2 2\ 2\/
(5) 2 () o () s oo o
g g g cg cg

Instead of calculating o, and its derivative directly from the data of model S, we only assume the
inverse scale height and its derivative for ¢y and pg, and exploit the hydrostatic condition and the ODE
(4.16) satisfied by ®¢, and/or the ODE (6.20) for po.

6. Compute the weight mass,

M(r) = /OT 52 po(s) ds. (6.25)

7. We use it with (4.15) and (4.16) to obtain ®{ and ®{,
Ol\(r) = 47 G 9};(27«) ; (6.262)
Oy (r) := 4nG po(r) — 2@, (6.26b)
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8. Compute the derivatives of py using (6.20),

p6 = — po(r) @6(7") ; (6273)
2
PR i

9. We can now compute the scale heights with the relations

p6) 1 PO r
« =—— | =®,— =), 5; 6.28a
o= ) - w2 =0y (6.28
Oypy = 20, + Qg ; (6.28b)
Oy = Qypy — Opy - (6.28c)
10. Compute their derivatives
Po - P07y
o = —p—g +ai, =-@2rt+ oz)ozp047rGg + al;; (6.29a)
ol = 200 + Al (6.29Db)
11. Compute
! li
Q@ . D/ oy ol
(‘”) (6.28) (C§’> = 2 +20a,. (6.30)
v 0 0 0

Remaining steps
6. We calculate 72Ca2(1)q(r) , 72C22(r)q(r) and r2Ca2G(r) by the expression given by Proposition 4.

7. If we work with the conjugate ODE, then b, h’ and g are calculated directly using Proposition 7.
The potential Vp(r) is given by

Vi= 10 - 5b ta (6.31)

1
4
Remark 13 (Dimensionless of the coefficents of the ODE). In our current convention, we work with the
scaled radius thus dimensionless, and the scaled velocity of unit s—'. All of the components of matriz B
and C, cf. (4.29), and as a result of this, the coefficients of the radial ODE §, q, q or the scaled version
72 Caa(1) G, 7% Caa(r) G, 7% Caa(r) q, are dimensionless. Since r and all of the inverse scale heights ae are
dimensionless, it remains to verify terms such as

2 foY4 P/
o, =0 2 (6.32)
€o €o €o
The dimensionless of the first term is clear since both the scaled velocity and o have unit s~'. Since

the scaled radius is dimensionaless, integration or differentiation with respect to this variable does not
change units. For this reason, ® and ®j have the same unit as ®o. To determine the unit of ®¢, we
can consider (4.14), from which it is defined. In this way, @y has the same unit as the right-hand-side,
4nGpg. Using the value given in (6.33h), G is 6.67408 x 10~8 cm3 g=1s72, on the other hand po in the
model S is given in gecm 3. Thus their product is in s~2. Thus ®q, ® and ®f in the current convention

take on units s~2. As a result of this, all of the expression in (6.32) are dimensionless. A

6.4 Computational steps for V, in the atmosphere

In the atmosphere with model AtmoCAI, the steps are simpler as the sound speed, adiabatic coefficient
and density scale height are constant. In addition, we can readily obtain the value of the parameters,

RR n° 9335



40 Barucq, Faucher, Fournier, Gizon & Pham

extracted from the end of model S, such that

e = 1.0007126, (6.33a)
po(re) = 3.06297 x 107 gem ™2, (6.33b)
ap, = 6636.41, (6.33¢)
v(re) = 1.6409211, (6.33d)
po(ra) = 9.4557639 x 10' Pa = 9.4557639 x 10? dyn/cm?, (6.33¢)
6.8569 x 10°
colra) = w207 X _ 98588 x 10705 !, (6.33)
R
G = 6.67408 x 107" m? kg~ 's7? (6.33g)
= 6.67408 x 107 8cm®g~1s72. (6.33h)
We have the following steps for the computation of the potential in the atmosphere.
1. Compute the derivative of the background gravitational potential ®f(r),
T a)? + 27, 2
m = 47r/0 s2po(s)ds + 47rp0(ra)(ap°r ) +a3 Ta Opo T )
G e %o ("=Ta) (a, )2 + 27 ay, + 2
Bh(r) = Zm — 47 G po(ra) — 3 (%0 7) - (6.34)

Po

. 2
of(r) "= axGpo — T @4(r).

2. We calculate r2Cas(r)q(r) , 72Ca2(r)q(r) and r2Caaq(r) by the expression given by Proposition 5.

3. If we work with the conjugate ODE, then b, b’ and g are calculated directly using Proposition 8.

The potential Vp(r) is given by
_ 1 2 1 /
Vi= 30 - 30 4o (6:35)

7 Analysis of the modal ODE: indicial roots

In Section 4, we have established that the Galbrun’s equation (1.1) for the model parameters S+AtmoCAI
reduces to solving (4.42), which we recall for convenience, this is from Proposition 6:

()02 + qe(r) 0 + @u(r))ay" = 7). (7.1)

for the radial coefficient a}*, with g, G, and g, given in (4.44). This equation is equivalent to the conjugate
radial ODE

l r m
(=82 + Vi(r)) @ = —e 24500 f’;[((:; , (7.2)

where the modal potential V; is given in terms of function h,(r) and g,(r) as

Vilr) = 7030r) — 59be(r) + we(r), (73)
with
_ ) L)
Belr) = Ge(r)” <r) Ge(r)

given in Proposition 3. The coefficients a;* = @, are called the conjugate radial coefficients and are related
to the original radial coeflicients a}* by

A (r) = ap(r) ez f e, (7.4)
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Due to the independence of m, we will drop the index m from all of the quantities.

In this section, we study the local behavior of the coefficients of (7.1) and (7.2). We show that the
coefficients of (7.1) contain at most two singular points, and both of which are regular singular. When
there is attenuation, I' > 0, V; only has one singularity at » = 0. Without attenuation, I' = 0, V; has two
singularities: at » = 0 and at a point called v ,. Then, the asymptotic behavior at infinity is studied in
Section 8. o

Let us first note that, as we study the regularity of the coeflicients of the ODE, it suffices to consider
the version of (7.1) with zero right-hand side,

4(r)0%a + q(r)Ora + G(r)a = 0. (7.5)

In fact, due to the form of the coefficients, it is simpler to study the regularity after multiplying both
sides of (7.5) by 72Caz, we refer to Subsection 6.3 for more details (see (D.16) and (D.23)). We have

72 Cog(r) G(r) 0%a + 12 Cao q(1r) Opa + 12 Caz G(r)a = 0, (7.6)

where Cyg is given in (4.35).

We first recall the classification of the singular points from [13, Theorem 4 p. 164] or [32, Section 1.1].
Definition 2 (Classification of the singular points). A point r = rq is a singularity of finite order of
(7.6), if it is a pole of finite order of ZE:% or gg:g In particular, » = rg is a reqular singular point if ZE:%
has a pole at r = rg of at most first order and gg;; has a pole at r = rog of at most second order. In

that case, we can define the indicial roots or characteristics exponent (denoted by \) as the roots of the
indicial equation

AA=1)4+nr+7 =0, (7.7)
whose coefficients are given by
— T _ovalr) - )
n = TILH}O (r —ro) Ok n = TILIEO (r —ro) ok (7.8)

In the following, we distinguish the case of the interior of the sun and of the atmosphere, with (T # 0)
and without attenuation (I' = 0). Our main results are given in Propositions 10, 11, 14 and 15, and
summarized in Table 1.

Indicial exponent A for the
Singular point Radial ODE Conjugate radial ODE
A+ M= 2F — Ly of. (7.125)
(=0 2.1 n=2
0 '>0
>0 —4—-2,0-1 n=4
70 cf. (7.19) 0< €<y, cf (7.20) 0, 77,0 +1 n=—r,
Ta1ws cf. (7.60) || T'=0 w < wiy, cf. (7.83) 0 n
and Assumption 5
1Eyu s cf. (7.65) 0>, cf (7.71) 0,2 n=-1

Table 1: Sets of singular points for the modal radial equation (7.1) and conjugate one (7.2). This table
summarizes the results obtained from Propositions 10, 11, 14 and 15. The indexes a and i of the singular
points r* indicate if it is located in the interior of the Sun or in the atmosphere, respectively. The indexes
w and ¢ indicate the dependency of the points with frequency and mode, respectively.

7.1 Indicial roots analysis at { =0

Following Remarks 9 and 10, due to the simplicity of the equation at £ = 0, cf. (4.32), we can study
directly,
2

2 oy 2
~0%ag + (20p, — = | Orap + —0—24——34—2%—%7—2%)0 ap = 0. (7.9)
T c5 g T T 7y
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It leads at the fact that » = 0 is the only singular point on [0, 00), with indicial equation,
s(s—1) +2s —2=0. (7.10)
Consequently, the associated indicial exponents are

—2 and 1, indicial exponents at ¢ = 0. (7.11)

7.2 Indicial analysis in the interior of the Sun for positive /

We counsider (7.6) in the interior of the Sun, that is for r < r,, where the physical parameters are given
by the model S of [12], that we pictured in Figures 1 and 2. From the expression of the coeflicients of
Subsection 6.3, (D.16) and (D.23), we note that the only possible singularities are at » = 0, at the root
of r2C52¢ and the roots of Cas.

2
3—27“2 02a + 12 Coy(r) q(r) Opa + 172 Coa(r) G(r)a = 0, (7.12)
0

or

2 2
r? 0%a + % 72 Cos(r) q(r) Ora + % 2 Cos(r)g(r)a = 0. (7.13)

From their derivation in Subsection 6.3, (D.13) and (D.16), we have

2 +1 ) 2
Coo(r) = —% + ( 2 ) = 72 Con(r) 4(r) = =12 Coa(r) + Ll +1) = Z—Qrz. (7.14)
0 0

Therefore, from the discussion of regular singularity and Frobenius method, we need to investigate the

regularity of
c2 3, _
— Cooq and 7T Cyq. (7.15)
o o

We recall the explicit expression of coefficients of ODE (7.12), given in Proposition 4.

. 21)’
POnalr) L, e n) 2owr tiw gy 4 (7.16)
k(g) = YPo k(2) r2 _ f(ftl) ’
k()
and
72 Cos (1 oq P
B = (8- 5) v ar (G - on-a0) —2-er)
Wy (o %
k2 \T T (7.17)
e+ 1) ( D), ) 2ac0r—|—2+i]:ig(2c?r
k2 c? r2 — ’“’(‘;jg”

If we assume that the background quantities are regular enough at » = 0 (see, e.g., assumption
(7.26)), from the above expressions of the coefficients, we note that the only possible singular points in
the coefficients of (7.12) are r = 0 and the zeros of the algebraic equation on r > 0,

Cum =0 & r=2 ey & - VD (718)

=
w co(r) w

— When I' # 0, w is complex and the roots of (7.18) are complex. In this case, since we consider the
ODE (7.6) on R™, the only singular point of the coefficients of (7.6) is at r = 0.
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Outgoing solutions in vectorial helioseismology 43

— When I" = 0, (7.18) has real roots. Model S+Atmo satisfies assumption Assumption 3,

roes — s increasing on [0,7,],
co(r)

as illustrated in Figure 2b. Under this assumption, equation (7.18) has at most one zero. For each ¢
and w, denote by rf, , the unique zero to (7.18), if it exists,

(7, i
rtoe = W) gy o fee _ VEEED | (7.19)
“ w G w

The existence is discussed in the Proposition 9.

We define

(7.20)

Proposition 9. Under Assumption 3 and the continuity of r — co(r), when T' = 0, at each fized
w > 0, we have the following equivalence

Equation (7.18) has a unique zero on (0,7,) = <. (7.21)

Proof. Statement (=) Suppose equation (7.18) has a zero on (0,r,), then by the above discussion it is
unique and is denoted by 7}, ,. We have

co(r* ¥ O+ 1
P o 0( Lw,é) é(f—i— 1) i,w,l ( + )
w

= = .

i,wl CO(T{:W7@) )
Since r{, , < 1q, and 7 — COTW is a strictly increasing function, this implies
(0+1 S a
(+1) _ wt o Ta (7.22)
w CO(ri,W,z) co(ra)
This leads to
Ta 0(0+1) r2 o, 1 1\’
> a - > (f£+ = s 0> 4. 7.23
co(re) — w c%(ra)w + 4 = + 2 v o= (7.23)

Statement (<) Suppose ¢ < £. It suffices to consider the existence statement. We consider function

Fire - COT(T)\/@(eH). (7.24)

Under the current assumption, from the equivalence in (7.23), we have readily that f(r,) > 0. On the
other hand, since ¢y > 0, f(0) < 0. By the continuity of r — f(r), this implies that f(r) = 0 has at least
one zero on (0,7,). O

Remark 14. Using the solar parameters given by the model S, the values can be explicitly obtained and

we have
Ta

co(ra)
In solar applications, the frequency is usually given in mHz and we study the first hundreds of modes. For
instance, at 1 mHz, £, = 637. We further illustrate the position of the singularity in Subsection 7.5.1.
On the other hand, this singularity does not exist when we consider attenuation, which is the case in
applications. A

~ 1.015 x 10°s  for model S. (7.25)

We next verify that the points » = 0 and »] with ¢ > 0 defined in (7.18) are indeed regular

i,w,0°
singularities and calculate the corresponding indicial exponents.
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Proposition 10 (Singularities at » = 0). We work under the assumption,
T, co, qpy, Qcy, iy and their derivatives are regular on [0, 00). (7.26)

1. The origin T = 0 is a regular singular point of the ODE (7.5) onr < ro, with indicial equation

3(8—1)+n03+ﬁ020 (727)

with
2
] _J2 fort =0,

m = ling 8 Canlr)g(r) = {4 ot >0 (72

and
2 —9 /=0
Foo— i 20700 a = ’ 729
flo = limr=—3 22(7) G(r) 2 —((L+1) £>0. (729

The indicial exponents are given by
ANo=0-1, A = 4 -2, for >0, (7.30)

and
Ao = —2, ANo=1, for £ =0. (7.31)

2. When £ =0, in the cases with or without attenuation, r = 0 is the only singular point of (7.5)
on 0 < r <r,, with indicial equation (7.38b).

3. When T > 0, r = 0 is the only real regular singular point on (7.5) on [0,74] for all £.

Proof. Tt suffices to consider the case for £ > 0. From Proposition 4, we have r Css ¢ with

rCap(r)q(r) = 4— + O(r), r—0, >0, (7.32)
c5(0)
and )
r Caa(r) q(r) = 202 ©) + O(r), r—0, £>0. (7.33)
c3(0)

From here, we obtain readily the value of g in (7.28).

Also from Proposition 4, we have 12 Cyy ¢ are regular at r = 0 and for £ > 0,

2 i 1 o)\ > %
L =/l C”(;")qm =2 ((+1) + M‘; . (20) ta, =2 ) +0(), r—0. (7.34)
kg kg Co €o
The zero-th coefficient 779 is then
00 +1 o)\ ? P}
o =2—4(l+1) + ( t ) (— (20) +a,, g) . (7.35)
kg ¢ c

It remains to calculate ®((0). From (4.15), we have

m(r)

r2

' (r) = 4rG : M(r) = /OT 5% po(s)ds.

Using 'Hopital’s rule, we obtain

m’t/ 2
(0) = 4nG Tim o) g i 100 (7.36)
r—0 r r—0 r
Consequently, (7.35) simplifies to
o =2—L(l+1). (7.37)
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Consequently, the indicial equation (7.27) at r = 0 of ODE (7.5) takes the following explicit form

2 +3s+2-Ll+1) =0 £>0 (7.38a)
2 4+5-2=0, (£=0. (7.38b)

For £ > 0, the discriminant of the quadratic form (7.27) is then
A=3%—4dfp =14 40C+1) = 4(€ + 1)*.

Thus the indicial exponents at r = 0 are given by (7.30):

3 1

M= —5 E(+5) >0 (7.39)
O

Remark 15. From the above calculation, we can also obtain @ (0),

'(r) _ M(r) By W) 4
From its definition given by the ODE (4.16),
4 4

®;(0) = 47Gpo(0) — 2§7er0(0) = g?TGpo(O). (7.41)
A

Remark 16. The indicial roots near the center (r = 0) have been derived in [35] under the hypothesis
that p and c tend to a constant value while ®) ~ 0, N?> ~ 0 and N2?/®) ~ 0. N? is the buoyancy
frequency defined by (5.17). The last condition implies that the background is adiabatic near the center.
In this case, the homogeneous system obtained in Remark 12 can be written as

v, <y> © B <y> _ (0> (7.42)
Y2 Y2 0

m m
4 €

where y; = —, yo = — and
3 L+1)
B=1 c102 . (7.43)
102 -2

The indicial Toots are the singular values of the matriz B and are thus £ — 2 and —¢ — 3 for y1 and thus
£—1 and —¢ — 2 for &, as obtained in Proposition 10. However the derivation from [35] does not hold
for £ =0.

Proposition 11 (Singularities apart from 0 in the interior). Under the assumption (7.26), we have

1. ForT'=0 and a given w > 0, for 0 < £ < £ defined in (7.20), in addition to r = 0, the ODE
(7.5) onr < rq also has a regular singular point at r = i w0 defined in (7.19) with the indicial
root equation

s(s—1)+ns+0=0, (7.44)
where
. . c? .
ne= (r = riwe) 3 Coza = —riue (7.45)

The indicial exponents associated to r =r¥ , are

s =20 and s=-n+1=7r,,+1>0. (7.46)

2. ForT'=0 and ¢ > ¢*

w?

on [0,7,], (7.5) is singular only at r = 0.
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Proof. Since %ngcj(r) only has a pole of rank 1 at r = r{, ,, we have
2
. * 2 CO(T) ~
_ 7 —_— = . .4
T_1>171:i£,1w,2 (7" rl,w,f) W2 022 (T) q(T‘) 0 (7 7)
Next, we consider (4.53) for % C2 q(r), which simplifies to
2 2
cg(r) r'=0 2 cg(r) 2(ae,r + 1)
Cos(r)q(r) = —ayp, + — — Ll +1 . 7.48
o2 22()q() YPo r ( ) w2 (7"— /76(64-1)%)) (’I"+ €(£—|—1)%0) ( )
Thus for I' = 0, we have
c3(r) 2
(= i) D2 Canlr) o) = (~aom + 2) r = 1)
C(Q)(,,,) Q(an r 4+ 1) r — Ti*wf (749)
—l+1)—5 @ = o
W 1) — (4 1) 2
The first term will vanish at r = 7], ,, hence it remains to consider the limit of the second term.
Using the definition of 77 ,, i.e. 77 , = \/€({ + l)w, we have
lim 4+ O+ 1) 20 = 9px (7.50)
r— Ti*,w,l [
and
1~ r—= ri*,w,é 1 1
1m = 7 x = *
reri*yw’ _ 00 1 co(r) o CO(Ti,w,Z) CO(”i,u,z) *
er — AL+ 1) 1 \/E(:l;Jr 1) bt T+ el +1) —= aco(rhw’e) (7.51)
= — " > 0 due to (7.53).
I+ Ti7w,€ Qg (Ti,w,é)
The last inequality follows from assumption Assumption 3 and Figure 2b,
T is strictly increasing on [0, r,] . (7.52)
co(r)
This means that ,
1
(T> =+ D, >0 = 14 rag) > 0. (7.53)
Co Co Co
As a result of this, we have
. N c3(r
lim (r — Ti,w,z) LQ)CQQ(T) q(r) =
T_’Ti,w,z g (7 54)
_ (T~* )2 2(ri*,w,€ Qe (ri*,w,é) + 1) 1 - ’
bt 2 ri*,w,l 1+ ri*,w,é Gy (Ti*,wl) bent”
O

Numerical validation We have obtained in Proposition 10 the indicial exponents at the origin, with
the corresponding values of 7y and 79 for all modes. These coefficients are also defined in terms of the
physical parameters (velocity, density) from Propositions 10 and 11, in (7.28) and (7.29). Here, we want
to see if the limits are verified numerically, that is, if we have:

2
e ¢ ]2 for £ =0
To = 71‘1*}1’% T§C22q(r) - {4 for€>0? (7553‘)
2
_ 2 Co. . =2 for £=0
0~ llg(l) "2 Co2 4(r) = {2—6(54—1) for £ >0 ° (7.55b)
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4 ———— -4 dfmm e ———— - dfmm e ——— -4 dfmm e ———— -
—_—r=0
...... =2
SENS - f=10 3 - — 3 - — 3 —
2 | | | 2 | | | 2 | | | 2 | | |
0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
" 1073 " 1073 " 1073 " 1073
(a) 2 mHz, I' = 0. (b) 10 mHz, I' = 0. (C) 2 mHz, F/(Qﬂ') =20 (d) 10 mHz, F/(27r) =
nHz. 20 pHz.

Figure 4: Numerical validation of the limit of 1y given by (7.55a) at frequency 2 and 10 mHz, with and
without attenuation. The numerical computation uses the expression with the limit in (7.28), and follows
the step of Section 6.

—_—t=0

g-tw | | £=2 —10 |- - —10 |- - —10 |- -
- t=4

—15 |- - —15 |- - —15 |- - —15 |- -

I I I I

05 1 1.5 05 1 1.5 05 1 1.5 05 1 1.5
" 10—3 " 1073 " 1073 ! 1073
(a) 2 mHz, I" = 0. (b) 10 mHz, I' = 0. (¢) 2 mHz, I'/(2r) = 20 (d) 10 mHz, I'/(27) = 20
nHz. nHz.

Figure 5: Numerical validation of the limit of 7jy given by (7.55b) at frequency 2 and 10 mHz, with and
without attenuation. The numerical computation uses the expression with the limit in (7.29), and follows
the step of Section 6.

In Figures 4 and 5, we respectively compute 79 and 7jp using the solar parameters (velocity, density,
etc.) and the approach of Section 6. Therefore we evaluate the first parts in (7.55) to see if the limits
are retrieved numerically. We plot for different frequencies, and in the absence (I' = 0) or presence of
attenuation.

We observe in the figures that the limits at the origin are perfectly respected, even when the radius r
reaches 2 x 1073, Both 79 and 7jy are constant, and we retrieve the values expected, according to (7.55).
This serves to validate further our analysis.

7.3 Indicial analysis in the atmosphere
We next consider the regularity of the coefficients of the scaled radial ODE (7.6) for r > r,,
72 Cop G(r) 02a + 12 Caz q(r) Ora + 12 Caag(r)a = 0.

