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A MOMENT CLOSURE BASED ON A PROJECTION ON THE

BOUNDARY OF THE REALIZABILITY DOMAIN: 1D CASE

Teddy Pichard

CMAP, École Polytechnique, CNRS UMR7641,

Institut Polytechnique de Paris, Palaiseau, France

Abstract. This work aims to develop and test a projection technique for the

construction of closing equations of moment systems. One possibility to define

such a closure consists in reconstructing an underlying kinetic distribution from
a vector of moments, then expressing the closure based on this reconstructed

function.

Exploiting the geometry of the realizability domain, i.e. the set of moments
of positive distribution function, we decompose any realizable vectors into two

parts, one corresponding to the moments of a chosen equilibrium function, and

one obtain by a projection onto the boundary of the realizability domain in the
direction of equilibrium function. A realizable closure of both of these parts

are computed with standard techniques providing a realizable closure for the

full system. This technique is tested for the reduction of a radiative transfer
equation in slab geometry.

1. Introduction. This paper aims to develop closure relations for 1D moment
models that is based on positive measures and that recovers both purely anisotropic
distriution and a chosen regular equilibrium function. The starting point is a kinetic
equation of the form

∂tf + s∂xf = C(f), (1)

where the unknown f is a distribution function depending on time t ∈ R+, position
x ∈ Ω ⊂ R and a state variable s ∈ E ⊂ R. In the applications we have in mind,
this state variable s corresponds respectively to a cosine direction of flight s = µ
belonging to E = [−1,+1] in radiative transfer, a velocity variable s = v belonging
to E = R in rarefied gas dynamics, or a size of droplets s ∈ E = R+ in dispersed
flows.

In (1), the unknown f is a density of particles in a phase space Ω× E, i.e.

dN = f(t, s, x)dsdx

is the quantity of particles in a spatial neighbourhood dx around x and having a
state in the neighbourhood ds around s at time t. The operator C models collision
effects. Here, we consider only 1D problems such that the space variable and the
state variable evolve respectively in subsets of R.

Due to the high dimensionality of the phase space, equations of the form (1)
are often solved numerically using a reduction technique based on a moment ex-
traction (see e.g. [15, 44, 19]). Such a technique consists in studying the moments
of f according to the s variable instead of f itself. Such moments depend on less
variables than f and require therefore less computational efforts to compute (see
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e.g. comparisons in [50, 36, 56, 4, 7, 49, 47]). Those moments, afterward written
f in bold, are weighted integrals of f against a vector b(s) of polynomial weights.
This yields

f =

∫
E

b(s)f(s)ds. (2)

The moments of the kinetic distribution function f follow an equation of the
form

∂tf + ∂xF = C, (3a)

F =

∫
E

sb(s)f(s)ds, C =

∫
E

b(s)C(f)(s)ds. (3b)

The system (3a) is underdetermined, because the flux F and the collision operator
C do not depend on the unknown f . One common idea to close the system (3a)
consists in expressing f as the moments of an underlying kinetic distribution which
is constructed such that it has f for moments. In practice, one inverts (2), i.e. one

seeks a function f̃ satisfying ∫
E

b(s)f̃(s)ds = f , (4a)

then, the system (3a) is closed by approaching F and C based on f̃ by

F ≡ F̃(f) =

∫
E

sb(s)f̃(s)ds, C ≡ C̃(f) =

∫
E

b(s)C(f̃)(s)ds. (4b)

Through this method, one expresses the flux F̃ and the collision operator C̃ as
a function of the unknown f in (3b). This corresponds to approximating the s-

dependencies of f in (1). Indeed, f̃ can be interpreted as an approximation of f ,
the moments of which satisfy the same PDE system (3a) as the moments of f .

