D. J. Shaw, Electrophoresis, 1969.

D. Erickson, D. Li, and W. Qu, An improved method of determining the zeta potential and surface conductance, Journal of Colloid and Interface Science, vol.232, pp.186-197, 2000.

C. Yang, D. Li, and J. H. Masliyah, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, International Journal of Heat and Mass Transfer, vol.41, pp.4229-4249, 1998.

K. V. Sharp, R. J. Adrian, J. G. Santiago, and J. I. Molho, Liquid Flows in microchannels, The MEMS Handbook

J. Delplanque, Chapitre 3 : Micro-écoulements liquides, pp.89-114, 2004.

M. S. Chun, Electrokinetic flow velocity in charged slit-like microfluidic channels with linearized Poisson-Boltzmann, Korean J; Chem. Eng, vol.19, pp.1-6, 2002.

G. M. Mala, D. Q. Li, and C. Werner, Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects, International Journal of Heat and Fluid Flow, vol.18, pp.489-496, 1997.

R. J. Hunter, Zeta potential in colloid science: principles and applications, 1981.

D. Li, Electroviscous effects on pressure-driven liquid flow in microchannels, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.195, pp.35-57, 2001.

C. L. Rice and R. Whitehead, Electrokinetic flow narrow cylindrical capillaries, Journal of Physics Chemistry, vol.69, pp.4017-4023, 1965.

S. Levine, J. R. Marriott, G. Neale, and N. Epstein, Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potential, Journal of Colloid Science, vol.52, pp.136-149, 1975.

G. M. Mala, D. Li, and J. D. Dale, Heat and transfer and fluid flow in microchannels, International Journal of Heat and Mass Transfer, vol.40, pp.3079-3088, 1997.

M. S. Chun and H. W. Kwak, Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with non-linear Poisson-Boltzmann field, Korea-Australia Rheology Journal, vol.15, pp.83-90, 2003.

J. Lykema and T. G. Overbeek, On the interpretation of electrokinetic potentials, Journal of Colloid Science, vol.16, pp.501-512, 1961.

C. Yang and D. Li, Analysis of electrokinetic effects on the liquid flow in rectangular microchannels, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.143, pp.339-353, 1998.

S. Arulanandam and D. Li, Liquid transport in rectangular microchannels by electroosmotic pumping, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.161, pp.89-102, 2000.

L. Ren and D. Li, Electroosmotic flow in heterogeneous microchannels, Journal of Colloid and Interface Science, vol.243, pp.255-261, 2001.

X. Y. Chen, K. C. Toh, J. C. Chai, and C. Yang, Developing pressure-driven flow in microchannels under the electrokinetic effect, International Journal of Engineering Science, vol.42, pp.609-622, 2004.

B. Li and D. Y. Kwok, A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation, International Journal of Heat and Mass Transfer, vol.46, pp.4235-4244, 2003.

D. A. Grahame, Differential capacity of mercury in aqueous sodium fluoride solutions. I. Effect of concentration at 25°, Journal of American Chemical Society, vol.76, pp.4819-4823, 1954.

A. Adamson, Physical chemistry of surfaces, 1967.

C. L. Ren and D. Li, Electroviscous effects on pressure driven-flow of dilute electrolyte solutions in small microchannels, Journal of Colloid and Interface Science, vol.274, pp.319-330, 2004.

M. Elimelech, W. H. Chen, and J. J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyser, Desalination, vol.95, pp.269-286, 1994.

D. C. Tretheway and C. D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Physics of fluids, vol.14, pp.9-12, 2002.

J. Yang and D. Y. Kwok, Analytical treatment of flow in infinitely extended circular microchannels and the effect of slippage to increase flow efficiency, Journal of Micromechanics and microengineering, vol.13, pp.115-123, 2003.

J. Yang and D. Y. Kwok, Effect of liquid slip in electrokinetic parallel-plate microchannel flow, Journal of Colloid and Interface Science, vol.260, pp.225-233, 2003.

W. Qu and D. Li, A model for overlapped EDL fields, Journal of Colloid and Interface Science, vol.224, pp.397-407, 2000.

L. Osipow, Surface chemistry : theory and industrial applications, 1962.

S. Tardu, Effets des forces électrostatiques en microfluidique : double couche électrique à l'interface" SHF, editor, 1er congrès français de microfluidique, 2002.

G. M. Mala and D. Li, Flow characteristics of water in microtubes, International Journal of Heat and Fluid Flow, vol.20, pp.142-148, 1999.

X. F. Peng and G. P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, International Journal of Heat and Mass Transfer, vol.39, pp.2599-2608, 1996.

K. V. Sharp and R. J. Adrian, Transition from laminar to turbulent flow in liquid filled microtubes, Theorical and Applied Mechanics Reports, p.1030, 2003.

S. Tardu, S. Colin, and H. Camon, Effets interfaciaux sur la stabilité linéaire des écoulements dans les microcanaux, 2003.

S. Tardu, Spatio-temporal evolution of a spot under the EDL effect, Second International Conference on Microchannels and Minichannels, pp.849-853, 2004.

L. Ren, D. Li, and W. Qu, Electro-viscous effects on liquid flow in microchannels, Journal of Colloid and Interface Science, vol.233, pp.12-22, 2001.

P. Vainshtein and C. Gutfinger, On electroviscous effects in microchannels, Journal of Micromechanics and microengineering, vol.12, pp.252-256, 2002.

F. J. Rubio-hernandez, F. Carrique, and E. Ruiz-reina, The primary electroviscous effect in colloidal suspensions, Advanced in Colloid and Interface science, vol.107, pp.51-60, 2004.

D. Burgreen and F. R. Nakache, Electrokinetic flow in ultrafine capillary slits, Journal of Physics Chemistry, vol.68, pp.1084-1091, 1964.

J. Judy, D. Maynes, and B. W. Webb, Characterization of frictional pressure drop for liquid flows through microchannels, International Journal of Heat and Mass Transfer, vol.45, pp.3477-3489, 2002.

J. Pfahler, J. Harley, H. Ban, and J. N. Zemel, Gas and liquid transport in small microchannels, ASME Microstructures, Sensors and Actuators, vol.32, pp.49-160, 1991.

D. Brutin, Écoulements liquides en microtubes et ébullition convective en minicanaux : étude expérimentale et modélisation, 2003.

M. Anduze, Étude expérimentale et numérique de microécoulements liquides dans les microsystèmes fluidiques, 2000.

I. Papautsky, T. Ameel, and A. B. Frazier, A review of laminar single-phase flow in microchannels" Proceedings of, 2001.

K. Shinohara, Y. Sugii, K. Okamoto, H. Madarame, A. Hibara et al., Measurement of pH field of chemically reacting flow in microfluidic devices by laser-induced fluorescence, Measurement science & technology, vol.15, pp.955-960, 2004.