Let us first note that co, v and «,,, are constant in the atmosphere.
We will assume that the latter two terms stay away from zero in the atmosphere (r > r,). To make
this assumption more explicit, we write out their expression here, cf. (D.20) and (D.23)

o> a1 (1) @pl

Ce=-g -t tg,

2 (b/

r? Caa Q(T) = —p? Coo + (0 + 1) = %7&2 + %7‘ _ 7207a;
i ! K (7.56)

1 ) o -

2 )= 2 LYo Gy,

7% Ca9 q(1) = Caaap, T 2r) + rCi2 + E(@Jrl)(r s . )7
2 1 ; 2 2

72 Cgo G(r) = r?CaeCyy + L(L+1) | = — o\ (L1 _Co) _ 2 + (2= Ppo rCys.
T v r o Cx 2 r v
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7.3.1 Discussion on the existence of singularity

When T # 0, we have
022 ?é 0 5 7“2022@ 7é 0, Yr Z Tq - (757)

Thus, in this case, the ODE (7.6) on the interval [r,, c0) has no singularity.
When I' = 0, 0 = w, and we have the following observations.

1. We consider the equation r2C22G = 0. We first note that since we are in the atmosphere » > 0,

thus 9 2 /
d
r2Cor(r)g(r) = 0 & w2r<7° + %C—% - g) =0
c§ v ow w 7.58)
a,, c D] (7.
& 4 00 0, r>0
v ow? w?
Since r +— ®((r) is monotone (in fact strictly decreasing, see Figure 6), the equation
o’ 2
. 2}(27”) _ _%% (7.59)

*

either has no root or has exactly one root on r > r,. If it exists, we denote by r}; ,

simple root of (7.59), i.e.

the unique

2 1 (0%
_ a/)o Ci() (bo(ral,w)
v w2 02

*
ral,w -

(7.60)

The existence of this zero is further discussed below using the solar parameter values of model
S+AtmoCAI. Additionally, the zeros of r2Cs3§ = 0 are the same for all ¢, since the expression is
independent of ¢. This means that dividing by r2Cy24 introduces at most a simple pole. It is also
convenient to rewrite (7.60) as

w? Qpo D4(731 )
Yoo _ %0 ZoValw) 761
C% ral,w v + C(Q) ( )

2. For £ = 0, although the zero of Ca(r) = 0 coincides with that of (7.59), we do not have to
worry about this creating more singularity since 1>Caaq and 72Ca2¢ do not have C,/Coas in their
expression, in particular,

12 Chy q(r) = Caz(ap, r? — 2r) + rCia, £=0; (7.62a)

7’2 C22 6(7) = ’1"2022011 s E = 0 . (762b)

*

In another word, the singularity of these terms only comes from r};

1.

at which it is a pole of order

3. Consider the equation Cos(r) =0 on r > r,, which is equivalent to

2 /
w {e+1 Oy (r o
“ (t+1) og ) _ po (7.63)
o r o v
Since 1 — Z’—;r + (ﬂ/ﬂr and the function r — ‘I’ig’") is strictly decreasing, r +— —@éy) is increasing.
0 0

0
The following functions are also increasing

2
1
r|—>w—2r ,and 7‘»—)—@. (7.64)
cs r

Thus the left-hand-side of (7.63) is an increasing function. This means that (7.63) has at most one
zero. Denoting by 77, , , this unique simple zero on (7,4, 00), if it exists, we have,

w? e+1)  24(ri.0) p
STa2wl T - 5 = ——. (7.65)
€0 Ta2,w,0 €o Y

The existence of this root is further discussed and illustrated in Subsection 7.5.1.
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4. For £ > 0, the zeros of Ca(r) = 0 cannot coincide with that of 72Ca(r)g(r) = 0. This is seen by
using the second expression of r2Cy24 in (7.56),

72 Cos(r) 4(r) = —r2Co(r) + L +1). (7.66)
Thus W+ 1)
* * A * * +
(ral,w)2 CQQ(Tal,w)q(ral,w) =0 < CQQ(Tal,w) = (,,,* )2 (767)
al,w
and
Cor(rinwe) = 0 & (Fhow ) Coa(rhn ) A(raowe) = €L+ 1). (7.68)
In another word,
Talw 7 Ta2wis £>0. (7.69)

Existence of r} We consider the following assumption,

a2,w,l
Assumption 4.
1 D (r,

Zeo Of) > 0. (7.70)
4rg ¥ c

Under the above assumption, we define,

2 /
low = \/W(ra)2 Ly (O‘P(’ - (I)O(T“)> Tq — % (7.71)

2 2
¢ 4 v c5

Assumption 4 guarantees the positivity of the term in the square root.

Proposition 12. Under Assumption 4 and I' = 0, we have the following equivalence,

(7.63) has a unique zero on (14, 00) & >0, (7.72)

Proof. Statement (=) Suppose (7.63) has a unique zero on (74, 00). We have denoted this unique zero
by 73, , o We have

Ll+1 D4 (17, 2
Tt = (*+ ), 2ol 22, D % (7.73)
Ta2,w.0 €o )W
Since 17, , o = Ta, 0 is the right-hand-side of the above equality, i.e.
00 +1 D4(17%s 2
G of &2, D _ O 2 >, (7.74)
Ta27w7€ €o v w

Since the right-hand-side is a decreasing function on (r,, c0), the above inequality occurs if

(4(@+1) . <I>g(§a) - ap) cj; N (E(fﬂ) N ‘1’6(7"33,%4) _ %> Ci; > (7.75)
Tq €0 Y/ w Ta2,w,0 €o v w
which leads to
00 +1 iy &
( (E+1) | 2hlra) _ %> % 5, (7.76a)
Ta Co v w
2 O (1,
& Ht+1) > 1 (ﬂm _ 2o(r) %) (7.76b)
Co Co Y
1 w? Po(ra) |« L
(4= > W[ Er, — 0\"a Zpo i 7.76
< +2‘\/r (c%r 3 "y +4ra> (7700
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Statement (<) We now assume that £ > £} . It suffices to prove the existence since uniqueness is
discussed in the initial observations. We consider function

04+1) | Pp(r) a8
r + 2 2
0 Y w

fir—=1r—

is continuous on [r,, 00). If £ > £% then f(r,) < 0. Since @} is of order 72, for large enough r, f(r) > 0.
With f being continuous, f(r) = 0 thus has at least one zero on [ry, 00).
O

Existence of r;; , The existence of the singularity depends on the choice of model of parameters. We
first picture the evolution of ®{ in the atmosphere in Figure 6, using its expression in Lemma 1 and the

model parameters given in (6.33).

Figure 6: Evolution of ®{ (Lemma 1) in the solar atmosphere, using the model parameters given in
(6.33).

We see that @ is a strictly decreasing function, and we define the following assumptions for the
investigation of the existence of the singularity ry; .

Assumption 5.

i (ry) > 0 (7.77)
Y
or
Assumption 6.
/ apo C(2)
Pp(ra) < ——. (7.78)
Y
Because @ is a strictly decreasing, there exists 741 max S0 that
/ aPo C(2)
(I)O(r) - <0 , TE ('ral,maxy OO) . (779)
Under Assumption 5, rq1 max iS the unique value where
/ aPo C(2)
(bo(ral,max) - ~y . (780)

In the case of the solar atmospheric model AtmoCAI that we prescribed in (6.33), Assumption 5 is
verified and we have:

2
Qp, Cp

®)(rq) = 3.93171 x 1077 and =3.93092 x 107" (7.81)
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Let us note that the difference between the two quantities is small (7 x 10~!!) and therefore, it is strongly
related to the choice of model, and the representation with splines we have employed for the model S
(see Appendix F). Clearly, this condition may not be validated by any stellar models. Then we obtain

Tal,max = 1.0008129, for the model of (6.33). (7.82)

We see that the singularity, if it exists, is very near the beginning of the atmosphere, as we remind that
rq = 1.0007126. This is due to the small difference between the quantities of (7.81).
Under Assumption 5, we define

1 a,,
Wy = \/T (@6(7‘,1) - p;o) (7.83)

This limiting frequency can be explicitly computed for our model AtmoCATI using the parameter values
of (6.33) and we obtain,

*

% = 1.4126 nHz, limiting frequency for r}; , using model AtmoCAI. (7.84)
= ,

Therefore, in the case of our atmospheric model AtmoCAI, this singularity exists only at low frequency
and, when it exists, it is near the beginning of the atmosphere.

Proposition 13. In the following statements, we suppose I' = 0.

1. We have the following equivalence

*

Equation (7.59) has a unique zero on (rq,0) & Assumption 5 andw < wy; .
(7.85)
Additionally, the zero of (7.59), denoted by vy, ,, if it exists, is unique and has the further
property that
7“21,w € (7, Tal,max) - (7.86)
2. This also means that, for the versions of model that satisfy Assumption 6, the equation (7.59)
has no zero on (rq,00).

Proof. (Statement =) If r%,  exists, then

alw
e = (B3 - 220, (78)
: w : ~
Since 3, ,, > 74, the right-hand-side is also greater than > 7,. In addition, since r + ®{(r) in Figure 6

is a strictly decreasing function, we have

1 a,, C2 1 a, c2
Ta < wg<<1>6(7"21,w) - ”70) < wz(%(ra) - f'7°> (7.88)
This leads immediately to condition
1 2 2
(JJ2 < T(@’Q(’I’a) — W) 7and ¢6(T¢1) —_ @ > 0 (789)

*

This also gives us the statement regarding the interval to which r}; ,, belongs, which is

2
rr € {r>r, ‘ D (a) — %eo 0

al,w

S 0}, (7.90)

Statement (7.86) follows from the strictly decreasing of ®f,.
(Statement <) We now assume Assumption 5 and w < w*;. Consider the continuous function
Xpo Cg
Y

We have f(r,) < 0. On the other hand, since r — ®{(r) is of order r=2 as r — oo, f(r) > 0 for large
enough r. Since f is continuous, this means f(r) = 0 has at least a zero on [ry, ).

for = r—®(r,) +

O
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7.3.2 Computation of indicial exponents

In the following propositions, we consider the cases in which the equation (7.59) or (7.63) has a zero, and
compute the corresponding indicial exponents.

Proposition 14. In the case that equation (7.59) has a zero, with ry; , denoting the unique zero,
cf. (7.60), we have

7“2 022 q
lim (r — 7 -1 7.91
Tﬁlr”(:l,u(r Ta],w) 72 CQQ(]A ( )
and
7‘2 022 q
li - 2 =0. 92
r—>1712 w(?” Tal ) 7‘2 022(? 0 (7 9 )

Under this assumption, the ODE (7.6) on 1 > 4, has a reqular singularity at r = r}; , with indicial
equation A\? =0, and with double indicial exponent \ = 0.

Proof. From observation 1, we have r2C22q(r) = 0 only has a pole of rank 1 at r = Tal.ws We thus have

2 ~
(T*T* )2 TCQQQ

lim = 0.
TR abw) 12 Oy g
It remains the consider the first statement.
Using I’Hopital’s rule, we have
I ( % ) 1 . (T - r;l,w)l li 1
im (r —r —— = lim ————— = lim 7 77
Tl alw/ .2 Ca g =T (7“2 Cyo (j)/ T, W % 4+ g Pp(r) M’P
' cg o cg cg
9 (7.93)
= . = % >0
%gr;Lw — %glw) ;’«(Lw (w2 - (I)g(ral,w)) al,w
In the third equality, we have used (7.61). The last inequality comes from the fact that ®f < 0.
We next consider the limiting value of 72Cheq at r = r* . We substitute the definition of C4s, cf.

e.g. (D.20), and using that r2Cas(r) = (£ + 1) at r = r}; ,, we have

2 1 (r31.0)*Cha(r51 ) o
2 * al,w al,w 00
2 Chy q(r —o+1 -2 Cra + €0+ 1) (— - — )
T 22 q(7) — ( + )(aPO ;1&)) + Tal,w “12 + ( + ) T;Lw £(£+1) ~
2 1
= 0+ 1) (ap, — ——) + L+ 1) [ —a,, + 20— —
Tal,w Y ral,w
1
1) (5 = ) - (L) Cha(r )
ral,w Y
L(L+1)
= 72? - ( al w) C’22( al w)'
al,w
(7.94)
From the expression of C%, in (D.21), we have
1 w 4G w (041
Coo(rirw) = 7= 2(—2%0+3(%°— al >>+ polris.) 2(+§
’ (Tal,w) Y Y CO alw (ral,w) (7 95)
1 w? 3w 0e+1 '
= * 2 <2a - 37Ta1 w) + 47TGPO2( iL ) -2 ( i iz :
(ral,w) Y €o ral,w (ral w)
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In the second equality, we have used (7.61). Using the value of C%,, we obtain

Lf+1 2 Th W 2e+1
= 1% Cyy q(r) = -2 (*+ ) 4 9% 4 3w—2r21,w — 47TGL( 31, )r;)w + 2 (*—1— )
=T w Tal,w Y €o <o Tal,w
a w? 5 (731 ,0) 2
=2 ,;)0 + 3?37“;1@ - #T;m} - %‘I)()(T;Lw) (7.96)
LUQ (I)g(’r;l w)
= + grgl,w - C% T;l,w .
In the second equation, we have replaced 47Gpy = @ + 2@, and used (7.61).
Putting together (7.93) and (7.96), we finally obtain
r? Ca q T T
li —rr = 1 — 2 2c =1. 7.97
I R Tore i Tore R (797
The associated indicial equation
2 Cao q
AA—1 li -y A=0 7.98
R T L P} (7.98)
simplifies to
M =0 (7.99)

with double indicial exponents given by A = 0.

Proposition 15. If equation (7.63) has a zero, and with r}, , , of (7.65) representing this unique
zero, we have

72 Caaq
li —rr —_— = -1 7.100
T%TI?;,W,Z(T Ta.?,w,() 72 0224 ’ ( )
and 20,
. G224
lim (1 — %, ,)> -~ =0. 7.101
7’—"22@,14( 2 ’4) r2C § ( )

In this case, ODE (7.6) on r > r, has a regular singularity at r = TZ.@,w,é with indicial exponent
A=0and A = 2.

Proof. From observation 3, we have Ca2(r) = 0 only has a pole of rank 1 at r = Ta,w» We thus have

20 ~
i (5 = ) s = 0.

T30 W 72 Caa q

It remains the consider the first statement.

Consider,
e
lim  (r — 1755, 0) % - ( lim (r — 1% ,)r? Cas q) ( lim 2 Ch cj) . (7.102)
T W e 022(] S ’ TN e
We rearrange the first term on the right-hand-side of (7.102),
1
Coo (022(06,;0 r? — 27‘) + rCig + E(E—F 1) (; — %)> — 0524(64— 1)
72 COgq q(r) = i (7.103)
Caa
Thus
C/
lim 72 Caq(r) = lim Zo0+1);
ToTN e r=ris o0 C22
o (7.104)
Hm  (r — 18, )2 Cosq(r) = lim ——=229L 5 Lim (—Chy)l(t+1) = —£(0+1).
Tl e o T e Ca2 T e
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On the other hand, using its definition in (7.65),

lim  r2Chq = L(l+1), (7.105)
T=Ta0 w0
and 2 0
. r=Ca24q
1 -y = —1. 7.106
Tﬁ;g%w,z(r raQ,w,l) TQ CQQQ ( )
The indicial root associated to this point is
72 Ch2 q
AN =1 li -7 A=0 7.107
( ) + 7’_>1TI£7“, (T ra2,w,€) T2 022(? ) ( )
with indicial exponents
A=0, A=2. (7.108)
O

7.4 Indicial analysis for the conjugate equation

The indicial analysis for the radial modal equation (7.5) transfers readily to that for the conjugate one
(7.2), particular for V' given by (8.3)

1 1
Vi(r) = 392(r) = 50:be(r) + ge(r). (7.109)
The function h(r) = —gg:; has a simple pole at » = 0 and is smooth elsewhere, and g(r) = —gg:;. Thus

then V; has a pole of order two at » = 0. The same reasoning applies to the other singular points.
It remains to calculate the indicial exponents, which are now zeros of

s(s — 1) + lim r* Vy(r) = 0. (7.110)
r—0

The indicial exponents associated to

T € s Tar s Tatw] s (7.111)
are the zeros of
s(s — 1) + 11_r>r(1) (r — r*)?Vy(r) = 0. (7.112)

We denote the roots of (7.110) and (7.112) respectively as
AT and  AF, (7.113)

with the convention y }
Re), < Re\[. (7.114)

Recall that from Propositions 10 and 11, that
T ~ 1. 2
no = limrh, 7o = limr7g, (7.115)

and from Propositions 10, 11, 14 and 15,

= hm(r —ri,)b, 0= lim(r —ri,,)%g. (7.116)
We write b as
h(r) = % + b(r), b regular at r = 0. (7.117)
Then
d%h = —% + %5, (7.118)
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and p
1 2 _— = 1i =
71«1—% T drb ll_r}(l)r h=mno. (7.119)
Similarly at r*.
d
: k2 — . o x —
Tli)rrTl* (r —r") e Tlgrrl*(r )b = . (7.120)

The indicial equation (7.110) takes explicit form,

1 1
s(s = 1) + 3 = 570 + 70 =0, (7.121)
and for r = r,,
1, 1
s(s — 1) + T~ g = 0. (7.122)

We can also calculate the indicial exponents S\Oi and S\f of the conjugate ODE, starting from those

1 /r
of the original ODE. We only need to keep track of what the Liouville factor, e™ 2 J7o(s) ds
Using the form (7.117) of b,

contributes.

/Th(s) ds = / (™ + B(s)) ds = mologz + /Tr}(s) ds (7.123)

N 67% fr h(S) ds _ 67%770 log z ei% j‘r 6(5) ds _ x*%ﬂo % a regula.r fl.lnCtiOn ) (7124)
not vanishing at 0

We have similar results in a small neighborhood of r = r*. Thus the indicial exponents of the conjugate
ODE are obtained from those of the original ODE by relation,

~ 1
AT =00 - g AT =AY g (7.125)

In particular, for r = 0, since ng = 2 for £ = 0 and 4 for ¢ > 0, the first relation is
M= M —1,for =0 ; Af =)\ —2,for£>0, (7.126)

and
Ao = —3, A = 0. (7.127)

We summarize the above discussion in the following proposition.

Proposition 16. The poles of Vy are given as follows:

1. ForT' >0 (i.e., with attenuation), V; only has a pole at r =0 on (0,00), and this is a pole of
order 2.

2. For I' =0, in addition to r =0, V' can have pole of order 2 at the following positions,

0<7ys <Ta, Ta < Thrw and — Tq < Thp,y- (7.128)

This means that the potential Vi is continuous and bounded on [rreg7 00) with
Treg  arbitrarily small forT' >0, (7.129)

and
Treg > MaX{T], 1y Th1ws Tazwe) forT'=0, (7.130)

if these zeros exist.
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7.5 Numerical illustrations with the solar model

Following our analysis of the singularity of the potential V, and Proposition 16, we provide some numerical
illustrations, where we use the background parameters of the Sun, that are shown in Figures 1 to 3, see
also Appendix F. We first investigate the behavior of the singularities, before plotting the potential. Let
us first recall that for the singularity r}; ,, it only exists at low frequency, (7.84), and, when it exists, it
remains near the beginning of the atmosphere.

. o N N
7.5.1 Singularities ], , and 5, ,,

We consider the case without attenuation. Let us first recall the definition of £, which is the maximal
mode at which r{, , exists, cf. (7.20), with £; ,, the minimal mode at which r}, , , exists, given by (7.71):

1 wirz o1 1 wirz o1 a D) (1)
E* _ _ - a - f* _ _ = = Ta - po o\'a -
w 2 + co(ra)? + 4’ e 2 + \/%(%)2 * 4 * ( vy c§(ra) i
Comparing (7, with £ , we observe that
Assumption 5 = 0o >0, (7.131a)
Assumption 6 = < Uy (7.131b)
We have seen that our model AtmoCAI verifies Assumption 5 and injecting the values from (7.81), we
have o
ra <aﬂ0 - 20(“)> = —0.81. (7.132)
v c5(ra)

In fact, because the modes are integer, we observe a continuity in the singularity between r  , and 7},  ,,

such that €7, = £7 ,. When ¢ < (7, the singularity in the interior, 77, ,, and r}, , , does not exist. On
the other hand, when ¢ > £, the singularity is moved towards the atﬁlosphere, in’rézw’ ¢ while 7, , does
not exist.

In Figure 7, we picture the position of the singularity ry, , or 7, , ,, for modes between ¢ = 1 and
¢ = 2000, and for frequencies from 0.1 mHz to 12 mHz. We use the values of the parameters from the
solar model S for the interior, and from model AtmoCATI for the atmosphere.

7,,*

15
10 . .
/:g i,w,l
E 1
>
)
E _jos

Figure 7: Position of the singularity r , or 77, , , for the solar model. We investigate modes from ¢ = 1
to £ = 2000 and frequencies from 0.1 mHz to 12 mHz. The black dashed line indicates the separation
between the singularity located in the interior (above the line: 7}, ,) or in the atmosphere (below the line:
Ta2.w.e), and corresponds to £ of (7.20). For visualization, all the positions where r}, , , > 1.5 uses the
same color, while the maximum, obtained at £ = 2000 for frequency 0.1 mHz is 7735 ¢ 1,11, —2000 = 30-89.

We see that the singularity is mainly positioned near the r = 1. It is moved towards the origin
when the frequency increases and when the mode decreases. Here, the minimum is obtained at frequency
12 mHz for mode ¢ = 1 with {5, yy, .1 = 1.36 X 1072, On the other hand, it is moved away with
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increasing mode and decreasing frequency, the maximum is obtained for 0.1 mHz for mode ¢ = 2000 with

* —
T32.0.1mHz,¢=2000 = 30-89.

7.5.2 Evaluation of the potential

Eventually, we provide the evaluations of the real part of the potential in the interior and atmosphere,
where we consider r from 0 to 3. In Figure 8, we picture the potential without attenuation (I' = 0)
at frequencies 2 and 10 mHz for different modes. The case with attenuation, using I'/(27) = 20 pHz
is pictured in Figure 9. For visualization (i.e., to allow different scales), our figures are separated into
four panels: one corresponds to near the origin, one for the interior, one near the interface with the
atmosphere (i.e. near r,) and one for the atmosphere. We use frequencies in mHz, which are typical of
applications in helioseismology, therefore, we do not observe the singularity in r3; ,, which requires much
lower frequencies (lower than 1.4 pHz as given in (7.84)).

-1012 108 107
T 1 T : ‘ T
Lh N ‘I H — £=0
' N ¢ =10 -
— \ [y H
1 H —-— - —
S leeJos| N : £=1500 || |
3] a * ' e L L
~ : ~~~ E "
i R P .
1 |a e T SoTscc oo
o 0 \ \ \ \ \
005115 0.2 0.5 0.8 1.5 25 3
" 10-2 T r

102 -108 . -107
PR o R ‘ ‘
| i \ —_— 4=0
. N T e ¢ =10
— ' H
~ . P - == £=1500
= 0.5 1 105 Y
5] 1 H ‘e B
~ \ H .
\\ e Sy [l R S I I PR
0 | | | 0 | | | | |
005115 0.2 0.5 0.8 1.5 2.5 3
r 10-2 r r r

(b) w/(2m) =10 mHz, I' = 0.