In this paper, we focus on the construction of the flux function F̃(f) and we

only consider linear collision operator C̃(f). We especially focus on the positivity
property of the reconstruction f , referred to as the realizability property at the
moment level, for two reasons:

• One major property of the kinetic models of the form (1) is the positivity of
the density f of particles in phase space, which is a density function. One
commonly expects this property to be preserved through the moment extrac-
tion. This is the case e.g. for the well-established entropy-based closure MN

([44, 45, 38, 42]) or for the atom-based closures KN (based on the idea of [34]
then developped in [46, 47] and exploited in [57]). Furthermore, when using
such closures, the positivity of the underlying kinetic function needs to be
preserved during the computations, for the fluxes F̃ and the collision operator
C̃ to be well-defined.

• This positivity property is also of major importance for modelling purely
anisotropic regimes, i.e. when modelling perfect beams of particles. In such a
physical limit, the underlying kinetic distribution behaves as a narrow Gauss-
ian or a Dirac peak (see previous work [51, 50, 40]). Non-realizable closures,

such as the polynomial PN closure, i.e. when f̃ is obtained from a spherical
harmonics expansion of f , often misbehaves in such a limit. Such closures
are generally overdiffusive in this case, and one requires a high number of
moments for such simulations to be accurate (e.g. order up to 21 in 1D and 17

in 3D in [36]). Instead, closures based on a positive reconstruction f̃ capture
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these phenomena properly, even with low order moments (see e.g. [51, 40, 55]).
Though, those closures are more difficult to construct and to compute numer-
ically.

At the moment level, a vector V is said to be realizable if there exists a positive
reconstruction f̃ satisfying the moment constraints (4a). The set of realizable vector
is called the realizability domain and the problem of characterizing the existence
of a positive reconstruction f̃ is called ”the Truncated Moment Problem” (TMP)
after [61, 37]. Several TMP were solved, mostly when the set of integration is
1D. We may list the truncated moment problems of Hausdorff (E = [−1,+1];[29]),
Hamburger (E = R; [26]), Stieltjes (E = R+; [61]), Toeplitz (E = S1), see e.g. [16]
for a review on those results.

The objective of this work is to provide a numerically tractable closure (4b) for
1D problems that is realizable and generically applicable to arbitrary high order
moment models over 1D sets. It is based on a projection on the boundary of the
realizability domain in the direction of a chosen equilibrium function feq which
provides such a solution to such 1D moment problems. This solution leads to an
atomic closure, i.e. the reconstruction f̃ is based on a sum of Dirac peaks called
atoms ([16, 17, 18]) and of a regular integrable function. Such atomic decomposi-
tions was also used for the construction of KN closure ([34, 46, 47, 57]) for moments
over [−1,+1], or of quadrature-based closures ([21, 64, 40]) for moments over R+,
which are also realizable and numerically tractable. However, the present closure
differs from those closures as:

• The underlying distribution possesses the minimum number of atoms.
• When considering the moments feq of an equilibrium distribution feq for the

original problem (1), the underlying distribution of the present closure re-
treives exactly the equilibrium distribution feq (with KN only its moment
flux F(feq) is obtained).

• This projection technique is general to all types of TMP, such as Stieltjes’ or
Hamburger’s, for which the realizability property is enforced by the positivity
of moment matrices. However, the choice of the equilibrium function feq
requires further investigation (discussed in conclusion) for this closure to be
applicable when E is unbounded.

In the following, the superscript ˜ is droped, and the TMP are understood in
terms of integrable functions f as well as in terms of measures γ, i.e. replacing
f(s)ds by dγ(s) in (2-4).

This paper is organized as follows. The next sections recalls definitions and pre-
liminary results exploited in the rest of the paper, especially around the construction
and the properties of the realizability domain. Section 3 provides the construction
and the numerical computation of realizable closures, namely the Kershaw KN clo-
sure and closure, afterward called ΠN , based on projections on the boundary of
the realizability domain. These closures are tested and analyzed on practical test
cases emerging from the field of radiative transfer. The last section is devoted to
conclusive remarks and perspectives of this work.