Figure 8: Solar potential V; depending on the mode ¢ and the frequency, assuming there is no attenuation,
such that I' = 0. For visualization, the interval is split in four for the different regions. In addition to
the singularity in r = 0, the singularity in » =}, or r =1},  , is shown by the peaks, and depends on
the mode and the frequency. o o

For all choices of frequency and mode, we observe the singularity at the origin (in » = 0). In the
case without attenuation, Figure 8, we see the additional singularity in 7y, , or 75, , ,: this singularity
moves towards the exterior when the mode increases, or when the frequency decreases. Namely, for mode
¢ =10, the singularity is in the interior (that is, rf ,) for the two frequencies (2 mHz and 10 mHz), and
appears closer to the origin at 10 mHz. For higher mode ¢ = 1500, the singularity is in the atmosphere
(that is, 7%, , ,) at frequency 2 mHz and in the interior (that is, r}_ ,) at 10 mHz. These observations
coincide with the numerical evaluation of the singularity provided’ir’l Figure 7. Furthermore, we note
that only the singularity at the origin remains at mode ¢ = 0 without attenuation (Figure 8) or when
we incorporate attenuation, see Figure 9. We note that, near the surface and due to the variation of the
physical properties, the potential shows some important changes in all cases.

In the case with attenuation, we see some variations at the position where a singularity is in the
case without attenuation. This is due to the relatively small imaginary part added by the attenuation.
Nonetheless, these are not singularity, and they have finite values. We illustrate in Figure 10 where we
zoom near the singularity for mode £ = 10 at 10 mHz. We see that without attenuation, we have a sharp

peak that increases towards infinity, while it is a Gaussian-shape function with attenuation.
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Figure 9: Solar potential V; for the interior depending on the mode ¢ and the frequency, using attenuation

-1012 108
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~ : ..
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T .10472 T ks T
(a) w/(27) =2 mHz, I'/(27) = 20 pHz.
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— 1 .\ I
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. Sl : ~e.
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" 1072 r T r

(b) w/(27) =10 mHz, I'/(27) = 20 pHz.

I'/(2m) = 20 pHz. For visualization, the interval is split in four for the different regions.

Re(Vy)

107

0.119

0.121

0.122

Re(Vy)

1011

0.119

0.121

0.122

T T

(a) Using I'/(2m) = 20 pHz. (b) Using I' = 0.

Figure 10: Zoom near ry’, , of the Solar potential V; in the interior at frequency 10 mHz and mode £ = 10.

8 Analysis of the modal ODE: asymptotic

In this section, we obtain explicitly the first three terms in the asymptotic expansion of V; in (7.2) as
r — 00, such that,

Vie(r) = vo + V% + Vr;; +0(r %), r—o. (8.1)
Let us first recall that the conjugated unknown a(r) solves the conjugate ODE
—0%a + Vy(r)a = 0, (8.2)
with 1 1
Velr) = 75%(r) = 50:0() + a(r) (53)

We will present two approaches. In the first one, the asymptotic analysis is done without using
explicit expression for b, h’ and g obtained Proposition 8, by keeping track of only top order terms. This
gives an approximation result with error of order r—3, cf. Proposition 19. On the other hand, taking
advantage of the special assumptions of AtmoCAI, one can also carry out approximation directly on the
expressions given Proposition 8. The second approach, available under this specific assumption, allows for
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higher order approximation and explicit description of the error. It also allows us to present an enriched
approximation of order 2, which makes appear the effects of gravity, cf. (8.65) or (8.66). We note that
the usual O(r~3) as obtained in Approach 1 works well at infinity, but does not show the effect of gravity

which comes into presence at order r~3 and only for g.
We also recall the notation introduced in (4.50),

o
ko := — 8.4
oim 2 (34)
8.1 Approach 1
8.1.1 Asymptotic of Cyo
To begin with, we write out the asymptotic of coefficient Cos.
Proposition 17. For all kg # 0,
1 1 a1 o 1
= 1= e+ 1)+ + k;?0(r 3) |, r—oo. (85
Cn k&( Tho For <( V2 ) Trgrye TR0 00 (52
Here the error O(r=3) is bounded independently of ko. For ko > ko,
1 1
— = 01 . 8.6
on = @0l o (3.6)
On the other hand, Clq is independent of kg, and
1
cl, = WG’CL;’ 4007, (8.7)
0
thus ,
1
— k720(r72). 8.8
(7ez) =00 (85)
Proof. Denote by &(r) the following function independent of kq:
ap, 1 L(0+1) 1 9
=p_ At/ -0 8.9
e(r) v r2 A (8.9)
From Lemma 1, we have
L% _ o3 (8.10)
z r ' '
For fixed ¢, this means
_ 1 _ ap, 1 L(0+1) _
— - 10(1) = Zeoz 2y = Qe 2 _ 3 11
e =r0(1) ’yr+o(r ) o - + O(r =), T — 00, (8.11)
and
2 0[?,0 1 -3 3 -3
e” = 72r—2+0(r ), e® = 0(r77), r— 00. (8.12)
As a result of this, for
o a1 L+ 1oy, o,
022 = _k() - %; 7‘2 + % 7 _k() - E(’I"), (813)
we have
1 1 —2 —4 —6
_k-?)c—m ST R 1 — ko?e(r) + ko *e*(r) + kg "O(le(r)P) o1
_ o Qpy 1 (L+1) -3 —4 O‘% 1 -3 —6~/(..—3 .
— 1k (T? - ==+ o0 )) + Ky (72°T—2+0(r )) + k3S0(r3).
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For ko > ];07 we have

1 1 a, 1 L(0+1) a? 1 o
— =1 = Lo ky20(r—3
Can k%( Thokor T (hor? T (ko Ghor? T O
1 a,, 1 o 1
= ——(1--2— (041 £o ko 20(r=3) | .
k%( 7k0k0T+<< - )+’72(k‘0)2) (koT)Q+ 0 0(™)
On the other hand,
L a1 l(t+1) 1 d) 19
Cyp =——5 — 2 - — - = —
v r? r3 g T cg 12
a1 _0(f+1) 11 2 . 1@
= P _ = ~(4rGpy — =®)) — = -2 8.15
v or? r3 Jrcgr(ﬁpo T o) c3 r? (8.15)
pol apl L+1) 1 9
=47G—= - + B2 —= -2 . -3 —.
T ar * v or2 r3 c r?
Thus CY, is independent of ko and
1
Chy = 7G2 = 1 0(r72). (8.16)
g
Since
1\ 11 1 Chy
7”022 B r2 022 0222 T ’
for ko > ];)0, this leads to,
1\ 11 1
= = —50(1) + —0(1)0(r~2) = k;20(r ?).
(7&n) = 72O + EOMO) = k%00
O

8.1.2 Asymptotic of ¢, ¢ and ¢

We write out the asysmptotics for the coefficients ¢, ¢ and q.
Lemma 3. The coefficients of the ODE (7.1) have the following asymptotic expansion, as r — oo,
1 Ll+1) 9 3
- = - + k O(r s 8.17a
i) T e TR (8472
2 Ll+1)a, 1 _ _
q(r) = apy — = Aot Day, 2) 2 — + k?0(r?), (8.17b)
r kg r
) 0% 2 a, 2 fe+ag,(1-9)1 5y L -2 (3
i) = %+ 2 (ap - 22) ¢ 54 AEABETD 0 4 060 4 45700,
(8.17¢)
Proof. Let us consider *ﬁv from (8.5), we have
1 11 @ 1
— = (1 -2 — 4 k20(r 2 8.18
72 Co k(%rQ( 7k0k0T+ 0 0 ) ( )
and for ky > 1%07
1 _ 11 0O(1) = ! i 11 0O(1) (8.19)
7‘2022 B ]CS’I‘Q 7"2022 _7’4163 ' '
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As a result of (8.18), using Neumann series expansion, we obtain

1 1 00 +1) (e+1))? O+ o E+1)
s = g = 1 —1_ 5140
q(r) 1 — ((l+1) - 72 Caz 2 Cay ) (kor)? vko (kor)3 + ko "O(r™),
7‘2 022
or simply
T~ BT (8.20)
q(r) (ko7)2 0 .

Then, since

we have
2 10 a, 1 41 /1 0\ 24 +1)
= — S 4 - =+ 1) .
q(r) Ypo r + 7“022 ( + ) Y 7“2022 + r 7“022 N 7"3022
kg ? O(r=2)
It remains to consider %i Using the definition of Cy2 in (4.39¢),

1 1
Cra = 0L +1) (T (—apo + a§°> - TQ) ,

and (8.5) which gives the asymptotic of C,',

Cr2 1 1 Q, 1 1 o 1
L =/ 1 i ZpPo )y _ 1— =P =
oy C12C5, (L+1) (r ( oy + 5 - i ko For +

(0 +1) [apo (1-9 1] [1_ Qo 1 kozo(r”)}

k(Q) Y r r2 Y k‘() ko r
0l+1) [ap (1-9) ag (1—7) 1 oy 1 o
= — 0 — 0 1] = o~
k3 ( Yoo V2 kg e vkg 213 T ho Ol
041) [y (1=7) az (1—7) 1 I
k(Q) ( v r 72 k(% + 7‘2 + ko O(T' )

This gives

r3

Mb:_W+n(mu;w_<ﬁﬂ—w+Ql+%%M%O,

27.2
Y2 kg
In summary, we have

_ 2 f(f + 1) Ap, (1 — 7) ﬂ(ﬁ + 1) Qpo
) = o = 2 (A el SR

r2

which simplifies to
2 {4+ 1)a,, 1 _ _
q(r) = ap, — — + %7 + kg 20(r 3).
r 5 r

Eventually, since

1 2 _ Fpo L / — _13 L + g + Qpo
r|\r v ) rCy r 12 7Ch r ~y

1 17
Ci1 + ae+y {(2 - apO) ] + g Cio ~ po Cio
T r v ) rCo

£(04+1) kg 2 O(r—3)

we have

q(r) =
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%0072

40

(8.21)

) 1 + ky20(r™%),

(8.22)
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It remains to look at Cy;, given by

o? 2 ! 2 2 D/ 47 G
011:_2+<Oép0_ p0>+2—2 it} +T Lo
g T ol r 5 r o .
O(r—3)texpo decay decays exponentially
Thus 9
o 2 o} 2 _3
CllN—C%‘i‘r(O‘po_ ,;0>+7,2+O(T ) T —r 0. (8.23)
Together with (8.21), we obtain
_ o 2 Qp 2 ((t+1)ag, (1-9)1 -3 —2 ~/.—3
O
8.1.3 Asymptotic of the coefficients of the ODE
Here, we obtain the asymptotic for the coefficient of the normalized ODE (4.62),
—9%a + b(r)a + g(r) = 0, (8.25)
with ) i)
a\r q\r
b(r) == ———, r) = =< 8.26
"= 0 T (520
We label the coefficients of the asymptotic expansions at infinity of the ODE (7.1) in (8.17) as
i L0+ 1)
s
ko
o, L0+ 1 B
qo = CQp, qg-1 = 727 q—2 ‘= % = —Qp, 42,
. 0 (8.27)
(jO:_kga 61—1:2<04p0— ’;)0>7
N (+1)a? (1—7) az (1—7)
—2 = 2 Po = 2 _ _po J_o.
q—-2 + k% 72 72 q—2
Proposition 18. The coefficient of ODE (8.25) has the following asymptotic as r — 00,
() = bo+ 1+ D2 4 o),
o gr , (8.28)
_ - - -3
g(T) - gO+ r + T2 + O(T )a
with
bo = aypq s h1=-2, ho=0;
o ((0+1)a2 (1—7) (8.29)
g = —k§ glz2<ap0— ;’“) g2=2+0{l+1) + <k2 ) "“72 :
0

Proof. We have
g—2 - - qd-1 q—2 _ _
o) = (1+ 52 + kg200™) (0 + L2+ L2 + k32007
= () = a0+ T2 417 (@0 4o + g-2) + k57 O ).

Note that §_o contains a factor of &y 2 which allows for the presence of this factor in the error.
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From (8.27), we have the simplification
G—2qGo+q—2 = G-20p, — qpg—2 = 0.

Similarly, we have

o) = (1 + 5 + k7007 (@0 + T2+ T2 + 457007 + 067H), (830)
and thus,
- q— Jo §—2 + q— _ _ _
0= d+ T+ T2 4067 + k700, (8.31)
Simplification of the higher order terms gives,
i i g, (1 =) po(1—1)
God-2 + G2 = (=k§) G2 +2 — L5 d 2 = —q o | kg + + 2
(e+1) ap,(1-7) oe+1) a2 (1—7)
=7 <kg P +2=24+L(+1) + R "“72
O
8.1.4 Asymptotic of the potential
Combining all of the above asymptotic results, we obtain the one for the potential.
Proposition 19. Vi(r) defined in (8.3) has the following asymptotics as r — oo,
Vie(r) = vo+ V%l * \;;22 +0(r™), 1= oo, (8.32)
where ) ) )
aPO g PO 2
== - 5 = —= —k
eSS T T T T
@
Vo = ap, — 2%, (8.33)
00+1)ad (1—7)
Voo =24+ L(l+1) + R 072
The error is bounded in ko, for kg > ko.
Proof. To obtain the asymptotic expansion for Vp as r — oo, we first recall from (8.29), that
bo = ap, , hoy=-2, h_o=0;
00 +1) a2 (1
g():—kg X 91:2<0[p0—ap0>, 972:2+€(£+1)+ ( ) ) po(2 ,7)
Y kg g
We thus obtain the asymptotic for (h(r))? as
2hob_ 2hoh_2 + (h-1)?
(hr)? = b3 + 22001y Zhoboa 2 By gy, (5.34)

r r2

and that for 0,.h,

orq(r)  q(r)orq 2 -3 —2 -3
oh(r) = — - = = Oh=—q1r " 4+0(7°)==-b_1r "4+ 0("").
S O = S 0
Putting these asymptotics together, we obtain that for V;:

%—kQ
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and

1 «
Vo1 = 1(2170[')—1) T 91 = —Qp + 2 <apo - ,;)/0> = Qpy — 2

On the other hand,

voa = 3 (200hs + (h1)%) — 5(~bo1) + g

g N

I
7
[ V)

8.2 Approach 2

We obtain asymptotic approximations for h, §’ and g, starting directly from their explicit expression
given in Proposition 8. For simplicity, we work under the assumption of constant attenuation i.e.

(k5)" = 0. (8.35)
We first note that for ¢ = 0,
2
bo = ap, — (8.36a)
2 &) 9
g = —kZ + @ = + . (8.36h)
T T
It suffices to consider for higher /.
We recall from Lemma 1 that in r > rg,
/ G .
o = om + exponential decay term (8.37)
thus
1 G .
oy = —2T—3m + exponential decay term. (8.38)
By its definition
Qp, Gm 1 il
Ehe = _T + ?72 + exponential decay term . (8.39)

Approximations with exponentially small error For rational approximations with exponentially
small error, in expressions (4.76) (4.75) and (4.77), we replace

G G « Gm 1l
12 . " . 4

@0 ~ T—Qm N @0 ~ —Qngm 5 Ehe ~ _TO ?7’72 (840)

We denote these as
Dapp-exp (h/)app—exp »  Gapp-exp (8.41)

and
1 9 1,,

Vapp-exp = Z(bapp-exr)) - i(h Japp-exp T Bapp-exp |- (8.42)
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Approximation with error O(r=3) 1In (4.75), the third term is of order r =3, as r — co. In addition, it
is clear that they are bounded in &y 2 for all ky > 0, thus we arrive at the same result from Proposition 18,

2 L(0+1)
= an - 2 s e, 8.49)
with error,
2r — Bue 201
&y = o+1) o 5 & = 0(r™?)
(T2 T TR k.LgEhe) (TZ - ,?%Ehe) (844)
bounded uniformly in k2 € [0,00) and £(¢ + 1) for £ =0,1,...
Similarly,
2 L(l+1
b = 5 + ( 5 )O(r"l). (8.45)
r kg

with O(r~%) term bounded uniformly in k3 € [0,00) and £(¢ + 1) for £ =0,.... We write
B = by = a, — —; (8.46a)
() = by = - (8.46b)

Since the term (4.76b) in expression (4.76) for g is of order r—3

tion 18. We introduce the notation

, we reobtain the result from Proposi-

2(a _ apg) 9 k(Q) + Qg (a& _ apo)
i - SR T A (S LA ; 8.47
9-3 0t r + 72 U+ k3r2 — 1 Ehe ’ ( a)
2(ap, — ) g ((+1) o, [«
g = k2 v = (o041 oo (Zeo 8.47b
g3 0ot r + r2 ( +0+1) + k2 ~ ~ Qpo ( )
then o0+ 1) o0+ 1)
_ +1) 5 +
g =0 + 2 Egmz = 97 + 2 Eq,—3 (8.48)
0 0
where o ) o 1
E = -0 - -0 -
g A r2 — kLgEhe + c3 ki
_ 1 8.49
+ (2 apo) 2T_k02Ehe_’fLﬁ%§o (54
r v ( 2 — Z(l;:grl) - kLgEhe) (7‘2 - kLgEhe)
This error term also satisfies
&y = O(r~?) bounded uniformly in k3 € [0,00) and £(¢+ 1) for £ =0,1,... (8.50)
For V, we define
1 1
VEP = Z(bipgp)2 - i(b/)i%p + 9% (8.51a)
- 1 1
VIR = 0T — 00T + o7 (8.51b)
Since )
1 app\2 L, app Xy Qpg
- - = — .52
LT~ Sy = Y G (85)
we have
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o2 a, — 2% ngrm(m_%o)
yape — Ypo g2 ro 8l 2o T AT : 8.53
-3 4 0ot r +r2 +Ue+1) k212 — 7 Epe ' ( 2)
2 — 92%0
“app _ Yp 2 Xpo 7 1 +1) oy, (o
VAP = To_ko t— t 2 2+ 00+1) + i V“ 70—0% .
(8.53b)
We also have the same result as in Proposition 19,
- 0+ 1 _ 0+1 _
V(r) = VAP + (k2 )O(r ) = VAP 4 (k2 )O(T 3. (8.54)
0 0
Higher order approximations By ignoring f—gr in the numerator of the last expression of bh, we

obtain an approximation of order r~5.

approximation of order 7—°. Define

We further ignore the lower order term in Fy, and obtain an

2 2k27“ — Eh
app . _ — 24+ 0 ° , 8.55
b= %o r ( )(kzgr2 —l+1) — rEhe) (k312 — 1 Epe) (8.55)
and
2 2kEr + 2o
AP = o, — = 4+ Ll+1 S— T - 8.56
s o ( )(k§r2 = Ll+1) + ) (kg2 4 or ) (8.36)
We have
Ll+1 {41
) = s By gy g 1)
0 0
We have
f+1 _
y =y + L op) (5:59)
0
with
2 66(0+1)k2
wym = 2 - s i — (859)
r (kgr? — L(0+1) + r=22) (kg2 + r=22)
We did as above to obtain an approximation of order 5 for g,
2 (a,, — 2o 2 Rl
gipf_—k2+M+—+£(£+1) ! (”a p°)
5 0 r r2 k22 + £0
0: " (8.60)
Gm 1 2 2kEr + 2o
_szTj + f(é—l—l) ( o %) 2.2 - O‘po’y 2 .2 %pg
2 r r v ) (kg2 — L +1) + r=2e) (kg r2 + 7 =2e)
then
{e+1
g = gy + <ng )O(r_5). (8.61)
0
Potential V is then approximated by,
app L appy2 L appy/ app
Vs = 1(575) - 5(575) + 975 - (8.62)
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Locally enriched O(r~2) approximation Near r = r,, with constant QG—’“ being large, the term

2Gm ~3 has significant effect in this region, which prevents g*%’ from approx1mat1ng g well. The same

poor approx1mat10n carries over for V. For b, since terms carrying 2 appear at order r—°, this influence

PP approximates b well even close to 7 = 1, despite the area

"’ and r = Ta2,w7€. Thus an

is much more tamed. Because of this, h*

around the spike when there are zeros of the denominator (i.e. at r =1}, ,

enriched version near r = 1 with the same order of error at infinity (i.e. r 3) we can work with

bo , bl (8.63)
and Gm 1 Gm 1
gEr, = g — QC—;T—S or  ggrg = 805 - 2?;773- (8.64)
The approximation for V' are given by
paw = peme Q(ié“:g. (8.65)
or
VPP, = VRRP QG(;;:?)' (8.66)

8.3 Numerical illustration of the performance

We evaluate the quality of the asymptotics for the functions b, b’, g and V;, using the expansions obtained
at order 3 and 5, given above. In addition to the visualization of the functions, we also introduce the
relative error between the function and its asymptotic, that depends on the frequency and mode, and
that we define by

[Ve(r) = Vau(r)]

ev, (r) = AT (8.67)

and similarly with ey, , ep, and eg, .

8.3.1 Numerical illustration for the asymptotic of h

We investigate the accuracy of the asymptotic expansion of h, given at order 3 and 5 respectively by
(8.46a) and (8.56). In Figures 11 and 12, we picture the function b together with its asymptotic h*2F and
hoP as well as their corresponding relative error ¢y, , respectively without and with attenuation.

We observe that the asymptotic is equally accurate with or without attenuation and that, in both
cases, it becomes less accurate at high modes. Namely, it reaches at best a relative error of 10712 at
mode ¢ = 0, and 10~® at mode ¢ =1500. As expected, the asymptotic at order 5, h*P, gives the best
results and we observe a gain of 2 orders of magnitude in terms of accuracy when we compare from order
3 and 5. The maximal error occurs near the singularity r}, , ,, if it exists (that is, only for high modes,
as illustrated in Subsection 7.5).

We can conclude of the expansion of ) that the asymptotics accurately capture the behaviours. For
small modes, the order 3 approximation, h*%, appears sufficient (about 10~® relative error), but the order
5 is necessary for larger modes, as illustrated with ¢ = 1500. Also, we do not observe any differences if

attenuation is incorporated of not.

8.3.2 Numerical illustration for the asymptotic of b’

We now experiment with the asymptotic expansion of b, given at order 3 and 5 respectively by (8.46b)
and (8.59). In Figures 13 and 14, we picture the function together with its asymptotic h"5” and h'™*EP,
and the corresponding relative error ey, . The two figures correspond respectively to the case Wlthout and
with attenuation.

Similarly as for the function h, we do not see a difference in case with or without attenuation. On
the other hand, we see that the relative error for the asymptotic expansion of §’ is larger than that for
b, in particular for the high modes. Here, for the mode ¢ = 10, the relative error reaches 10~® while it is
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(a) Using frequency 2 mHz and mode ¢ = 10.
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(b) Using frequency 2 mHz and mode ¢ = 1500.
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(¢) Using frequency 2 mHz and mode ¢ = 10.

(d) Using frequency 2 mHz and mode ¢ = 1500.

Figure 11: Evaluation of the asymptotic of h at order 3 and 5, given by (8.46a) and (8.56) in the case

without attenuation (I' = 0).
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(a) Using frequency 2 mHz and mode ¢ = 10.
T T

(b) Using frequency 2 mHz and mode ¢ = 1500.
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(c) Evolution of error at 2 mHz, for mode £ = 10.

(d) Evolution of error at 2 mHz, for mode ¢ = 1500.

Figure 12: Evaluation of the asymptotic of h at order 3 and 5, given by (8.46a) and (8.56) in the case
with attenuation I'/(27) = 20 pHz.

10~'2 for h. At mode ¢ = 250, the relative error is still acceptable (10~* with order 5 approximation),
but the error is particularly high for high modes, as illustrated with mode £ = 2500 in Figures 13 and 14,
with, namely, 100% relative error.

Therefore, the asymptotic expansion of §’ is less accurate than that for §. The order 3 approximation
seems effective only for low modes, while the order 5 appears effective for modes up to a few hundreds.
Nonetheless, for very high modes, such that we have illustrated with £ = 1500, one needs an expansion
of higher order.
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(d) Using 2 mHz, £ = 10.

(e) Using 2 mHz, £ = 250.
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(f) Using 2 mHz, ¢ = 1500.

Figure 13: Evaluation of the asymptotic of b’ at order 3 and 5, given by (8.46b) and (8.59) in the case

without attenuation (I' = 0).
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(d) Using 2 mHz, £ = 10.

(e) Using 2 mHz, ¢ = 250.
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(f) Using 2 mHz, ¢ = 1500.

Figure 14: Evaluation of the asymptotic of b’ at order 3 and 5, given by (8.46b) and (8.59) in the case

with attenuation I'/(27) = 20 pHz.

8.3.3 Numerical illustration for the asymptotic of g

For the asymptotic of g, we have provided the expansion at order 3 and 5, (8.47a) and (8.60), as well
as a variation for the order 3, §**P, given in (8.47b). In addition, we have provided the locally enriched
version with the gravity term for the order 3, gi° 5 and g~ 5 given in (8.65) and (8.66). We picture
the performance of these approximations in Figures 15 and 16, respectively in the case without and with

attenuation.

As in the previous comparisons, we do not observe any difference between the case without and with
attenuation in terms of accuracy. Comparing the choice of asymptotic expansions, we have the following
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(c) Using frequency 2 mHz and mode £ = 10.

(d) Using frequency 2 mHz and mode ¢ = 1500.

Figure 15: Evaluation of the asymptotic of g, in the case without attenuation (I' = 0).

—0.5

Re(g)

-106
—1.62 -
\..\
~—— —_ 5
-
—1.62 |- B [N
B el T g
o
a’
[+ E‘_1t>5r)
I e g2Pp
,—3
~app
—1.63 ‘ I 52 s |
:
1 1.5 2 2.5 3

10710 & | |

(c) Using frequency 2 mHz

and mode ¢ = 10.

10-6

107
T
J—
— s |
--- %P
...... FRP
Pladd
...... P,
------ e
| | T
1.5 2 2.5 3

(d) Using frequency 2 mHz and mode ¢ = 1500.

Figure 16: Evaluation of the asymptotic of g, in the case with attenuation I'/(27) = 20 pHz.

comments.

— The order 3 approximation g5
distinguish between the two. On the other hand, at higher modes,

app
93

app ~app

and g5

~app

9.3

gives the same results at low mode, where we cannot

gives better results than

— Similarly, the enriched versions of the order 3 approximations, ggfg and gir® 4 are relatively similar

at low mode, but g?

9a,—

3 behaves better at high modes.

~ We clearly observe the improvement obtained from enriched versions with gravity, g~ 5 and g¢r >~ 5,

compared to the original version of g** and §*;

~app

. In particular, the enriched version as as accurate
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app

as the order 5 approximation, g=' .

Overall, we see that the ‘tilda’ versions of the expansion is more efficient, and that the enrichment of
the order 3 with the gravity is as (or even more) accurate than the order 5.

8.3.4 Numerical illustration for the asymptotic of V,

We can finally plot the asymptotics of the potential V', which definitions coincide with the choice of
expansion for g, h and h’. Therefore, we have the order 3 and 5 (V5" and V*P?) and, for the former,

the variation V*5 and the possibility to enrich with the gravity term: VZPP, and VPP,. We compare in
Figures 17 and 18 in the absence or presence of attenuation respectively.
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(c) Using frequency 2 mHz and mode ¢ = 10. (d) Using frequency 2 mHz and mode ¢ = 250.

Figure 17: Evaluation of the asymptotic of V', in the case without attenuation (I" = 0).

The results for the potential coincide with the observations given above for the different functions. In
particular, the accuracy of the approximation using order 5 can be attained by using the order 3 with an
enriched gravity term. While we show the results using a maximal mode of ¢ = 250, it is clear that using

high modes (such as ¢ = 2500) results in a drastic increase of error, as illustrated in the approximation
of .

9 Existence of solutions
With the background quantities given by the AtmoCAI model for r > r,, we consider

—po (W? + 2iwD) € + P(€) + po(€-V)VEy = f inR®. (9.1)
In this section, we construct a Green’s operator, denoted by G whose Schwartz kernel is given by Green’s
tensor G written in a basis made up of vectorial harmonic spherical P}*, Bj* and C}*, so that for a
compactly supported smooth vector-valued function f,

LGf =f, f € D(R®)3. (9.2)
The component of the 3D Green’s kernel G depends on the radial modal Green’s kernel of the modal
radial ODE,

(@(r) 07 + a(r) 0, + 4(r)) Gelr,s) = 8(r — ). (9:3)
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(c) Using frequency 2 mHz and mode ¢ = 10. (d) Using frequency 2 mHz and mode £ = 250.

Figure 18: Evaluation of the asymptotic of V', in the case with attenuation I'/(27) = 20 nHz.

This is equivalent to constructing a conjugate modal Green’s kernel Gy,
(5‘3 — ‘/g)é[ =d(r—s). (9.4)

The second serves in particular for choosing an appropriate outgoing condition at infinity. Since Green’s
kernels of ODE are obtained from two homogeneous solutions, we first construct ‘regular’ homogeneous
solutions in Subsection 9.1.1, and then outgoing homogeneous solutions in Subsection 9.1.2. With the
construction Gy, the tensor G is determined uniquely G in Subsection 9.2.

9.1 Existence results for modal radial ODEs
9.1.1 Existence of a regular solution

We have identified the singular points of the coefficients of ODE (7.1) in Table 1. Apart these points, the
coefficients of the two ODEs are continuous. To facilitate the construction of solution in the neighborhood
of singular points, in particular to apply ODE theory for regular singular points, we assume the following.

Assumption 7 (Analytic background assumption). We assume that co, po and y are analytic in a small
neigbhorhood of each point in the singular set S, and outside of which they are continuous, with

2reg sing — {O} fOT’ r> 0, (953,)
ET@Q sing — {0’ T:w,E’ TZI,w ) TZ.@,UJ,Z} fOT I'=0. (9'5b)

Under Assumption 7, we can construct a regular solution ¢ = ¢, of the original radial modal ODE
(7.1),

(ar) 22 + q(r) & + (r) ) = 0. (9.6)

This will give a corresponding ‘more regular solution 1) = 1, for the conjugate radial modal ODE (7.2),

(=87 +V(r)e =0, (9.7)
via the relation (4.66),
Yo = e 21 00, (9.8)
4We recall that At = AT — 2 for £> 0 and At = AT —1=0for £=0.

Inria



Outgoing solutions in vectorial helioseismology 73

Regular solution for the original radial ODE For I' > 0, we recall that the only singular point is
at r = 0 with the indicial roots given by

(-1 ¢ —t-2 ¢
A = R v 20 9.9)
1 e=0 2 L 1=0

Assume also the analyticity neighborhood of the background at the point is (-4, §), with § > 0. We apply
Theorem 3 for the regular singular ODE in order to construct a regular solution 1, on [0, ) satisfying,

. At

}1_% TR0 qhy = 1. (9.10)
This solution ¥|jo,5) is then extended to [0, 00) by using Theorem 2 applied to the interval [—§/2, c0).

For I' = 0, we have shown that the set of regular singular points contains more than just r = 0,

cf. (9.5). Once we make a choice of a solution at » = 0 and we can only extend this solution without
making further choice of indicial exponents at the remaining singular points (ri*’w’ 00 Tat e and 155 ¢2)- The
extension is obtained by using Theorem 2 on the interval where the coefficients of (7.1) are continuous,
and using Theorem 3 to extend after a regular singular point.

Remark 17. When we extend past a reqular singular point, what we simply do is to determine the highest
order term cy and ¢y in Theorem 3, and the extended solution is a linear combination of the u1 and us.
Luckily, the indicial exponents at the nonzero singular points for the ODE (7.1) are all non-negative, cf.
Table 1. A

9.1.2 Existence of outgoing homogeneous solution

From the results of Section 7 and Subsection 9.1.1, there exists r.z > 0 such that V; is bounded on
[Treg; 00), cf. Proposition 19. V; has the asymptotic expansion at infinity,

2_ 1
Qad | HEZA | o3y, (9.11)

W(T) = —k* — r 72

Here, py depends on v_s defined in Proposition 19 and is explicitely given in (9.40), and we use the
notations

k? i=vg = 7 ¢ k= Vk2; (9.12a)
et
Qad = —V_1 = ;(2——7), (9.12b)

where  / uses the Argument branch [0, 27). Under the physical assumption of (2.1), we have
Qag > 0. (9.13)
In another word, the function
Ryor = Vi(r+ reg)s (9.14)

is smooth and inherits the same asymptotic with V; at infinity. To focus on the behavior of the solution
to (7.2),
(-0 + Vi(r))ag =0, (9.15)

at infinity, we follow [2, Eqn 3.4 - 3.6] to shift the problem to (rreg, c0), on which V4 is bounded.
Shifted problem Consider a solution w defined by

’LU(?“) = &(7‘ + Treg) s (916)

then w satisfies

2

d
—oa W + Venitteaw = 0, Vanitted (1) = V(7 4 Treg) 5 r>0. (9.17)

RR n° 9335



74 Barucq, Faucher, Fournier, Gizon & Pham

Vshifted 18 @ complex-valued function which is bounded, smooth and has asymptotic,

Vinifted (1) = —k* — , _T_éa:reg (TH_E ;r:;)z + O((r +7reg) *) - (9.18)
We define
qu(r) = —Tj":reg ; (9.19a)
as(r) = Vinittea(r) — qu(r) + k* = (TME;:;V + 0(r ). (9.19b)
Then ODE (9.17) on r > 7eg is written as
(—(ZZ — A+ gs(r) + qL(T)> w =0, r>0. (9.20)

In our case, A\? = k? and q also depends on k.

Outgoing solution on [ryeg,00) The ODE (9.20) is in the form of Equation (2.1) of [2|, and the
potential q satisfies hypothesis (H3) of Proposition 2.1 and Theorem 2.2 in [2]. We first list this hypothesis,

q(r) = gs + qr is a complex-valued function; (9.21a)
gs € L'(Ry); (9.21b)
q. € C*(Ry); (9.21¢)
lim g =0 g =007, r—00,j=1,2ande>0. (9.21d)

Proposition 2.1 of [2] allows us to construct a global phase ¢ having the property: for all j € N, there
exists an analytic function g;(\) on {\: A\? > 1/j},

o) = [\ = (1 xD) as)ds + g0, (0.22)
0
such that

A= @(r,A\) is analytic in A € C\ {0}, (9.23)
to define incoming/outgoing solution. Here, the cut-off function x and the sequence x; are defined as

1 |r| <05

xEC(®), nm:{0|ﬂ>1

Coaul) = x(3) (9:24)

Note that the analytic function g;(\) only depends on A.

Remark 18. The phase function ¢ = ¢(r,k) can be chosen to be an exact or approzimate solution to
the eikonal equation, cf. [31, Eqn. 0.15],

@' (r,)[F + ar = K?, (9.25)
hence,
PP+ == 2 o (k) = / st = k/ 1+ aij ds . (9.26)
" 0 s ro s
We obtain,
" Aad ad
@(r,k)wk/ro (1— 25k2> ds ~ kr + 5k log . (9.27)
A
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We next apply Theorem 2.2 of [2], which gives the unique existence of the outgoing solution to (9.17),
denoted by wy. We list the stronger results for real g,. We define,

Cy :={2€C| £Imz > 0}. (9.28)
Theorem 1 (Theorem 2.2 of [2] ). Suppose that the potential q satisfies the hypothesis (9.21).

1. For each /A € C \ {0}, the equation
(=92 =N +q)w=0, r>0, (9.29)
has a unique solution w4 (r) satisfying the asymptotic relation
wy(r,\) = eii“”(r”\)(l + o(1)), asr — oo, (9.30)
and the mapping

Ci\{0} > A — w4 (7, N) is analytic. (9.31)
defined in (9.29)

2. This family extends continuously to
A e Cq \ {0}, (9.32)

and the asymptotic relation (9.29) holds uniformly in

0 < Arg (M) <, [A| > 6 > 0. (9.33)

As a result of the above theorem, we obtain the solution w (r, \)|(0,0) to (9.29) which provides the
unique solution to (9.15) on (ryeg, 00), which satisfies the asymptotic relation

p(r, k) = ePr(mh) (1 + o(l)) ) asr — oo. (9.34)

We denote this solution by

9| (reegso0) - (9.35)

Extension of outgoing solution on (0,00) We next extend the solution constructed in (9.35) to a
solution to (9.15) on (0, 00). This result is instant for the case where I' > 0, since req > 0, cf. Table 1.
In the case where I' = 0, the solution is extended backward up to r = 0, using Theorem 2, on the interval
where the coefficients of (7.1) are continuous, and using Theorem 3 to extend pass a regular singular
point. The solution remains continuous on (0, 00), due to the fact that the indicial exponents of non-zero
regular points are positive, see also Remark 17. In short, we obtain an outgoing solution ¢, to (7.1) on
(0, 00) that is bounded on a compact subset of (0,00), and that has

p(r, k) = ePr(mh) (1 + o(l)) ) asr — oo. (9.36)

9.1.3 Approximate outgoing modal coefficient in the atmosphere via Whittaker equation

We restrict ourselves to the atmosphere, and consider the ODE with the potential that takes into account
the first three terms in the asymptotic expansion of V; at infinity.
We call

(—a,% k2o dad V*Q) i=0, (9.37)

r r2

the approzimate conjugate radial equation. We also define

Qad Vo2

Q= k> + = (9.38)

r
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Normalization of approximate radial equation (9.37) to the Whittaker equation Introduce
the change of unknown

2= 267 ki (9.39)
Then for A(z) defined as a(r) = A(z := 2ikr), we have
Oa = 2ikd, A = —0% = 4K2D%A.
We divide both sides of (9.37) by 4k? to get,

Qaq 1 . Qaq 1 Voo )

roak? 2k z 0 orZake | 22

Arising from this calculation are pu, and 7 defined as

Pp— aad .
nad - 2 k 3 (9403)
1 9 oy -1

In the new notations, the approximate conjugate ODE (9.37) is written as,

dr? r 72

2 _ 2 _ 1
(dk2+( Cad) | M 4>a_0. (9.41)

The truncated potential @ defined in (9.38) is

2 _ 1
Rk § (0.2
In particular, the new variable A solves the Whittaker equation,
924 + <—i + _i:ad g ;2%) A=o0. (9.43)
Since a pair of linearly independent solutions to (9.43) in a neighborhood of infinity is given by
Wi, e (2), Win.a ,M(e_”r z), (9.44)
incoming outgoing
the corresponding pair for (9.41) is
Woin e (2ik7), Wi, u (e ™ 2ikr). (9.45)
incoming outgoing

Approximate solution An outgoing solution for @ can be approximated by the Whittaker function

ag' ~ Wip, n(—2ikr). (9.46)
Remark 19. The key here is that
ILm ora(r) —ika(r) = 0, (9.47)
such that a = aj* satisfies to
li}m Ora(r) — @a(r} —ika = 0. (9.48)
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9.1.4 Modal Green kernel

We work under Assumption 7. We now patch together the regular and outgoing solutions constructed
in Subsection 9.1.1 and Subsection 9.1.2 respectively to obtain the radial modal Green’s function.We can
either build the Green’s kernel for the original radial ODE directly or first construct one for the conjugate
ODE and then obtain that for the original ODE. We discuss both approaches below.

Approach 1 We construct directly the Green’s kernel of
(a(r) 220 + a(r) v + (1) ) Galr,s) = 8(r =) (9.49)

where ¢ denotes the Dirac function. We have

G@(T, S) — _H(S - T) (b(?“) ¢<S> +~H(T — 5) ¢(T) (b(s) , (950)

W(9, 0)(s)

where H is the Heavyside function and using the two homogeneous solutions ¢, (5,

((j(r) 0% + q(r) 0, + d(r))qﬁ =0 on (0,00);

) (9.51)
(422 + a(r) 9, + d() ) =0 on (0,00).

In the above expression, s — W(¢, ¢)(s) is the Wronskian of ¢(s) and ¢(s). The solution ¢ is the unique
regular one on (0, 00) to (9.51), satisfying

lim 70 gy(r) = 1. (9.52)

’r’*))\+

The indicial exponent A is given in (7.30) and (7.31). On the other hand, ¢ is obtain from the unique
outgoing homogeneous solution v to the conjugate ODE defined in (9.57),

o(r) == ez 04 (r). (9.53)

Thus, ¢ satisfies the asymptotic relation
$(r) = 2 /DR (1 L o)), - oo, (9.54)
Approach 2 : In this approach, we first construct a Green’s kernel for the conjugate equation, and

from there we construct a Green’s kernel for the original problem. For homogeneous conjugate problem,
(=07 + V() =0 (9.55)
the results of previous sections have shown that, with or without attenuation,

1. There exists a unique regular solution 1, on (0, 00) that satisfies

Hm %y = 1, (9.56)

=
with AJ" given in (7.125),
2. There exists a unique outgoing solution ), on (0, cc0) satisfying
Yy = P01 4 0(1)), asr — 00, (9.57)

where the phase function is independent of ¢, and satisfies asymptotic relation,

Qad

-2
ok log r + k™ =0(1). (9.58)

@(rak) = kr + —

RR n° 9335



78 Barucq, Faucher, Fournier, Gizon & Pham

From this results, the outgoing Green’s function Gy that solves

(=02 + Vo) Gy = 6(r—s), (9.59)
is given by B _
éz(’f’, S) — _H(S — 71)1/](70) 1/)(5) +~H(’l" — 5)1/](70) ¢(3) ) (960)
W(, ¥)(s)

From the transformation of the right-hand side between the original ODE and the conjugate ODE, cf.,
(4.64) and (4.65), the outgoing modal Green’s function G, (9.49) is obtained by,

Loerpg 1 e Gy(r,
Go(r,s) = —e2d "3 ) hg((z)s). (9.61)

9.2 Outgoing solution for 3D Green’s kernel

Characterization of outgoing solutions As before, we work under Assumption 7. We now return
to the 3D equation (9.1). From the results of Proposition 3 and (4.26), we see that the solution of the
vectorial equation (9.1) is uniquely determined by its radial component. In particular, using convention
in Remark 7, the solution & to (9.1),

—po (w? + 2iwD) &€ + P(€) + po(€-V)VP, = f inR?, (9.62)

with a compactly supported right-hand side

o 14 e 14 oo 14
F=> > OPFE+>, Y. "Bl + Y, > h'(r)ClE), (9.63)
(=0 m=—/ £=0 m=—¢ £=0 m=—¢
is given by
00 y4 oo 14 00 J4
E=Y Y (PP +Y Y OB+ YD G)CHE). (9.64)
£=0 m=—¢ £=0 m=—¢ £=0 m=—¢

The radial coefficients are given by, cf. (4.66),

ayt = / Go(r,s)§7(s)ds; (9.65a)
0
o l(6+1 1 I ;"
where i — — 12 Ie P (R /S I (9.65b)
Caz v po AL+ 1) T Caz2 ypo /(L +1) Y Po
with G/ the physical kernel constructed in (9.50) (or equivalently (9.61)), and the horizontal ones by, cf.
(4.45),
by 11 2 1 1 7
f - S dal ( _ C“Po(r)> S T S| S— (9.66)
(+1) 10 T v(r) ) rCo2 Ca2 ypo UL+ 1)
and o
o = e (9.67)
—02py + Po +:’0‘I>0
Note that the expression for c¢j* is simplified to ¢j* = fg 2(;()) for the interior and
5 r>T,
Qp, (7") _ Y o) ) (968)
y(r) ——l r<r,, cf. (6.28a)

Since the phase function ¢ in (9.58) is constructed to be independent of ¢, the characterization
(9.57) remains the same for all level of (m, ¢) and the above solution also satisfies a similar asymptotic
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relation, which characterizes it as an outgoing solution. In particular, we recall from (9.27) and (9.54)
and Proposition 18 that

N 1, .
d(r) = ez Vel (1 4 o(1)), 7 — oo; (9.69a)
o(r, k) ~ kr + C;as logr; (9.69b)

2 -3
h—a- 2406, (9.6%)
Thus, we have
LR P

$ = e (1 + o(1)), r—00. (9.70)

Definition 3. A solution & € H? _(R3) to (9.1) is called outgoing or physical if its radial part

loc
satisfies one of the following asymptotic relation for some continuous function a,

1 1 .
£-e, = — ezl gielixlk) (a (;l) + o(l)) , as |x| — o0. (9.71)

|

Structure of the 3D outgoing Green’s kernel For x and s € R3, we have written
r = x|, s=s|, X =%. (9.72)

Using the orthogonality of vector spherical harmonics,

/82 P}'(%) - Pl(X)do = / B}'(X) - B (X)do :/ CJ'(X) - CT(X)do = S 0y - (9.73)

we can decompose the 3D Green’s kernel of G in the basis of second-order tensors made up from these
vector harmonic basis. In particular, we find the scalar distributions acting on the radial direction,

AP (r,s), Byt (rys), Ct(r,s), Dy (r,s), Ef*(r,s), (9.74)
so that
G(x,s) = Aj(r,s) Py(X) @ Py(s)
o l
£33 (49 Pr® @ PPE) + BP9 PRR) @ BIE)
=1 m=—¢ (9.75)
+ 7" (r,s)By" (%) @ Py*(s) + Dy (r, s)By'x) @ By'(s)
+ B (r,s)CP (%) @ CF'G) ),
and

gf = <G, f>(D(]R3)3)’,D(]R3)3 . (9.76)

We first clarify the notation. Here, D(R?) denotes the set of smooth and compactly supported functions
and £(R?) denotes the set of smooth functions. D(R?)3 is the vectored-valued version and ’ denotes the
dual space, i.e. the space of functionals. For a distribution h(r,s) € £ (R} x RF) and smooth vectors
V(r, %), W(s,x) defined in terms of spherical coordinates, we define the action of h(r, s)V (%) ® W(S) on
a compactly supported smooth vector-valued function f by,

(h(r,5) V(r,%) © W(s,3), f>(£(R3)3)/’€(R3)3
(9.77)

™ 27
= V(r, 5()/0 /0 (h(r,s), s> W(s,8) f(s)>$/(Rj),5(R3) sin s dos dbs .
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Step 1 We start with the radial coefficient given in (9.65),

ap = / T Gl s) R (s)

OO - fi"(s)
/0 Gl (8) Po(s)
g [2C2) e ey, (1 97" (5) s
+/o aur )< C22(5) ~(s) po(s) /L0 + 1) s <C22(3) 7(s) po(s) WH))) !
(9.78)

Since f is compactly supported, g;* is of compact support in [0, 00). As a result of this

lim Gy(r,s) 1 977 ()

= 9.79
ST Cal) 30 pale) VAT D o
On the other hand, we recall the definition of Cay in the interior of the Sun (4.35d),
o2 {41 1 s
Onlr) = 2 4 D, S . (9.80)
€o r s Ca(s) —%s? + (L +1)
0
In addition, due to its construction, Gy is regular at r = 0, we thus have
1 m
lim GZ(T?S) 9 (S) (981)

s—0 S 022(5) '}/(S) po(S) E(f + 1) N

Given (9.79) and (9.81), we can perform the integration by parts in the last integral of the right-hand
side of (9.78) and obtain

ar = G e [T Ty ) 9L g
P, O s+ [ T s, (0.82)

where

— (Cuals) + L) Gulrys) + (¢ +1) 20
e Con(3)7(3) Do) - (9:83)

Step 2 We next rewrite b}* starting from (9.66).
First, from (9.82), we have

11 g mo1_ 1 * Gy(r,s) Y R O
FCat) " = O (/ TorORACKAS LU €(£+1)d>’ (0.54)

and

(9.85)
_ (2 ap(r) 1 * G(rys) . T sy IE8)
B (7" y(r) )7"022(7") </0 v()po()fé()d +/0 Tilr. =) £(4+1)d>'

Thus, with

. 1 0,Go(r, s) 2 op(r) 1 Gy(r, s)
) = ) 7@ o) ( A7) )rcm(r) () po(s) | (6.86)
and
_ g _ Gpg (T) Tg(ﬁs) arTl(T,s)
Ne(r,s) = (T ) > (1) - + O (1) (9.87)
we have
— ’f‘ S S T S gg ( ) S 1 g%”(?“)
v = / Ruln i) +/ Nelr8) st e ety Vi O
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Proposition 20. By putting together the results (9.67), (9.82), and (9.88), the outgoing Green’s
tensor of (9.1) is

0o L
G = Y. 3 U pr® 0Py

= Ty(r,s)
L2 g X @RS
mis g (9.89)
+ \/m.fﬁ (r,5) B} (X) @ PJ'(s,8)
5(r — s) .
+ (Ne(r 5) + Co () )po(r))B (%) @ By'(3)
02p6(r+_p:)+poq>6 C/'(x) @ Ci*(s),

with the kernels Ty, Ky and Ny defined by (9.83), (9.86), and (9.87), and d(-) denoting the delta
distribution.

10 Low-order radiation boundary conditions (RBC)

In this section, we construct radiation boundary conditions (RBC) for the vectorial ODE problem.

10.1 RBC for the conjugate radial coefficients

Since a solves —9%a + Vy(r)a = 0, we can use the same procedure as in [3, 6, 5] to obtain radiation
boundary conditions of the form
0i = Za. (10.1)

We recall that /- is the square root branch such that Arg./- € [0,7), while (-)'/? is the principal
square root branch with Arg(-)!/2 € (=%, Z]. The branch /- ensures that Im /- > 0.
10.1.1 Nonlocal coefficient

Nonlocal coefficient By factorization of operator, we can always define the non-local radiation
coefficient,

Zﬁonlocal(r) =i - ‘/Z(T) . (102)

With this choice of square root, we have that the imaginary part of /—Vp(r) is always positive. This
means that with attenuation, the solutions vanish at infinity.

We can further rewrite the defining expression in (10.2) using the principle square root (-)'/2. We
consider the following assumptions.

Assumption 8.

Im(-V,) > 0. (10.3)
Assumption 9.
Imk? > 0. (10.4)
Assumption 10.
(Argk?, Arg(=Vy)) # (7, 0). (10.5)
Under assumption Assumption 8
Zﬁonlocal =1 (_W(T))l/z . (106)
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If k? and V; satisfy Assumption 8- Assumption 10, we can apply [5, Prop 33] to factor out k? of (—V;)'/2,
such that,

B ntocas = 1k (“fﬁ”)m . (10.7
Simplified non-local Recall that
) = Q) +evl). ev = Vil - @) = P oe), (108)
where ) consists of the first three summands in the asymptotic expansion of (—V)
Q) =K + %f”%r;%
o ) (10.9)

2 ay—1\1
£(€+1)<W+1)+1k8 2 )702

As we have observed in the discussion of Subsection 8.3, in particular in Figures 15 to 18, the addition

of the term 2%7"_3 improves the approximation near r = r,, i.e. using Vgpfg in (8.65). In the context
2 ;

of RBC, we introduce the notation

2 _ 1
G 9 Qlad Mg — 7 Gm 1
=k — - 2——. 10.10
Q7 (r) + r r2 + 2 73 ( )
At infinity, it maintains
Ll+1 _
V) = Q) + 50, ev=—vit) - Q8 = D op o
0
Under assumption that
ImQ, >0 , Imk» >0 , (Argk?, Arg(Q)) # (=, 0). (10.12)
we define the simplified nonlocal coefficient,
1/2
. Q 12 . Qad 1 i - /1'%
2zt =ik (3% =ik (1 — + 4 : 10.13
sal =1 (k2 TG T e (10.13)
Similarly under assumption that
ImQS >0 , Imk?>>0 , (Argk?, Arg(Q%)) # (x,0), (10.14)
we define the simplified gravity-enriched nonlocal coefficient ,
1/2 1 2 1/2
L (QF . Qad 1 T — Uy Gm 1
ZE =ik | £ =ik (1 — 4+ 4 22— : 10.15
G =1 <k2 UG T T TP E e (10.15)
Remark 20. See further discussion in the assumption that In Qg > 0 see Appendiz E. A

Remark 21 (Comparison with the scalar equation). We recall the form of the conjugate ODE for the
scalar equation from [5, Section 6.2] or [3] (in terms of &),

. @ {(+1
afu = —Qscalart , With Qscatar = k* — ; - ( 2 ) (1016)
and thus 1o
e _ ol et
[Zscalm’]nonlocal =ik (1 r k2 (’I”k)2 (1017)
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With a > 0 and under assumption (2.1), a,q > 0, we note that the first difference between the scalar
case and the vectorial one is in the sign of the Coulomb potential. The second difference is the addition

of the term 2662;:‘3 as discussed in Subsection 8.3 which greatly improves the approrimation near r = r,.
0

Note however that the unknown of the scalar equation is u = \/pocoV - €& which is closer to the
Lagrangian perturbation of the pressure 0, than to &.. A proper comparison of the boundary conditions
will require to derive, in this framework, the boundary condition for 6, and then compare to the one for
the scalar unknown u. A

10.1.2 Approximations of nonlocal coefficients

Coefficients in the HF family We next set out to approximation,

1/2 1/2 1 2 1/2
— a 1 = —
)\ Q)+ e\ L (e L E o s\
k2 k2 k kr (k)2 k2
We recall that
gg(r) = O(r ), is bounded in kg thus k. (10.19)
We use ) ) )
/2 _ L R - S
1+ %) 1+ 5% = g% + 167 cey |z| < 1. (10.20)
Using for the small quantity,
Qad i- M2
k2, where € = =< 4 5+ eo(r), (10.21)
we have,
v, 1/2
<k2> =14+k20(e) =1+ k200 1). (10.22)
This leads us to introduce
ZS—HF—O = lk . (1023)

Higher approximation gives

—4

1/2
— 1 k
( w) =1+ §k_26 e e + k1 0(e?)

K2
) ) 4 /g2 (10.24)
L1 (aa | 3K [ aa -3 —6 (.3
=1+ §k72 ( , + 7’2 + EQ(’I")) — ? ( 7’2 + 0(7’ ) + k O(G )
Therefore, we have,
~V\'? 11 (Qaa . 2—42 1 a2 o
— =14+ - (— - - k=2 3. 10.2
<k2> T\ T e Tmee ) TR0 (10.25)
We define
, 11 (Qaa -4 1 a2,
Zs_gr_3 = ik[1+ == - —-2 . 10.26
STHE=3 1<+2k2<r+ r2 8k2 r2 ( )
Among therm in r of order 2, if assuming further that
Ly 1 2
' > 10.27
) |k2| Qpq K ‘4 oy ( )
we introduce
z k(1 L (a1 (10.28)
S—HF-2 ‘=1 2wz \ 7 2 . .
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If we assume
2

1 2
1M 1 Qad

. - 5@ < Oaq (10.29)
then we obtain
1 Qad
Zg_pgp_1 = 1k (1 —_ . 10.30
S—HF-1 = 1 ( +t 3, ) ( )

The same argument applies to Q% to give the family HFG listed below.

Coefficients of the SAI family Consider as small quantity

1 2
1K
+
k2, with € = ﬂ—ate(r), (10.31)
1+ ;dkﬁ
then
1/2 1/2 112 14 ?
L L LIt Ly (Zmm tee) k=00(e?)
k2 r k2 2k? 1 — Qad L 8 1+ Qaal
1/2 2
R A (I N EVANNE N £ ey
r k2 22721 — Qe L BkAp2 \1 4 Qeal
(10.32)
Thus we introduce the SAI coefficients
1/2
. Aad 1
ZSE—SAI-O = ik (1 - k2>
1/2 1 2
. Qaq 1 1 1M
z¢ =ik (1 — — 1 4
S SAT-1 i ( " k2> < + 2] a;*dk12> (10.33)

1/2 1 1 2
! k(1 Qaal / 14 1 i~ i 0
§-SAI-2 r k2 2k2p2 ] — 2ad Lo gkdp2 \1 4 Qad L

Summary We have introduced the following ten approximations of the modal RBC, with k and a.q
defined in (9.12), and 7,4 and p, in (9.40).

— The approximate DtoN condition is given by Whittaker function,

W! —2ikr
Z\%Vhitt = —92ik 1Mad 7HZ( )

: . (10.34)
Winad N (_2 ik T)

— We have three conditions in the nonlocal family:

) _‘/K(T) 1/2
2’ﬁonlocal =ik < K2 ’ (1035&)

. Qad 1 i- /’L%
zto =ik (1 — 4+ 4 10.35b
snl 1 ( + k kT + (kr)2 ( 035 )
1 o2 gm 1\
zt k(14 G 2 o2 T He H M L , 10.35
¢ ! ( + k kr + (kr)? + 3 (kr)2r ( )

Inria



Outgoing solutions in vectorial helioseismology

85

— We have four conditions in the HF family:

Zg_nr-o = ik,

Zs_pr-1 = ik <1 4 2#@;1) ’
Zs mgr_2 = ik (1 + % (Oé:d
Zs pr_3 = ik (1 i % (Oéad

— We introduce the HF family enriched with the
asymptotic of Section 8§,

(10.36a)
(10.36b)
1 2
i H
o @)) : (10.36¢)
1 2 2
T M 1 o
i e T T;)) : (10.36d)

gravity term, in the spirit of the enriched

Gm 1
Zs_urg_o = ik|[1 4+ — 10.37
S—HFG-0 = 1 < + @ (kr)Zr ) ) ( a)
1 Qad Gm 1
ZsfHFGfl =ik (1 + W , kT‘)2T’> (1037b)
1 [« l 2 Gm
Zs-nurg-2 = ik (1 + 22 ( :d ! W) + "2 (k) ) , (10.37¢)
€o
. 1 Qad i— 2 1 a
Zs_gra_3 = ik (1 + ﬁ ., 2 — T 5, ) (1037d)
— In the same spirit as the SAI family, we introduce
. tag 1 2Gm 1 \'?
Zg—SAIG—O =ik (1 + ﬁ C(2)(k’l“)27> 5 (1038&)
2Gm 1 1/2
Ziao =ik (1 + 5 . 10.38b
— We have three conditions in the SAI family:
1/2
ad 1
2o = ik (1 + 2 de) (10.39a)
1/2 1 2
¢ . Qad 1 1 1 [LZ
ZS'SAI'l = ik (1 r k2) (1 + 2k2r2 1 + aadk12> ’ (1039b)
a1 1/2 1 1,2 1 1,2 2
ZSZ—SAI—2_ik<]‘+ad2) L+ 55 ; auz1 42( : au£1> :
k 2k2r2 1 4 Sad gy Bk*rz \ 1 4 “2d 5
(10.39¢)

10.2 RBC for the original ODE coefficient a and b

Assuming a satisfies the condition at r = v, d.a := Za, we derive the corresponding conditions for a
and b which are obtained from a by relation (4.66)
a(r) == e 2/ %), (10.40)
and from (4.45),
l+1) 1 (2 a) Ll+1)
mo__ ara + - — — | XY—"0a 10.41
¢ r 022 Yy ’I“CQQ ( )
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Proposition 21. Assuming that @ = a}* satisfies at r = v condition
ora(t) = Z(v)a(r). (10.42)
then a = a}* and b = b}* defined by (10.40) and (10.41) satisfy at r =,
Oray'(r) = <h(2t) + Z(t)> ay*(v); (10.43a)
) by _ (h(t) N Z(t)—l B C§2(r)) b(t
((e+1) 2 v Cxn(v)/) Ji(t+1)
h(v) 2 2 1
z S 10.4
# (M- 200 - 3+ 00) e (10.430)
Proof. Since
a = ef%bd,and ar(ef%hd) = ef%h (aTa + ;hd) = e%h&d + %f)a,
we have,
1 1
dya = el 2"0.a + Sha (10.44)

Evaluating at r = ¢, it gives

1

0 () = ! 2" 2,6(0) + 10 a() = f 2" Z©a() + 3 a(®) = Z()a() + SHE)a ().

T

We thus obtain the boundary condition (10.43a) for a.

Since a is a solution for an ODE of order 2, this also gives the values of %a. Recall from (4.62) that

d%a = bh(r)dra + g(r)a.
Evaluating both sides at r = v and replacing d,.a using (10.43a) gives

02a(r) = B() 0,a(x) + a(¥) alr) "= p(r) (hg) + zm) alt) + g(x) a(v),

thus

o2at0) = (2 + 59.20) + 3(9)) a0,

We next consider the RBC for

Evaluating at r = ¢, this gives

376 = o (00 + (2 2)a) = i (B4 20+ 2 - 2 ao).

On the other hand, if we differentiate both sides of (10.49), we obtain

N 11 2 a\ 1 !
Tb: ——0p —_ = —
0 <7"C22a ot <7" 7> 7“022G>

11, 2 a\ 1 11y 2 _a) 1Y
~raatos (G- (ag) oo (- 5) ) »

(10.45)

(10.46)

(10.47)

(10.48)

(10.49)

(10.50)
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Rewriting the last three terms on the rhs by expanding the last derivative, we obtain,
~ 1 5 2 « 1
_ L 10.51
Orb rcmﬁra—i— (r ’y) rcwara (10.51)
1y 2 «a 2 o\ 1
== == . 10.52
i <7”C22> (8Ta+ (7" 7) a) i (7" 7) "o (1052)
Evaluating at r = v and using (10.43a) to replace d,a(t) and (10.47) d2a(r), then we have,
1, 2 a\ 1
TC228TG/ + (T‘ B ")/) T‘CQQaTa
r=e _b(r) (bl g(v)
= O \ 2 + Z(v) ) a(r) + 0 (V) a(r)
2 o)y 1 (b0
_ L (b 2« a(v)
= O (0 ( 5 + Z(t)> <h(t) + " 7) a(t) + ¢ Con(©) a(r)
b(v) A Z(x) b(x) g(v)
= _— Z — _—
( 2 * (t) b<t) ‘COQQ(‘C) aur QtCQQ(Y)a(t) * tCQQ('C) a(t)’
and the second line of the right-hand side of (10.51) is written as
! ,8a+ g—ga—i—g—g/la
r Cag " r y r v ) 1Co
Y b(r) 2« 2 o) 1
- <’I“022> r=t (2 + Z(t) + <t - ’}/>) a(t) + (7“ B ’}/) r:rthg(t)a(t)
1y . 2 a) 1
N (T 022) r:tthz(t) b(t) + (’I“ B ’)/> r=t 'CCQQ(‘C) a(t)
(1 Oy 2
— (t + Coa() b(r) & O () a(r) .
Combining these above calculations, we obtain a boundary condition for b
zo (b 2o Z() b(v) g(v)
orb(r) = ( 5 + Z(v) ) (b(x) O a(r) + 3t Con (0) a(t) ) + Cm(®) a(r)
1O 5 2
_ (t t i) M~ mga At
() 1 L (0) (10.53)
(Y gy 2 b22 7
(%5 + 20§ - g5 ) i
h(v) 2 2 1
— - Z - = .
+ (- 20 - F 0 e
O

10.3 Radiation conditions in 3D

In this subsection, we give a preliminary discussion of 3D RBC to be used in a 3D discretization of (3.1).
Since a choice of 3D RBC depends on the variational formulation of (3.1) and on the type of discretization
method (e.g. Discontinuous Galerkin, Finite Elements), we only give some variants that come directly
from the modal conditions (3.1). Specifically, in (10.43), if we assume that Z is independent of ¢ (e.g.,
Zs.gro and Zg yr_1 in (10.36)), and using the approximate version of b, that is independent of ¢, we
obtain readily a boundary condition for £ placed on the boundary of a sphere. As one of our conditions,
(10.81) and (10.84), which bear some resemblance to a common noneffective boundary condition (10.85)
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(or (10.87)) employed in [18, 7, 34, 29]. However, the crucial difference is in the leading wavenumber, as
discussed in Subsection 10.3.3.

We first recall the decomposition of &,
£:§T6r+£h7 §r=§~eT=7TT£, §h:£_§r7 (10~54)
and
e = e®e, - &, &, =(1d —e®e,)-§,. (10.55)
For simplicity, we assume that the source has zero C}* component, see (4.5). From the results in (4.23)—
(4.26), the tangential part of £ only has component along Vg2Y7",

ag'(r)Yy";

10.3.1 First variant

We first deduce the boundary condition for £ in series form.
Lemma 4. Assuming that a}* satisfies the condition (10.43a) and b} (10.43b),

[e%S) 14

VeEe =% 3 ("(;) —|—Z(t)> (a;"(t) Y e, + b(t) VSZY?)

£=0 m=—/¢

00 )4 ’ B
-S>y (1 + gzzgg) b(t) Ve Y1 (10.56)

=0 m=—¢

) 4 2
+3 Y (M- 20 - 2+ 00) el Ve

£=0 m=—/¢

Proof. From the expression of the gradient of a vector in spherical basis(2.13), we have
V¢ e, =0, (&) e, + 0r(mo€) €9 + 0 (mg€) €y, (10.57)

thus
VE-e, = argrer + aré.h

SN N N b - (10.58)
= Z Z (8Tae )Yf e, + Z Z ar\/ﬁ VS2YE .

=0 m=—¢ =0 m=—¢
We next use (10.43) to replace 0,a}* and 0,b}",

ora = <g+Z>a,

2 Cas(t) 4 t Coa(t)
to obtain
00 4
vee =3 3 (L z0)arwvre
=0 m=— 2
oo 0 !
+33 (b(;) + Z(v) —% — gzzg» b(r) Vs Y (10.59)
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An approximation of (10.56) is obtained using the approximations of Z, h and g that are independent
of £. From the derivation in Subsection 10.1 and Proposition 18, this means that we work modulo 2.

Recall from Proposition 17,

2 ot v ki

Cl
22— k2 O(r~2?) (10.60)
Caa N——
bounded with respect to ko
From the result of Proposition 18, we have
2 -2 2 a)l -2
h(r):a—;JrO(r ), g=—kj + 2 a—; ;+O(r ). (10.61)
We consider Z independent of m and £ and of the form
Z
Z(r) = Zo + 71 (10.62)
Then
4
2 = o — —% 4+ O(r2); (10.63)
22y Z
22(r) = 22 + 22221 4 o(r?); (10.64)
r
1 11
= ——~ + ky?0(r 2 10.65
TC22 k% r + 0 (’I" ) ( )
This leads to
h2(r
U 22y - 2 g
10.66)
042 « QZO Zl _ (
and ,
h(r) 2 2 1 T 2§ — kb )
_z _ = — 0 . 10.67
(52 - 20 - 5+ 50) 7 T+ 007 (10.67)
Using these approximations, we derive
0o J4 a 1 ~
VE-e, ~ ;) ;e (2 - - +Z<r>> (@@ Y7 e, + b Va7
) 4 1-
=Y > —b(r) Ve (10.68)
£=0 m=—/¢ v
A
4 m m
VY
+ [Z:%m; 2t ay(r) Vs2 Yy
Finally, using the property (2.15b) of Y},
¢ I
> a(t) Ve Y[' = Ve Y a(t) )" = Vee, - €, (10.69)
m=—/ m=—~¢
we arrive at the following approximate condition of (10.56), with Z independent of
2
1 I-e®e % — 25—k
vg.er<0‘+2(t) er®r , 1 0 Ovsz(er.)>g. (10.70)
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10.3.2 Second variant
With the same derivation, we obtain the following lemma.

Lemma 5. Assuming that a}* satisfies condition (10.43a), then at r =r,

Z > <7P0< +Z) i(’y—l)po)aan?er

(=0 m=—¢ (10.71)
- Up p P
+ w(vsi"gh)er + 7OVS2 (&-e) — 705}“ x| = r.
Proof. We recall definition of second-order tensor 7 defined in (3.22),
7= (v =1)poV - €1d + py V'€ (10.72)
= T-e.=(y—1Dpo(V-&e + po(V'€) -e,
We recall from (4.4) that
0 2, ,m)\/ b
ve=X Y {(r:;) e(£+1)f}Y,
om= . (10.73)
= Z Z |iara1én + —Qy g(["‘l) £ j|YZ
£=0 m=—¢
This can also be written as
N (r*ay)’ 7' yym
e L X [ - vy
o= (10.74)
== Z Z [araé + ;ae :| Y[ + ;VS2 'éh.
{=0 m=—/

Thus it remains to examine the second term (V'€) - e,.. From the expression (2.13) of V¢ in spherical
coordinates, and noting that &, = 7,.£, we have

a3 7T9§) e + < gy 7T¢€) e

r

rsinf r

(VE) e = (&) e, + (

= (argr) e + (89 fr €9 + 9 ST ¢> - % ((7705) ey + (7T¢£) e¢) .

sin 6
VS2 &r €h
Since ,
Vb = Ve Y > af'(n)Y Z Z ag'(r) Ve Y7"
=0 m=—¢ =0 m=—¢
we have
(VE)! Z Z O af) Y e, + vgz(g e,) — fgh (10.75)
=0 m=—¢

Using (10.75) together with (10.74), we obtain
T € = (’Y—l)POV'ﬁer + pOVtg'er

m TYL ( 1) pO
= -1 Oy + - Y/e, + ———— (Vg2 - & r
) Po Zz;mz;[ [ ay @z ] , (Vg2 - &) e (10.76)

[e%S) 14
+ POZ Z (Oraf") Y{" e, + TOVS2 (&-e) — TOEh-
£=0 m=—¢

The derivation is finished by using (10.43a) to replace 0,a}".
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As in Subsection 10.3.1, using an approximation of Z and § that are independent of m and ¢, we
derive the following approximate version of (10.71),

«a 1 2
T-€, = ('ypo (2 + ; +Z> + T(’Y_l)p0>er®er £

7
(v —Tl)po( 170

+ Vo -&)e, + 20 Ve (§-e,) — g

We can obtain a lower order condition by ignoring all terms containing the factor ¢ in (10.77). In

particular, from (10.76), we have
T.e, = YpoV & + %(...) (10.78)

such that the right-hand side of (10.77) is approximated by ypoV - €. With k defined in (9.12), for Z of
the form

Z =ik + i%, (10.79)
if on both sides of (10.77), we ignore the term containing factor 22, we arrive at the following approximate
condition,

PV - & = 7Po (% + ik) £-ep, (10.80)
which simplifies to

V~£:(%+ik>£~e,.. (10.81)

This one resembles the form of non-reflective boundary condition used in literature, see discussion below.

10.3.3 Third variant
From (10.74), we have,
V¢ = i Z {&a}" + gazn} Y+ 1VS2 I (10.82)
T T '
{=0 m=—/¢
The following statement follows readily using (10.43a) to replace 0,a}".

Lemma 6. Assuming that a* satisfies condition (10.43a), then

ve-3 % (B+z+d)arvy+ lvee (10.53)
=0 m=—/
As before, using approximations of Z and § that are independent of m and ¢, we obtain,
«a 1 1
V.E—<2+T+Z>£~BT+TV§2‘€}L. (1084)

The condition (10.84) and in particular (10.81) are similar to the nonreflective boundary condition
employed in [18, 7, 34] and [29] in the absence of flow. Based on the work of [18, section 3.3 p. 89|, the
condition in the absence of flow (i.e. vo = 0) simplifies to an impedance condition in the form of a ratio
between the Lagrangian pressure perturbation 511; and the normal direction of displacement &,

5y = —iwpoco & - m. (10.85)

This is implemented in [7, Eqn 5.28] (in particular with the formulation of Galbrun’s Eqn 5.9 and non-
reflective condition Eqn 5.18 which is the same as Eqn 5.28 for no flow), and [34, Eqn 2.14], [33, Eqn 4.1]
following[29, Eqn 4.3]. Since
5y = —pocgV - &, (10.86)
the condition (10.85) is equivalent to
Ve=il¢n. (10.87)
Co

However, in the aforementioned references, instead of k defined in (9.12) in (10.81), the wavenumber 2

is used. This is the most important difference with our result.
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11 Conclusions

We consider the propagation of time-harmonic waves in the Sun in the vectorial form, and we have
achieved the following results:

1. Starting from the Galbrun equation, under S+AtmoCAI assumption, we obtain the coupled system
whose unknowns are the radial and tangential coefficients of £ in vector spherical harmonic basis,
denoted by aj* and b;*. We then obtain a decoupled problem solved only by a}", also called the modal
radial ODE. With no-source, this is written as

(407 + q0r + G)aj* = 0, (1L.1)

or equivalently

(02 + Vyap* = 0. (11.2)

Explicit and compact expressions for ¢, ¢, G as well as V' are given. For the interior, we also identify
our derivation with the coupled system given in [35] and [11]. A second derivation for the radial ODE

for a}* is given starting from the decoupled system of [35] and [11].

2. We give complete indicial analysis for the above ODEs, i.e. for both the interior and in the atmosphere,
with and without attenuation. We note that the set of real singularities differs with or without
attenuation. With less restrictive hypotheses on the background coefficients, we obtain the same
result at 7 = 0 as in [35] for ¢ > 0, with the indicial exponents being ¢ — 1 and —¢ — 2. For £ = 0, our
analysis shows that the exponents are 1 and —2.

3. We obtain asymptotic description for V' using two different approaches. This allows to define outgoing
solutions and obtain a characterization of such solutions in terms of an oscillatory phase.

4. The indicial analysis and asymptotic analysis at infinity are put together to construct outgoing solu-
tions and outgoing Green kernel globally (i.e on (0,00)). From the modal Green kernel, one can obtain
the 3D Green kernel.

5. We have also obtained low-order radiation boundary conditions both in modal form (i.e., for the
coefficients of the decomposition in vector spherical harmonics) and in 3D form. These boundary
conditions are now for the 3D unknown £ and extend the results from [5, 6, 4] that have been derived
for an unknown linked to V - & which is related to the Lagrangian perturbation of the pressure.

This work will allow to extend the framework developed in [20] for a scalar wave equation to a vectorial
problem. The Green kernel derived here is the main input for the computation of Born sensitivity kernels
that relate the helioseismic observables to the perturbations in the solar interior. This improvement in
the forward modeling should lead to a better understanding of the data and correction of the systematic
errors. Moreover, the newly derived boundary conditions are necessary to solve numerically the vectorial
equation. They can also be used in the presence of flows in the solar interior and some new physical
problems that could not be studied with the scalar equation can now be treated. Some important
applications are the analysis of the recently discovered Rossby waves [25] or the internal gravity modes
[16].
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A Explicit expressions of the coefficients of the radial ODE in
the interior

In this appendix, we prove Proposition 4, showing (4.53) and (4.55). We first recall from (4.35), such
that

2 "
011:—%+¢—3+2%+%—2%; (A.1a)
co cg T T Ty
« o 1
— 1) (=R _ ZPo ). A.1b
Cro = L({+1) (m . 7’2) ; (A.1b)
o U(l+1)
022 = *% + T2 . (Alc)
. Le+1)
q(r) + 2,
B 2 1C | L+1) 1\ e+ (2 ap\ 1
W= =t T U)o BT ) e
o 2 ap) Ciz LD [[(2 ap) 1T
ar) = Cu + <r v ) r Cog + T T v ) rCo| ’
thus
2 - 2 o 5
7% C(r) = —r“Cap + L({+1) = %r ; (A.2a)
/
72 Cos q(1) = Cga(anp,r? — 27) + rCia + E(Z—Fl)(rC’gg ! + z_ %)‘ (A.2b)
e 7 Ca2 T v/
= CQQ(OLYPO ’r‘2 — 27‘) + rCio + f(f—i— 1)(1 — 0752 — %); (A.QC)
r o Cx Y
2 g\ 2« 1y
7% Cos G(r) = r2Co2C11 + L(L+1) < — po) + ( - p°> rCas <> (A.2d)
r 07 r 5 rCas
N (2 _ O ) rCry (A.20)
r v
2« 1 C 2 apy
= p2 1 Z _ ko - x22) _ 2 _ [ Aof
rColn + (L+1) (r v ) ( r Ca r2 v (4.20)
2
+ ( _ O ) rCra. (A.2g)
r v
Note that in the formulation of 72 Caz §(r) and 72 Cag q(r), we have used
< 1 >/__022+7"C’§2 ~ C ( 1 )’__022+rcg2 1 Gy
TCQQ (7“022)2 2 ’I“CQQ TCQQ T 022.
Let us first recall the proposition for clarity.
Proposition 4: For r < r,, we have
1. For /> 0,
Cyy 2 5 20% e, + iw (2T 202
[ o o272 — ((0+1)c? +T027’2 — 0+ 1)k (A.3)

RR n° 9335



94 Barucq, Faucher, Fournier, Gizon & Pham

2. The coefficient of the first order term of the ODE (7.12) has the following form,
Con ) o2 202 e+ 1) r (2 g—g e, +iw (QCE)/) + 2‘;—2 (A4)
rCo2q(T) = —« —Tr + 2— — + ) .
eg e & — {0+ 1)
0
or equivalently
Looen) 1 9
r Caa q(r) 20,7 tiw 52 +
—7 = a7+ 2 M+ 1) T (A.5)
0 [
3. The coefficient of the Oth- term of the ODE (7.12) has the form,
2 2 " 2
2 ~ o (=0 + @) , " [ QpeT
C =—- 5 ——" 2— - -1
= Ca2 q(r) C% Cg T+ c% 5 Qypy T
o? o} D/
—ll+1)> + L+ 1)2 (- =2
0 + (e (-F + o) (A.6)
a? P 20 o?
2 Zr? —L(l+1)
0
A form entirely in terms of pg,co and @y , and kg is given as
T2 022 (i(T’) @N (I)/
—z (k%—cé)) r2 4+ 2r (Cg—%—z%) —2—((L+1)
LL+1) D )
T g\ (A7)
& % = i
0
Proof. Statement 1 From the definition of Css in (4.35), we have
o2\ _(l+1)
Cho=—=5] =2 A8
p=- (%) -2 (A8)
with
2\’ 2 2/
(Zz) = 2%%0 + 7((22) , (0?) = iw (2l . (A.9)
0 0 0
Thus, we have
2 iw (2T
-2 5 e, TP — 3200 +1
P S S T
C 2
2 T2 e+ 1)
i
Next, we consider
o? iw(2T) . o?
9 . i SV B 2-_ 2
Cp 2 _1_-g"" ~— g @
C 2
2o r T JCLQr? F e+ 1) (A.10)
0
5 202 ae, + iw(2l) 202

o2r? — ((0+1)ct T 00+ 1)k’ Inria
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thus
Chy 1 3 5 20% e, + iw (20 20
_ = _ — All
Caa LI - 00+ 1)ck "oz — 00+ 1)t ( )
and
; 1 1 202 iw (2l 202
Cy r 1 o2r2 — (L +1)c] o212 — L+ 1)cd
Statement 2a We now consider 72 O, g(r). From its definition in (D.16),
2 2 1\, 2 Qpg
r2Coaq(r) = Coa(Qnpyr® = 27) + 1C1z + £ +1) (0o () + = = 222
rC " v (A.13)
2 1 Oy @po
:ozwo(C'gzr)—27“022+7“C12+€(£+1)(7— ——).
r o Cx Y
We substitute the definition of C2 on the right-hand side of (A.13),
o? (41
Cyp=—-——= + (72)7
cs r
1
Cra = 0(L+1) (O‘Po _ e _ 2) ’
Ty r T
and using (A.11), we obtain
2 2 0(0+1
72 C29q(1) = Qiypy <—:27‘2 + 0+ 1)) + (2;1" — 2(7")>
0 0
+ f(f—l— 1)apo — Y Q®ypy E(f—i—l)
vy T
30(0+1) 9 20% ae, + iw(2T)
— =l +1 2
* T rAe+ )027’27€(€+1)C%
20?2 «
—rll+1 — (L4 1)22
r(+)027’2—€(€+1)03 (+)'y
2 2 2 : /
oc o 9 20% g, + iw(2D)
=— — 2— —r el +1
awocgr + cgr+ e+ o272 — ((0+1)c?
202
—rll+1 .
rée+ )027’2 — 0l +1)c3
Statement 2b Let us now consider r2 Cs G(r). From (D.16), we have
2 ~ 2 2 ap,
72 Co2q(r) = r°Co2Cr1 + - rCi2
A.14)
2 ' 2 I (
() (e ()]
r ~ r v rCaa
2 ~ 2 2 Opo
=T 022 q(7') =r 022011 + ; — 5 7’012
(A.15)

+ 00+ 1)

We consider the first two terms of the right-hand side of (A.15),

r

2
I = r? Cy C11 + ( Oiyl:m) rCia.
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Recall from their definitions,

o o 1
Cro = 00+ 1 Po _ T7Po _ A.16
12 ( + ) <T’y . 2 ( a)
o2 o 2 a o oy 2
O = —2 4 20 4y 9% 4 2 o590 o 2, T0 Cys. A.16b
H cd + c? + r + r2 Yy H c? + cd 00+1) 12 ( )

This gives

2 2 "
2 _ (o B
T 022011 = ( c re + €(f+1)) < C% —+ C(2) €(€+1>012>
2

Z
2 " 2
fo o o fo 2
(=2 ppps) (“Z £ 20) 4 T2 2 0L 90,.
( gr T >> < 3t ca)*caraun 12— 200

= I = 7‘2022011 + 2C12 — %T’Clg

2 2 " 2
0”4 —0° + g o° 4 2 Qp,
=-—= 4+1)) ——2 4+ 5r?———C1p — 2 rCys.
<c{ﬂ+ (+)> 2 +C{€@+U 12 vr 12

2 2 (I)// 2
. <_er2 + e(e+1)) i Ll (O‘PJ  Gopy T — 1)

0 Co €o 17 <A17)
- %E(f—i—l) <“§ — Gy — r) .
We consider the remaining term on the right-hand side of (A.15),
2« 1 G 2 ap, )
Io = 0(¢ 1 - _ “Po - 22 - — —Po .
2 (+)<r ’y)(r Caa 7 v
Using (A.12), we obtain
2 _op ) (1 Gy _ 2
r 0% r Ca r2
(2 oy 1_T2202aCO —|—iw(21")’_r 202 2
A\r v r o2r2 — (L4 1)cd o2r2 — L+ 1)c3 r2
_ T2U2a60 + iw (2T 20?2 5 _ Qb0 _ap, 1
o2r2 — ((L+1)c3 o2r2 — L+ 1) v v or’
and we get
20% e, + iw(2D) 202 a
IL =—4(t+1 < 2 — —Po
2 (6+1) <r o2r?2 — ((0+1)c? o272 — ((0+1)ck 5 " (A18)
ap L) gy (O%)/ .
Y r Y
Finally, putting together (A.17) and (A.18), we obtain the expression,
7= Ca2 q(r)
2 2 " !
o, —0® + § (ap0>
=|—-=r +€€+1) — A+ 1=
(-5 +uern) =g - e (3
o [« o' o (A.19)
+ 20(2)< po” Oypo T — 1) — %E(E—t—l) < ,;’U _ aw0>

~
ozc + iw (2T 20 o Inria
1) £ 2 — = .
“e+ < r2 — {0+ 1)c? +02r2—€(€+1)c%)< v
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Using (6.30), we have
/
@// (b/
(apo) - 73 +272004w7
v €o €o
and the above expression simplifies to

T2 022q~(’l“)
2 (_ 2 q)// - 272(1)/ . 2

S e VP R S e LT i <%or oy — 1)
Co Co o €0 Y

Qipy Oy
- —l(l+1 < -« 0)
o GO 7

20% e, + iw (2D 20 et
—(l+1 =0 2 - R0 .
(+1) <T o2r2 — (L4 1)cd o2r2 — UL+ 1)c3 < "

After rearrangement, we arrive at

7% Co2 G(r)
2 (_ 2 (I)//
_ _%( o '2" 0) 2_,_2‘772 (apor ypy T 1)
Co Co €o Y

2 /
Loy =T 2200 %wﬂ) (O‘;’ _ am)

a2 s, 20) a2
e ) (2_ apOT) r(2% o, +iw )+2cg.
v T e — (0 +1)
0

We can further regroup the second expression (A.22¢). Using (6.28a)

-
ap, = + ) =,
0 OC%
and
Qypy = 20, + ap, , cf. (6.28D),
we rewrite
0% —2%)a.
(A220) = ((L+1)—T———0= — S y(e 4 1) (apo - %po)
€ v vy
o’ —2® Qe (6% 2 Qp, O
— w4+ D)% ey [ S0 (p) 4 %o %pe
€0 €0 v vy
o’ —29) « P\ 2 o/
= U+ D) 4 L4+1) | 2= — (2 ki)
(+)cg+ (+)< 2 <cg g
2 P\ 2 &/
= 1%+ e(£+1)< <2°) +ay, 2°>
€o Co &

N

P/ P/
—£(€+1)Z + £(£+1)C—20 (—C§+%) )
0

N

Remark 22. In the case where ¢ = 0, we have

5 o? iw (2T
2, — —— :
Cyy cd c2 20% e, + iw (2T

022 02 (72

2
€0

(A.20)

(A.21)

(A.22a)

(A.22b)

(A.22¢)

(A.22d)

(A.23)

(A.24)

(A.25)

Therefore, this is a reqular function. However, we do not need this since this term does not appear at all

in the equation for £ = 0.

RR n° 9335
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B Explicit expressions for the coefficients of the radial ODE in
the atmosphere

In this appendix, we prove Proposition 5. We recall

o? 2 ap 2 o
G =G o) e 4 B
« o 1
= ) (-2 + 2 - = ); B.1
Cr = te+1) (-2 4 22 - L) (B.1b)
o a,l L+ 1) Pl
- _Z_  _ ZPo_ - B.1
G2 c? vor R A (B-1c)
o? @ ok
r2 Cao q(r) = —1r2Cyy + L+1) = —27"2 + 20y — —207“; (B.2a)
c3 v c3
1Y\ 2 a
72 Cys q(r) = Caz(ap, m* — 27) + 7 Cia + £(£+ 1)(7“022 (7"022) + o %); (B.2b)
1 @
— 2 _ - X2 _ Tpo).
= Calap, 1 — 27) + 10 + e(z+1)(T o ) (B.2¢)
2 ~ 2 2 Qpo \/
¥2 Cop (1) = 12ConCir + e<4+1)[(; - 7) (B.2d)
2 Qpg 1 1 2 Apg
- o B.2
R e e I G LLeT? (B.2¢)
2 «Q 1 Cf 2
=72 D= - =2)(---=22)- = B.2f
r“CooCh1 + f(é—F ) [(T ~ > < r Ca 2 ( )
2
+ ( — Lo ) rCis . (B2g)
o
We have introduced (4.57),
@ D
Fpe = Lo =0 B.3
§ B! < (5:5)
and in (4.50),
(o)
kn = — B.4
0 co ) ( )
Proposition 4 In r > r,
1?2 Cosq(r) = r(kir — Fhe). (B.5)
1? Coz q(r) = (epor — 2) (kg7 + Ehe)
(k3)'72 + 2k37 — (Bne + r2%) (B.6)
+4(0+1) 55 0
k212 + (((+1) + rEne
T 022 (j(’l’)
o ap, 1
= (k§r* — rEhe) <k~§ - Cg) + 2 (k§r? — rEhe) (;j + T—:’ - TQ)
@// )
+oU+1) (—k§+§> —o+1)Se (af - ap(,) (B.7)
€o 2 v
2y K72+ 2k — (Bue + r)
+£(€+1) Z _ Zpo 5 0
r vy —kir?2 4+ L(l+1) + rExe
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Proof. In the new notation,

d
72O 4(r) = —12Cog + L({+1) = k2r* + %T - C—zor (B.8)
0
can be written as
r2 Cyo qg(r)y = kg 2 — 7 Ehe. (B.9)
Component Cy; and its derivative Recall from (D.20), the definition of Caa,
2 1 e+1) @)1
Cop = -2 — Ol ( . )'+T9*- (B.10)
g vy or r cgr
In terms of Eye, Cos is written as,
£0+1 B
Coy = —kZ + ( l_ ) 4 Ehe(r) (B.11)
r r
We can write o ) 5 =
— 2 +1 he h
Co = —(kg)' — 2 3 T 2 + Te. (B.12)
We note that
(b//
El, = —. (B.13)
€o
We consider
Chy  —(k3) 20(0+1)r~t N —FEhe +TE}, (B.14)
Ca O —k3r?2 + ((+1)+71Epe  —k3r?2 + (({+1)+7Epe '
Thus
Gy 2 —(kg) 2 4(041) = (—kgr® 4+ UL+ 1) 47 Fhe Ene —TE],
Coyo ro Coo r —kEr? + (0 +1)+ 7 Epe —k3r? 4+ L+ 1)+ 7 Epe
_ —(k3) 2 k3r? —r Epe N Eye — rEf,
Coo 17 —k3r? + L(l+1)+1Epe —k3r2 + L0+ 1)+ 7 Epe
_ Yy, 2 k3r . —Fhe — 1B},
Coo *kST’Q + €(£+1)+T’Ehe 7]43(2]7’2 + €(£+1)+7’Ehe '
(B.15)
We can thus write
0752 g_ (k%)/T2 + 2k(2JT — (Ehe + TEllle) (B 16)
Co 1 —kgr? + L(l+1) + rEpe '
Statement 1 We start with expression of 2 Cay ¢ given in (B.2),
1
12 Cogq = Caglap,m? — 27) + rCia + L0+ 1)(7 —Z22 _ o (B.17)
T 022 Yy
Using its definition in (D.20)
a a 1
Cro = L({+1) [ L2 + L2 — — B.18
12 = L(l+1) ( T o TQ) (B.18)
we have o
1 a
C +1)(=—=22 - =2
T12+(+)(7” Ca ’Y)
o 1 1 O 1o
— 041 (- R WY 1(7—£— p”) .
(€+1) (o + 22 = 1) b ey - G2 - 2 (B.19)

C/
RR n° 9335 =—L(l+1) (Ofpo + CZ) :
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With the above calculation, expression (B.17) simplifies to,
&2

12 Cysq(r) = Cog(ap, ™ — 27) — L+ 1)a,, — €(£+1)C .
22

We can rewrite the first two terms as

Caz(ap, r — 2r) — L+ 1)y,

(B.20)

(B.21)

We+1) K
= (—ap kg + po (L +1) + oy Ene) —27‘(—/4;(2) + (r2 )—i— :e) — L+ 1)y,
L(e+1
=~y kgr® + apy T Fpe + 27ki — 2 ( : ) _ 2Ep.
Le+1
=,y T(—ki T + Ene) +2(k3r — Fhe) — 2%

00+1
= (apym — 2) (=57 + Ene) — 27( ;r ) .

Together with identity (B.16), we obtain the following expression,

2 O
r2 Oy q(r) = (ap,r — 2) (—kgr + Ene) — L(L+1) ( + 22)
T 022

= (ap,r — 2) (fkgr + Ene) + L(£+1)

(]'{:(2))/7’2 + 2/{7(2)7’ — (Ehe + rEllle)

—k2r2 + L(L+1) + rEpe

Statement 2 From (D.23)

r2 r

(B.22)

i
12 Cpp G(r) = r2Ca2Ch1 + L0+ 1) [(i - a”) (—1 - 022) - 2] + (2 - O‘s) rCrs.  (B.23)

o r Co

Break the right-hand-side into

I := 12 Cy Cyy + 2015 — %rClg; (B.24a)
2 « 1 Cf 2
L= +1) (= - L2)(—=-=-22)-5]|. B.24b
’ (+)[(T 7)(7" Caa r? ( )
We have
12 0oy Cuy = (—k2r? 4 00+ 1) + rEwe) (—R2+ 20— 2 ¢,
& t+1)
= (=k3r® + L(t+1) + 7Ene) | —k§ + LA (k§r® — rEy )LC - 2C
0 e otz 0 ) iy 12
= I = 7’2 CyCq1 + 2C12 — %T‘Clg
= (—k§r® + L(L+1) + rEne) | —k§ + 0 + (k§r® — rEx )Lo12 o
° ) TR ) e ) gy e m S e
Substitute in the definition of C'5, we obtain
@//
I = (=k§r® + (L +1) + 7Ep) <k§ + CS)
) 0 . (B.25)
2 (k2r? — rEy, ~%eo g Geo ) PR gy (- So0 2
+ 2 (kgr rle)<r+m > G
We next consider I5. Using (B.16), we can write
CGh L1 () 4 2K5r = (Bhe + rBh) (B.26)
Cao r r —k?OT‘Q =+ €(€—|—1) + rFEhe

Inria
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Thus
1 5 = 2 o) (L N (k&)Y r? + 2k¢r — (Ene + TEl,) 2
e+n — \r ¥ r —k3r? + ((L+1) + rEhe r? (B.27)
_ (2 ap (k&)Y r? + 2kZr — (Ene + rEL,) ~lay, ’
\r v —k2r2 + L(L+1) + rEpe roy
Putting together expression (B.25) for I; and (B.27) for I,
r? Caa (1)
@//
= (=k3r* + L(L+1) + rEpe) (_kg + Cé))
1 a o (B.28)
2 (k2r2 — rE _ %0 o Yo ) _ %o ppyqy (= Po
+(Or The)( 7’+7”Y r2 ,Y(+) aﬁ0+,y
2 2/ .2 2 2 — (E E!
+g(g+1)(_%) (ko)rz"‘ kgr — (Bhe + 1 he).
r v —k3r2 4+ L0+ 1) + rEhe
After rearrangement we obtain
7‘2 022 Q(r)
oY a « 1
(k2r2 = rEp) <k§ _ Cg) 2 (K2r? = rEp) (;0 o TQ)
(D//
+ 00+ 1) (—kg + g) — (1) (O"’ - apo) (B.29)
€o 2 v
oo (2 o) BBV 4 28— (Bue i)
+E+1) rooy —k2r2 + (({+1) + 7Exye
O

We next consider h and g.

Proposition 8 : For r > r,, we have
(bll
2 (k3) 7 + 2kgr — Bhpe — 73
- — 2 i+ 0 , B.30
h= r ( >(k‘(2)’l“2 — U(l+1) — TEqe) (k372 — 7 Ene) (B:30)
w2 e (o)
2 0 Y €0
= — _ — 1 B.31
g ks + " + . + 0(¢+1) P — (B.31a)
(b,/
o ) (kz)'TQ —+ 2k2r — FEpe — r=8
+ =0 e+ 1) ( - aPO) 0 0 M B (B.31b)
c3 r 0% (kgrz —U(l+1) — rEne) (k3712 — 7 Ehe)
Under the hypothesis of constant attenuation,
b = o+ 1) i o el
-2 (k%rQ — L+ 1) — rEhe) (k312 — 7 Eye)’ ( :
" 1" B.32
oe+1) (ngr — B — T‘L) (25271 — Bpe — r28) (26212 — (L +1) — 2rEhe)
_ 0 0
(K2r2 — ((0+1) — 7Bne)” (2k212 — 7 Fie)?
Proof.
_7“2 Cao q(r) _ (apr —2) (—k27 + FEhe)
r2 Ca G(r) r(k3r — FEhe) B33
(k312 + 2827 — (Bne + r2g) . (B.33)
U+ 1) ;

12,2 T :
RR n° 9335 kgr? + (0 +1) + rEhe r (k21 — Fhe)
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Thus
q)//
9 (k§)' r* + 2kir — BEne — 1%
h = ap — = + Ll+1) 5 0 . (B.34)
r (k§r2 — L(L+1) — rEqe) (K372 — 7 Ene)
We obtain readily the expression for g.
B _7“2 Ca2 q(7)
72 Caa ()
= —k§+¢§+2<%—%’+12)
cs r Yy r
B.35)
ko - T « « 1 (
0+ 1) ———— +M+1”°(”°—a>
( )r(kér — FEye) ( ) ¥ 5y P ) r(k¢r — Ehpe)
a1 9 o (k’2)/r2 + 2/{07’ — (Ehe + T%g) 1
—Her )<r - 7) —kgr2 + Ll +1) + rEpe  r(kiT — Bpe)
The final expression is obtained from rearrangement.
Derivative of h To calculate b’, for simplicity, we assume constant attenuation so (k3)’ = 0.
N\
b =— <2> + 00+ 1) 2k — Fie — %)
B r (k3r2 — L(l+1) — rEne) (k§r? — 1 Eie)
we+1) (287 = Bre — %)
- @ (K2r? — 00 +1) — rEye) (B.36)
(kgrz —Ll+1) - rEhe) (k312 — 1 Ege)
0e+1) (zkgr — Epe — T‘L)
- 0 (k2 r? — 7 Eye)
(k3r2 — L(l+1) — rEne) (k§r? — 1 Fe)?
We next recall that Ej, = %0/, and
0
2 2
(b// ‘I)// q)// 2 2
= B, + (rg) _ % %6 7;<47rap0+ 2 g cpg)
“ % % G (B.38)
B 47TGT L 23
T Po 2
b = 2 1) i — i 2
o2 (k3r2 — £(0+1) — rEhe) (k2 r2 — 7 Fpe)
0+1)(2k3r — Ehe—ri’—g ;
- ( 5 0) (2kr — Bpe — T‘%) (B.39)
(k3r2 — £(0+1) — 7Epe)” (kg% — 7 Ene) 0
oe+1) (2k3r — Epe — r‘l) )
- &l (2k27 — Ene — 728
(k3r2 — L(t+1) — rEne) (k312 — 1 Eype)? <o
The last two terms are grouped using,
1 N 1 B 2k2r? — L(+1) — 2rEpe (B.A0)
k¢r? — 00 +1) — rEhe k3r2 — rEye  (kgr?2 — L(l+1) — 7Eype) (k372 — 7 Epe) ’
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We thus arrive at the stated expression for b/,

2 4G .. @1
2k0 — C(g) TPy — 2@;

(k3r2 — ((+1) — 7Eye) (k3r? — 7 Ehe)’
0e+1) (281 = Ere — 1%) 2K3r — Boe — 1%) (2K81% — €(e+1) = 2rBy)

, 2
(B.41)

(k2r2 — 0(0+1) — rEne)’ (k372 — 7 Epe)?

C Results of the solutions of ODE

Here we cite the results in [13] needed for the construction of solution in Section 9. There are two types
of results, one for interval on which the coefficients of the ODE are continuous, and a second result for
regular singular ODE.

First, we put together the results of the Theorems 1 and 3 of [13], which give the existence and
uniqueness of the initial boundary value problem for an ODE with continuous coefficients.

Theorem 2 (Theorems 1 and 3 p.103 of [13]). Let g1 and qo be continuous functions on an interval I
containing xo. For any set of constants (co,c1) € C2, there erists a unique solution u of

o+ q(r)u + qo(r) = 0 (C.1)
on the entire interval I satisfying
u(zg) = co, u'(xg) = c1. (C.2)

When there are singularities, we suppose that they are of regular singular type and cite the results of
Section 6 of [13].
Next, we use the Theorems 3 and 4 of [13].

Theorem 3 (Theorem 3 p. 158 and Theorem 4 p. 165 of [13]). Consider the equation

r2u” 4+ p(ryru’ 4+ q(r)u = 0, r>0 (C.3)

where p and q have power series expansions which are convergent for |r| < ro with ro > 0. Let A_ and
Re A_ < Rel;, (C4)

the two indicial Toots of the indicial polynomial
AA=1) + p(O)X + ¢(0) = 0. (C.5)

1. If \y — A\_ & Z, there are two linearly independent solutions uy and ug of the form

Uy (T) = TAJr Z Ckrk ) Co = 1 B (063)
k=0

us(r) = - Z ert ¢o=1, (C.6b)
k=0

where the series converges for |r| < rg.

2. If \_ = Ay, two linearly independent solutions are given by
ur(r) = chrk, co #0; (C.7a)
k=0
(oo}
ug(r) = ri+tt Zékrk’ + uy logr. (C.7b)
k=0
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D

3. If Ay — A_ is a positive integer, then two linearly independent solutions are given by

w) = S et £0, (C.80)
k=0
us(r) = TA_Zéka + cuy logr, éo #0, (C.8b)
k=0

with a constant ¢ that can be zero.

Alternative method for computation of the vectorial quantities

D.1 Discussion on the hierarchy of the background parameters

While (6.12) and (6.20) give a way to obtain higher derivatives of pg and @y, it is not enough to calculate
their scale height functions, if we do not assume a priori knowledge of o/po and of a, . For the moment,

we

1.

assume that we are only given
CO? p07 aCo 9 apo(: Oé) . (Dl)

We can use (6.20) to calculate pj, with

py = 417G 90(27”) / po(s)s?ds. (D.2)
r 0
The second-order derivative is then obtained from (6.15b),
" 2 / 2
Po = =+ o | Po T 4G pj - (D-3)
. Next we obtain the inverse scale height for pg and its derivative,
/
Qp, = —&7 (D.4a)
Po
o, = —— + o5 . .
Po Po Po
. We have
Qypy = 20, + 0y, (D.5)
which gives us a.,
Qy = Qpg = Qypg - (D.6)

However, after the above step, we run into a problem because if given py and p{, we can get up to @83),

however we have the equivalence of the following quantities

e & ol & o (D.7)

This can be seen from the ODE of pg, since n derivatives of py will also require n — 1 derivatives of py.
In fact all the relations give pé3) + p{ py which is the same as (due to the hydrostatic equilibrium),
1 @

—p” — @) pf-
Po

Similarly, all the relations give

Qg A Qypg A Qy (DS)
and on the level of derivative
! ! !
Qoy & QL0 & (D.9)
In particular,
—2000, + 0y = ... (D.10)

This means that we need to assume the a priori computation of a;m and o, .
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D.2 Computational steps for V, in the interior

Here we compute the background quantities in the same order as in Step 1 — 11 in Subsection 6.3. However,
in order to obtain quantities like 72Caq(r)q, 7?Ca2,§ and V, we start from the original expressions in
Proposition 3 (instead of the compact expressions in Proposition 4 and Proposition 7).

Remark 23. As an alternative to the computational steps 6 to 11 given in Subsection 6.3, we can directly
use the scale height function associated with the adiabatic index (i.e., ov,), and calculate its deriwative
numerically (e.g., using a finite-differences approximation). We can proceed as follows.

6. Compute the scale height function o, and its derivative afy,
7. Compute the scale height function for the fluid pressure pg and its derivatives

(63)

Qypy = 2a00 + ap, = O/ypo = QQ/CO + 01270 (Dlla)
Qpg ((;5)20500 Ty — oy = a;o = 20/00 + O/Po o afY’ (D.11b)
pg _ / 2
% - apo + Oépo . (Dllc)

8. Compute the derivatives of the background gravitational potential ®g,

2
P, ©2) apoc—o; (D.12a)
v
2
gy LV Do g (D.12b)
Po ¥
A
We can now compute the components of C' using (4.35), such that
2 q)// 2
Co=-Z5 + =9 yodmm | 2 9l (D.13a)
c§ cg r r roy
«Q «Q 1
Cio = L(0+1) [ B2 — 220 — — ) D.13b
= ey (22 2 D) (D.13b)
o U+ 1)
Cy = —— + . (D.13C)
c? r2
The derivatives of Cas are given by
2 /
;L o L(L+1)
Co’ = — (c%) 1D (D.14a)
2" we+1)
O = — (% 6 D.14b
22 <c(2) + A ( )
and of C2 by
Cly = 000+ 1) %jL%a_i%_%jL@jLi (D.15)
12 rey ry 12y r r2 r3 ) '
Next, instead of computing directly ¢, ¢(r), and §(r), which depend on the inverse of the radius:
R (L+1)
- 1 .
q(r) t 2 g,
2 1C 0+1 LY | e+1) (2 «a 1
q(r) = Qypy — - *j—i-( ) +( )7_ Po :
r r Cag r 7 Cag r r v ) rCa

o 2 ap,\ Cia LD (2 ap) 1T
q(T)—Cu-i-(r 'y)rC’22+ r r v ) rCo | ’
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we compute a more stable coefficient: r2Css ¢, 72C%9 q, and 72Cas §(r), given by

2
T2 022 qA(T) = 77,2 022 + €(€+ 1) = Z—zrz;
0

1\ 2
7'2 CQQ q(T') = CQQ(OéaypoT'z — 27’) + 7"012 + €(£+1) (7‘022 ( > + - — %);
7“022

/
= Coa(aypy 1® = 21) + 7 Cis + £<€+1>(%‘% - %)7

C-2) (-2 ee()
r v r Y 7”022
2 _op ) (L1 Gy 2 (o l
r ¥ v Ch r? ~

2
+ < - apo ) 7"012.
rooy
Note that in the formulation of 72 Caa G(r) and 72 Caq q(r), we have used

< 1 >/ . _022 + TCQQ
'1"022 (7‘022)2

72 Cy2 G(r) = r?CoaChy + L(L+ 1)

2
+ ( - Yo ) 7‘012
r Y

= 7’2022011 =+ €(€—|— 1)

1 >':_C22+7"052__1_052

We compute the derivatives,

2 2\’
o o

(T2022d)/:2 2 T (2) TQ;
Co €0

(r* C22q)" = Cha(ayp, 12 = 27) + Coa(0y, 72 + 2009p, 7 — 2)

YPo
1 ol ! 2 /
+ Ci2 + rCy, +€(€+1)<—T—2 - CZ + (oﬁi) - <a§°> )

Eventually, we compute the three functions defining the potential:

b — g _ _7"2022q.
q 72Co2q "’
b = _(7“2 Cxq) 7% Caa q (7’2022 q)’ _ _(7"2 Cxnq) . (7‘2022 Q)/.
r2C22 q 7209 4 12Co2q 720 § 720 §
= g _ _7"20225
q r2Caq
The potential Vy(r) is given by
1
V, = = 2 !
t=7 ) 5 b+ g

D.3 Computational steps for 1, in the atmosphere

T 022 r 022 '

(D.16a)

(D.16b)

(D.16¢)

(D.16d)

(D.16e)

(D.16¢)

(D.16g)

(D.17a)

(D.17b)

(D.18)

(D.19)

Here we compute the background quantities in the same order as in Step 1 of Subsection 6.4. However,
in order to obtain quantities like 72Cy2(r)q, 72Caz,§ and V, we start from the original expressions in

Proposition 3 (instead of the compact expressions in Proposition 5 and Proposition 8).
We have the following steps for the computation of the potential in the atmosphere.

1. This step remains as Step 1 of Subsection 6.4.
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2. Compute the components of the matrix C' from (4.39) (note that they are functions of r),

o? 2 « 2 oy
Oy = —— z _ ZPo i Z0. D.20
11 C% + r (apo ~ ) + 7"2 + C% ) ( a)
« « 1
Cro = L(f+1) [ -2 + 2 — ), D.20b
12 (+1) < . + y 7"2) ( )
2 a,, 1 Ll+1 ®)1
Cpp =0 — Cwl  HEFD) P01 (D.20c)
cg v or r cg T

3. Compute the derivatives of Cyo

, ap, 1 LL+1) 1 /of o
= —_— 2 — —_— _ — .
Ca2 v r? st A\ r r2 )’
(4.16) a,, 1 6+ 1 11
= %7‘72 — 2 (7"3 ) + %sz(llﬂ'GpoT*gq)é),
a,, 1 {41 21
Cyy = _2%73 +6 (T4 ) _ 75 (4nG por — 32)) (D.21)
0
11 , 6,
+ 55 (471G po + 47Gpyr — 127Gpy + — @
cy T r
ap, 1 LL+1) 41 , Po Qp
= -2 ,yoﬁ+6 7"4 _7%T73(47TG'00T_3(1)0)_47TGTT0
and of g,
! _ ap ap 2
Cly = 0(l+1) <r20 — ﬁ + 7“3> . (D.22)

4. Similarly to the computation in the interior, instead of computing §, ¢(r), and G(r), we use 72Cas g,
r2Ca5 q, and 1204 G(r), such that

2 2 o , o @
72 C92q(r) = —r*Ca + L(L+1) = 2T %r -2 (D.23a)
0 0

1\ 2
7‘2 Cao q(r) = 022((Jépo T2 — 27“) + rCia + £(€+ 1) (7“022 () + - — %>, (D23b)

r Ca T vy
1
= Coalap,m® — 27) + 1O + €(£+1)(; -~ a;"’); (D.23c)
2
12 Coo G(1r) = r2CoCyy + é(f—l—l)[(; - %)I (D.23d)
2 Qpy 1 2 Qpy
= - = - D.2
F (= O ) |+ (- o (D 23¢)
2 o 1 Cf 2
= y2 2T ) (22 _ 2
= 1r°CaCyy + £({+1) {(T 5 > ( . 022> 7‘2} (D.23f)
2
—+ ( — LPO ) 7”'012. (D23g)
r v

5. Compute the derivatives,

2 / "
2 N/ o Qpo @ @y
C =2 - = -
(r° Ca2q) cg r 4+ Cg c% ;
(12 Ca2q)' = Chy (apym® — 27) + C2 (2p, 7 — 2) + Cia + 107y (D.24)

1 Yy (O
+ L0+ 1) (—TZ -t (022 :
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6. We compute the three functions,

b — g :_T2C2QQ_
q 72C q
f)/ _ 7(7‘2 022 q)’ 7"2 ngq (?"2022 (j)/ _ 7(7"2 C22 Q)/ - (7"2022 Cj)/ (D 25)
7209 § 720924 12Co2q 720 § 720 § .
= q 77"2022@
q r2Ch% G
7. Eventually, the potential in the atmosphere is given by
1., 1,
_ 1l 1 . D.2
Vi= b -5 +g (D.26)
E Square roots of potential
Recall that
—Ve(r) = Q(r) + ev(r), ey =-Vi(r) — Q(r) = O(r™?),
where @) consists of the first three summands in the asymptotic expansion of (—V})
2 _ 1
Qr) = k2 4 S _HL
" ) ) N (E.1)
Qad a” 7y —
= k? A+ |+ 1 - 55— | .
L e+ )<£(€+1)Jr kg )T2
We recall the definitions of the wavenumbers,
T
0? = w? + 2T, w = w?(1 +2i-2); (E.2a)
w
2 2 T 2 r 2
K=k - =Syt o IkaImkSQ‘l(w) ; (E.2b)
4 ch ¢ 4cg w \Co
1 1 [w? Tow 1 1 Ty (w)
R 9= = Im — = -2— — | — . E.2
&= w7 %) " e (o) (2
And we have defined oT
o= Vol +iw—, ko = k:g:g. (E.3)
Co Co

We denote by ,/ the square root branch that uses Argument branch [0,27) while ()'/2 uses Argument
branch (—7,7]. With T’y > 0, we always have

V2 = (K)Y2,  Imk>0. (E.4)

Square root of @ We need to investigate the sign of its imaginary part. Since

1 2 a?(y—-1) 1
2
S ) I Nl G et Y
e = g A0 )(MH)+ 2k
and replacing |k3| by
2 2 AT2
k2 :M:‘i 1 a
|0| C(Q) % + wg?

we obtain the following expressions for the real and imaginary part of 2,

1 2 a?(y = 1) 1
2 _ 1 _ -
Rew—4+€(€+l)<£(€+l)+1 e <Rek3)>
1 2 a?(y —1) w?
=3 (g - S )
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Thus, we have

1 2
Repl = ~ +0(6+1) | > +1 -
€ Uy 4 ( ) €(£+1) (£)2 72 1+4(%)2

0 (E.5)
1\° o2 (y — 1) 1 0l +1)
=(l+z) +2 - .
O R
Co
Similarly, for the imaginary part, we have
2(y=-1) 1 a?(y—=1)(-2)T,w
I 2 — _ 1 o (FY Im — — 1 a
m 00+ )772 mkg L(L+1) 2 ool c2
Tow o y—1 I', [w 2 a2 v—1 1 0+ 1
g lkol* w \co/ ()P 7 1+4(2)2 (&)
This leads to,
2 (~ —
T 2 = 21"a a®(y—1) 1 Ll+1) (E.6)

w14z (2)2

From these calculations, we have

Im p2 r w\®  a?(y—1) 1 Ll+1)
2 ¢ a .
Im@ = Imk® — 5 = 2— () — 5 oo (@ |
r w \ \co gl 1+4(E2)2 (27)
Qad ReMQ -1
ReQ = Rek? + - ;jQ 4
B uﬁ_cﬁ +aad_€(€+1) 2 L1 1 a?(y—-1) 1
S\d 4 r r2 \L(l+1) (22 ¥ 1+4(te)

w?  a? Qlad 1 a?(y — 1) 1 Ll+1)
(5 -5) w(““””‘ 7 L (@ )

Then, we use the physical assumption (2.1), that

In addition, we note that if w, r, and ¢ satisfy

2
1_<f> (1) D ), (E.7)

B T+ a(T)? (20

<o

then
Im@ >0. (E.8)
Remark 24. Under the hypothesis (2.1) and (E.7), we also have
Rep; > 1, Impi > 0. (E.9)
A

F Definition of the solar models using splines

In the model S from [12], the physical parameters (density and velocity) for the Sun are given point-wise,
that is, a list of (spherical) positions associated with the value of the parameters. In order to work with
their derivatives, which are required in the vectorial case through the scale heights, we extract a cubic
spline representation from the given point-wise representation. Namely, we proceed as follows.
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1. We start from a coarse partition to generate a first cubic spline representation.

2. We compute the difference between the original values and the spline representation.

3. The interval with the maximal difference is refined to increase the number of splines and reduce

the difference with the original model.

4. We repeat until the error is less than a selected threshold.

Consequently, we follow an iterative refinement of a coarse interval and the resulting basis of splines is
unstructured. This allows us to explicitly form the parameters and their derivatives. For instance, we

give in Table 2 the velocity model represented with cubic splines, which is pictured in Figure 1la.

Table 2: Coefficients to define the solar velocity model using splines, generated from the model S. On

each interval [z1, 75, the model is given by the function a(z — z1)% + b(z — 21)? + c(x — x1) + d.

Interval start

Interval end

Spline coeff a

Spline coeff b

Spline coeff ¢

Spline coeff d

0

0.0001248
0.0188748
0.0376248
0.0563748
0.0751248
0.0938748
0.1126248
0.1313748
0.1501248
0.1688748
0.1876248
0.2063748
0.2251248
0.2438748
0.2626248
0.2813748
0.3001248
0.3188748
0.3376248
0.3563748
0.3751248
0.3938748
0.4126248
0.4313748
0.4501248
0.4688748
0.4876248
0.5063748
0.5251248
0.5438748
0.5626248
0.5813748
0.6001248
0.6188748
0.6376248
0.6563748
0.6751248
0.6843403
0.6938748
0.6968403
0.7093403
0.7126248
0.7218403
0.7313748
0.7501248
0.7688748
0.7876248
0.8063748
0.8251248
0.8438748

0.0001248
0.0188748
0.0376248
0.0563748
0.0751248
0.0938748
0.1126248
0.1313748
0.1501248
0.1688748
0.1876248
0.2063748
0.2251248
0.2438748
0.2626248
0.2813748
0.3001248
0.3188748
0.3376248
0.3563748
0.3751248
0.3938748
0.4126248
0.4313748
0.4501248
0.4688748
0.4876248
0.5063748
0.5251248
0.5438748
0.5626248
0.5813748
0.6001248
0.6188748
0.6376248
0.6563748
0.6751248
0.6843403
0.6938748
0.6968403
0.7093403
0.7126248
0.7218403
0.7313748
0.7501248
0.7688748
0.7876248
0.8063748
0.8251248
0.8438748
0.8626248

8.5965113 - 106
8.5965113 - 106
—2.2302045 - 107
—4.046857 - 107
—2.3953166 - 107
—6.4827862 - 10°
6.1274876 - 106
1.2578428 - 107
1.4673379 - 107
1.549011 - 107
1.4359805 - 107
1.0138205 - 107
6.1668004 - 106
4.5230315 - 106
3.296957 - 106
3.0122119 - 108
—1.2519474 - 106
—1.4725971 - 108
—5.5787909 - 10°
—4.0520594 - 10°
—1.6387087 - 106
—6.1433805 - 10°
—1.3627564 - 105
—1.5380114 - 108
—2.4515616 - 10°
—9.9023438 - 10°
—8.3097292 - 10°
—9.876261 - 105
—1.5564943 - 10°
—2.2539198 - 10°
7.3921187 - 10°
—4.0477424 - 10°
2.0580451 - 106
—7.0544998 - 106
4.8225952 - 106
—1.0507944 - 107
1.8470242 - 106
2.3986315 - 105
—5.3840623 - 107
—8.835186 - 107
—8.7080603 - 106
7.3387194 - 107
5.9056073 - 107
4.6738917 - 107
—1.4128445 - 107
5.9224776 - 106
—5.8563137 - 106
1.4925678 - 106
—2.4281431 - 108
—3.3351645 - 10°
—2.3718634 - 10°

5.6334513 - 105
5.6656237 - 10°
1.0501161 - 108
—2.043739 - 10°
—2.480731 - 10
—3.8280965 - 106
—4.1927533 - 106
—3.8480821 - 108
—3.1405455 - 108
—2.315168 - 106
—1.4438493 - 108
—6.3611027 - 10°
—6.5836217 - 104
2.8104631 - 10°
5.3546683 - 10°
7.2092066 - 10°
8.9035758 - 10°
8.1993554 - 10°
7.3710195 - 10°
7.0572126 - 10°
6.8292842 - 10°
5.9075106 - 10°
5.5619454 - 10°
5.4852904 - 10°
4.620159 - 10°
4.4822586 - 10°
3.9252518 - 10°
3.4578295 - 10°
2.9022898 - 10°
2.814737 - 10°
1.5469071 - 10°
1.9627138 - 10°
—3.1414129 - 104
8.4350905 - 10*
—3.1246471 - 10°
—4.1193729 - 10*
—6.3226556 - 10°
—5.2837045 - 10°
—5.2173907 - 10°
—2.0617693 - 106
—2.8477917 - 108
—3.1743439 - 106
—2.4512232 - 106
—8.1852948 - 10°
5.1836715 - 10°
—2.7635787 - 10°
5.6781493 - 104
—2.7263615 - 10°
—1.8867921 - 10°
—3.2526226 - 10°
—5.1286527 - 10°

9.2473625 - 10*
9.2614581 - 104
1.229273 - 10°
1.3878497 - 10°
8.8439254 - 104
—2.9851263 - 10%
—1.802422 - 10°
—3.3100786 - 10°
—4.6204463 - 10°
—5.6433926 - 10°
—6.3482083 - 10°
—6.7382007 - 10°
—6.8698157 - 10°
—6.8294638 - 10°
—6.6763676 - 10°
—6.4407949 - 10°
—6.1386802 - 10°
—5.8180003 - 10°
—5.5260558 - 10°
—5.2555264 - 10°
—4.9951546 - 10°
—4.7563397 - 10°
—4.5412874 - 10°
—4.3341517 - 10°
—4.1446745 - 10°
—3.9740042 - 10°
—3.8163634 - 10°
—3.6779306 - 10°
—3.5586784 - 10°
—3.4514841 - 10°
—3.3697033 - 10°
—3.3038979 - 10°
—3.2729872 - 10°
—3.2630615 - 10°
—3.3058329 - 10°
—3.3721438 - 10°
—3.4984174 - 10°
—3.7160367 - 10°
—3.8128095 - 10°
—4.0591341 - 10°
—4.2047272 - 10°
—4.9574941 - 10°
—5.1422659 - 10°
—5.4435899 - 10°
—5.4722089 - 10°
—5.4268322 - 10°
—5.4680027 - 10°
—5.5084755 - 10°
—5.5949721 - 10°
—5.6913361 - 10°
—5.8484851 - 10°

5.0356619 - 10°
5.0357774 - 10°
5.0557011 - 105
5.0809717 - 10°
5.1036078 - 10°
5.1098899 - 10°
5.0904073 - 10°
5.0422756 - 10°
4.9675124 - 10°
4.8708053 - 10°
4.7578735 - 10°
4.6347151 - 10°
4.5068058 - 10°
4.3781718 - 10°
4.2514056 - 10°
4.1283235 - 10°
4.0102916 - 10°
3.898239 - 10°
3.791937 - 10°
3.6908781 - 10°
3.5947913 - 10°
3.503425 - 10°
3.41628 - 10°
3.3330773 - 10°
3.253639 - 10°
3.1775345 - 10°
3.1045324 - 10°
3.0343008 - 10°
2.9664901 - 10°
2.900775 - 10°
2.8369006 - 10°
2.7743113 - 10°
2.7127864 - 10°
2.6514431 - 10°
2.5900922 - 10°
2.5273272 - 10°
2.463262 - 10°
2.3955657 - 10°
2.3608737 - 10°
2.3235795 - 10°
2.3113378 - 10°
2.2541589 - 10°
2.2375596 - 10°
2.1885515 - 10°
2.1363106 - 10°
2.0345978 - 10°
1.9322635 - 10°
1.829552 - 10°
1.725408 - 10°
1.6196789 - 105
1.511603 - 10°
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111

0.8626248
0.8813748
0.9001248
0.9188748
0.9268075
0.9376248
0.9393075
0.9518075
0.9533675
0.9563748
0.9643075
0.9658675
0.968422
0.9718033
0.9719283
0.9720533
0.9721783
0.9723033
0.9751248
0.9783675
0.979321
0.980922
0.9816958
0.9826908
0.9851908
0.98675
0.986821
0.9868215
0.9870715
0.9873215
0.9875715
0.9876908
0.9878215
0.988
0.98925
0.9901908
0.9905
0.9908675
0.991696
0.991721
0.991746
0.99175
0.991771
0.991796
0.991821
0.991846
0.991871
0.991896
0.991921
0.991946
0.9926908
0.993422
0.9938748
0.9941958
0.994321
0.9951908
0.9967765
0.997357
0.9973813
0.9974038
0.9976908
0.9980265
0.998114
0.9983623
0.998607
0.9986313
0.9986538
0.9992765
0.9992985
0.999364
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0.8813748
0.9001248
0.9188748
0.9268075
0.9376248
0.9393075
0.9518075
0.9533675
0.9563748
0.9643075
0.9658675
0.968422
0.9718033
0.9719283
0.9720533
0.9721783
0.9723033
0.9751248
0.9783675
0.979321
0.980922
0.9816958
0.9826908
0.9851908
0.98675
0.986821
0.9868215
0.9870715
0.9873215
0.9875715
0.9876908
0.9878215
0.988
0.98925
0.9901908
0.9905
0.9908675
0.991696
0.991721
0.991746
0.99175
0.991771
0.991796
0.991821
0.991846
0.991871
0.991896
0.991921
0.991946
0.9926908
0.993422
0.9938748
0.9941958
0.994321
0.9951908
0.9967765
0.997357
0.9973813
0.9974038
0.9976908
0.9980265
0.998114
0.9983623
0.998607
0.9986313
0.9986538
0.9992765
0.9992985
0.999364
0.9994285

—4.303895 - 106
—6.1965032 - 10°
—1.0805591 - 107
—7.8233197 - 10°
—4.0647786 - 107
1.1189644 - 108
—5.6206069 - 107
—2.712999 - 108
2.0022128 - 108
—2.5846327 - 108
2.91817 - 108
3.8830861 - 108
—6.8085932 - 108
7.9528012 - 108
—1.0405377 - 10°
2.3273007 - 10°
—5.3376184 - 10°
1.6866833 - 10°
—1.6216581 - 108
4.1085498 - 108
3.5197506 - 108
—5.1998225 - 109
—4.5353758 - 10°
—6.1873693 - 10°
—2.0752238 - 10°
6.0252292 - 1010

—9.9730508 - 1012

5.7302679 - 10°

—1.9482435 - 108

5.7448459 - 109
8.563036 - 10°
4.5710986 - 10°
2.1450425 - 1010
4.589262 - 10°
2.7195561 - 1010
1.0270578 - 1010

—5.3284279 - 1010

1.4845111 - 1010
4.0145258 - 1011
3.1072857 - 1011

—3.4007032 - 1012

5.1690929 - 1011

—9.5776893 - 1010

1.7599631 - 1011

—4.6468553 - 1010

3.6977122 - 1010
1.4792608 - 1011

—1.5505596 - 1011

4.8140778 - 1011

—4.2461762 - 1010
—2.2398648 - 107

9.6792057 - 10°

—1.1321291 - 101°
—1.1167542 - 1010

1.2143136 - 1010

—5.061124 - 10°
—2.2037852 - 1010

1.2526581 - 1011
1.1684825 - 1011

—4.1265222 - 1010
—3.6644545 - 1010

8.3659854 - 1010

—1.3385974 - 1011
—3.5568462 - 1010

3.0784292 - 1011

—2.4671884 - 1011
—2.2464418 - 1011
—3.3438978 - 1012
—1.5352094 - 1012
—5.0645096 - 1011

—6.4628258 - 10°
—8.8837668 - 10°
—1.23693 - 106
—1.8447445 - 106
—2.0309258 - 106
—3.3500176 - 106
—2.7851364 - 106
—4.892864 - 106
—6.1625475 - 106
—4.3562012 - 108
—1.0507175 - 107
—9.1414712 - 108
—6.1656682 - 106
—1.3072135 - 107
—1.2773905 - 107
—1.3164107 - 107
—1.2291369 - 107
—1.4292976 - 107
—1.6044623 - 10*
—1.5936341 - 106
—4.1838346 - 10°
1.2721528 - 106
—1.0797935 - 107
—2.4336032 - 107
—7.0741302 - 107
—8.044868 - 107
—6.7614942 - 107
—8.2574518 - 107
—7.8276817 - 107
—7.8422935 - 107
—7.4114301 - 107
—7.1050875 - 107
—6.9257861 - 107
—5.7771159 - 107
—4.0561426 - 107
3.6191247 - 107
4.5719776 - 107
—1.3026141 - 107
2.3871381 - 107
5.3980325 - 107
7.7284968 - 107
3.6476529 - 107
6.9041814 - 107
6.1858547 - 107
7.5058271 - 107
7.1573129 - 107
7.4346414 - 107
8.544087 - 107
7.3811673 - 107
1.0991726 - 108
1.5047064 - 107
1.013336 - 107
2.3280141 - 107
1.2377738 - 107
8.1815344 - 106
3.9866011 - 107
1.5788979 - 107
—2.2589941 - 107
—1.3476853 - 107
—5.5895969 - 106
—4.1118953 - 107
—7.802917 - 107
—5.6068459 - 107
—1.557605 - 108
—1.8187665 - 108
—1.5948107 - 108
—1.761346 - 108
—5.9582608 - 108
—8.1652333 - 108
—1.118192 - 10°

—6.0658253 - 10°
—6.3535739 - 10°
—6.7520689 - 10°
—7.3298828 - 10°
—7.6373301 - 105
—8.2194002 - 10°
—8.3226395 - 10°
—9.2823895 - 10°
—9.4548539 - 10°
—9.771179 - 10°
—1.0950253 - 106
—1.1256772 - 106
—1.1647793 - 108
—1.2298271 - 106
—1.2330579 - 106
—1.2363002 - 106
—1.2394821 - 108
—1.2428051 - 108
—1.283178 - 106
—1.2883978 - 106
—1.2903163 - 106
—1.2889494 - 106
—1.29632 - 106
—1.3312783 - 106
—1.5689716 - 106
—1.8047146 - 108
—1.8152271 - 108
—1.8153022 - 108
—1.855515 - 106
—1.89469 - 106
—1.9328243 - 106
—1.9501352 - 106
—1.9684806 - 106
—1.9911553 - 106
—2.114071 - 108
—2.1181822 - 106
—2.0928513 - 106
—2.0808363 - 106
—2.0718511 - 106
—2.0699048 - 106
—2.0666231 - 106
—2.0661681 - 106
—2.0639522 - 108
—2.0606797 - 106
—2.0572568 - 106
—2.053591 - 106
—2.049943 - 106
—2.0459483 - 108
—2.041967 - 106
—2.0373738 - 106
—1.9443066 - 108
—1.9258934 - 106
—1.9107655 - 106
—1.8993193 - 106
—1.8967442 - 108
—1.8549549 - 108
—1.7667 - 106
—1.7706479 - 106
—1.7715226 - 106
—1.7719516 - 106
—1.7853569 - 106
—1.8253609 - 106
—1.8370944 - 108
—1.889681 - 106
—1.9723177 - 106
—1.9805956 - 106
—1.9881469 - 106
—2.4688855 - 106
—2.4999571 - 106
—2.626681 - 106

1.3999845 -
1.2836945 -
1.1610333 -
-10°

1.0293712

9.7002513 -
8.8451927 -
-10%

8.7059855

7.6111601 -
7.4650611 -
7.1757014 -
6.3602628 -
6.1869926 -
5.8941204 -
5.4905983 -
- 104
5.4597718 -
5.4442979 -
-10%
5.0705368 -
4.6538644 -
4.5309064 -

5.4752052

5.4287841

10°
10°
10°

104
104

10
104
104
104
104
104
104

104
104

10
104
104

4.324364 - 10*

4.2244668 -
4.0939672 -
3.7362698 -

104
104
104

3.4736422 - 104
3.4607903 - 104
3.4606995 - 104
3.4148098 - 104
3.3679324 - 104
3.320084 - 10*

3.2969311 - 104
3.2713127 - 10*
3.2359668 - 104
2.978942 - 104

2.7787353 - 10*
2.713607 - 10*

2.6370477 - 104
2.4646005 - 10%
2.459423 - 104

2.4542521 - 104
2.4534256 - 104
2.4490887 - 104
2.443933 - 10

2.4387854 - 104
2.4336469 - 10*
2.4285175 - 104
2.4233975 - 104
2.4182877 - 104
2.4131882 - 104
2.2657973 - 10*
2.1243369 - 104
2.0374397 - 104
1.9763065 - 104
1.9525348 - 104
1.7889833 - 10%
1.5028404 - 104
1.4003844 - 10%
1.3960894 - 104
1.392103 - 104

1.3411044 - 104
1.2805588 - 104
1.2645327 - 10%
1.2183765 - 104
1.1711414 - 10%
1.1663483 - 10*
1.1618836 - 104
1.0258155 - 104
1.0203515 - 104
1.0035834 - 104
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0.9994285
0.9994865
0.9995485
0.9995773
0.9996123
0.9996785
0.9997023
0.9997365
0.9997985
0.9998273
0.999857

0.9998813
0.9999038
0.9999285
0.9999523
0.9999865
1.0000485
1.0000773
1.0001675
1.0001785
1.0002365
1.0002703
1.0002925
1.0002985
1.0004175
1.0004285
1.0004865
1.0005203
1.0005265
1.0005425
1.000614

1.0006675
1.0007703
1.0008623
1.0010203
1.001107

1.0011313
1.0011538
1.0012703
1.0017765
1.001821

1.001864

1.0021123
1.002357

1.0023813
1.0024038
1.003114

1.0033623
1.005922

1.0066958
1.0126248
1.0191958
1.0313748
1.0498763

0.9994865
0.9995485
0.9995773
0.9996123
0.9996785
0.9997023
0.9997365
0.9997985
0.9998273
0.999857

0.9998813
0.9999038
0.9999285
0.9999523
0.9999865
1.0000485
1.0000773
1.0001675
1.0001785
1.0002365
1.0002703
1.0002925
1.0002985
1.0004175
1.0004285
1.0004865
1.0005203
1.0005265
1.0005425
1.000614

1.0006675
1.0007703
1.0008623
1.0010203
1.001107

1.0011313
1.0011538
1.0012703
1.0017765
1.001821

1.001864

1.0021123
1.002357

1.0023813
1.0024038
1.003114

1.0033623
1.005922

1.0066958
1.0126248
1.0191958
1.0313748
1.0498763
1.0500013

1.5025164 -
1.2879654 -
—9.2000902 -
. 1012

—5.4278771

—4.0122689 -

10'2
1012
1011

1012

—1.2161902 - 10°
—9.5475238 - 108
—7.1519081 - 108
—7.9454159 - 108
—1.3644687 - 10°

7.379071 - 1012
3.5562138 - 1013
5.37386 - 1013

—2.1619071 -
—1.6361483
2.0178613 -

10°

109

10°

—1.5309891 -
—4.2740774 -
3.0511372 -
5.3460507 -
2.0758213 -
4.2080678 -
.1013
—4.0699553 -
—3.6445618 -
. 1013
2.3744333 -
1.0221445 -
1.3767596 -
9.8935884 -
4.4489743 -
—4.1658653 -
—2.9717144 -
. 1013

—3.9223533

—1.1291565

—1.4444854

—1.3288582 -
—1.8551767 -
-10%8

1.1857911

—5.8000946 -
2.0143887 -
—7.2308314 -
5.0089928 -
—6.7324916 -
4.4352981 -
—5.7581594 -
- 109

1.4096984

—2.3800009 -
8.2924545 -
- 106

—3.7696179

8.7232639 -
—1.5056455 -
4.9369419 -

1014
1014
10'3
1014
10t
1013

1013
1013

1013
1013
1013
1012
1013
1011
1013

1013
1013

1012
1013
1012
1010
10°
10°
10°

107
10°

10°
10%
103

—2.004318 - 10*

4.7812066

2.2115351

103
—4.2671381 -
2.2975848 -
-1072
1.0157171 -
—2.7111595 -
1.3192554 -
—8.7896014 -
1.4794156 -
1.4794156 -

100
100

102
103
103
10—4
103
10-3

1.2013241 - 1010
—1.1915398 - 10°
—3.9337681 - 1010
—3.7117978 - 1010
—1.0321365 - 10°

1.4380836 - 1010

1.7379085 - 1010

1.3348867 - 1010

5.7787499 - 109

2.6353154 - 109
—4.2187597 - 108

3.6168703 - 108

2.1402185 - 109

3.5341876 - 109

4.1945847 - 10°

4.9954 - 109

4.8466786 - 102

3.8660129 - 107

1.3526083 - 109

7.1393744 - 106
—3.4070626 - 108

2.2847346 - 108
—1.0156468 - 10°

2.2174471 - 109
—1.1456696 - 107

2.3681243 - 106
—8.2307674 - 10°

3.3120959 - 10°
—8.7696511 - 10*

7.4581314 - 103
—8.5997167 - 102

3.9944486 - 102
—1.0379913 - 102

8.7309761 - 100
—2.4823188 - 10°

1.1426308 - 109
—3.1551051 - 10~ 1

7.2209382 - 10~3
—1.8712663 - 10~3
—1.6014005 - 10—

9.6892578 - 106

3.3266592 - 10—°
—1.4956802 - 10—°

1.1049679 - 10~°
—2.1064887 - 10~°

6.1049335 - 105

—2.7772486 - 106
—2.9031633 - 106
—3.0066998 - 106
—3.0501046 - 106
—3.12567 - 106
—3.3592924 - 106
—3.4494962 - 106
—3.4364225 - 108
—2.5664942 - 106
—2.2553703 - 106
—3.4611146 - 108
—5.3151643 - 106
—6.1735419 - 108
—5.8431616 - 106
—5.0888634 - 106
—4.0364311 - 108
—2.8505189 - 106
—2.6086145 - 108
—2.4088516 - 106
—2.4095137 - 106
—2.2644031 - 108
—2.0728919 - 106
—1.9009267 - 106
—1.8457868 - 106
—6.7457948 - 10°
—5.7873987 - 10°
—2.7605984 - 10°
—2.3016836 - 10°
—2.3225315 - 10°
—2.3404888 - 10°
—2.9033177 - 10°
—2.2603546 - 10°
6.3005486 - 102
—2.0609371 - 102
3.8023795 - 10!
—4.6456802 - 10°
1.2595118 - 109
—5.458517 - 10~ 1
2.2283391 - 101
—1.0307792 - 10— 2
2.8484428 - 10~3
—1.2394877 - 10~3
3.1174145-10~*
—1.6147184 - 105
3.9104829 - 106
—3.0260325 - 10~
7.7357194 - 107
2.6927531 - 107
—1.1584111-10~7
—8.2604017 - 10~8
2.5954727 - 108
2.8102735 - 10~10
—1.2169419 - 10~7
6.1807807 - 107

9.8616247 - 103
9.6967462 - 103
9.513387 - 103

9.4263313 - 103
9.3183716 - 103

9.1041406 -
103

9.0232368

8.9046011 -

103

103

8.7121069 - 103
8.6446117 - 103
8.565206 - 103

8.458576 - 103

8.3262834 - 103
8.1760031 - 103
8.0459034 - 103
7.8904207 - 103
7.6817752 - 103
7.6037332 - 103
7.3814702 - 103
7.3549534 - 103
7.2184126 - 102
7.1449561 - 103
7.1006929 - 103
7.089448 - 103

6.9398372 - 103
6.9329637 - 103
6.9095837 - 103
6.9012965 - 103
6.8998537 - 103
6.896099 - 103

6.8784124 - 103
6.8630573 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
6.8553991 - 103
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