2. Preliminaries. The present section is devoted to set up the problems con-
sidered in the paper and to provide the basics of the theory and state-of-the-art
solutions.
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2.1. Definitions and notations. In the present work, we focus on polynomial
moments and we classically use the monomial basis

b(s) = bN (s) = (1, s, ..., sN )T . (5)

The monomial basis is used for its simplicity, though others can equally be used,
e.g. the Legendre basis are often prefered for their orthogonality property. One may
also extend the notions presented here, with non-polynomial basis functions as long
as it satisfies the pseudo-Haar property (i.e. some functional linear independence;
[39]). This is used e.g. to construct the partial moments method ([23, 22, 59, 56]).

We first give the following definitions.

Definition 2.1. • We denote L1(E)+ the set of the non-negative integrable
functions over E and that are non-zero, i.e. f ∈ L1(E)+ if f ∈ L1(E) and

f ≥ 0 a.e. and ∃(c, d) ∈ E2, c < d, s.t. essinfs∈[c,d]f(s) > 0. (6a)

• We denote L1
N (E)+ the set of the non-negative functions which have finite

moments over E up to order N , i.e. f ∈ L1
N (E)+ if

f ∈ L1(E)+ s.t. s 7→ sif(s) ∈ L1(E) ∀i = 0, . . . , N.

• A vector V ∈ RN+1 is said to be realizable if it is the vector of moments of a
positive function, i.e. if

∃f ∈ L1
N (E)+, s.t.

∫
E

bN (s)f(s)ds = V. (6b)

• The set of all realizable vectors is called the realizability domain. It is defined
by

Rb =

{∫
E

b(s)f(s)ds, f ∈ L1
Card(b)+1(E)+

}
. (6c)

• Define also the convex cone

Rmb =

{
J∑
i=1

αib(si), J <∞, αi ∈ R∗+, si ∈ E
}
. (6d)

Remark that this is the set of moments with respect to positive discrete mea-
sures over E since b(si) =

∫
E

b(s)δsi(s) where δsi is the Dirac measure in
si ∈ E.

• Finally, we will use extensively the closure set of Rb in RCard(b)

Rcb = Rb ∩ RCard(b). (6e)

Remark 1. Any Dirac measures on E ⊂ R can be interpreted as the limit of a
sequence f εds with f ε ∈ L1

N (E)+ when ε→ 0. This provides that

Rmb ⊂ Rcb.
For notation purposes, we also use extensively the following function.

Definition 2.2 (Riesz functional).
Consider a vector b ∈ (R[X])N of N polynomials, and a vector V ∈ RN . The

Riesz functional RV associated to V sends any polynomial p = λb onto

RV(p) = λV. (7)
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Remark that the Riesz functional associated to V is a linear map from Span(b)
to R.

If the vector V =
∫
E

b(s)f(s)ds is the vector of moments of a function f ∈
L1

Card(b)+1(E)+, then the Riesz functional of p is the moment of f according to p

RV(p) =

∫
E

p(s)f(s)ds.

In the next sections, the Riesz functional is also applied componentwise to ma-
trices of polynomials

RV(M)i,j = RV(Mi,j).

Example. Consider the vector f = (f0, f1, f2) ∈ R3, and the vector of monomials
b(s) = (1, s, s2). The Riesz function according to the vector f of the polynomial

p(s) = 1 + 3s− s2

reads

Rf (p) = Rf (1) + 3Rf (s) − Rf (s2)

= f0 + 3 f1 − f2.

The first problem studied in this paper is the truncated moment problem in 1D

Find γ ∈M(E), s.t. V =

∫
E

b(s)dγ(s). (8)

2.2. Properties of the realizability domain. In the following sections, we widely
exploit the following results.

Proposition 1. The realizability domain Rb is an open convex cone.

Proof. The set Rb is a convex cone because of the linearity of the integral.
To prove that it is open, for all V ∈ Rb, we exhbibit a neighborhood of V

included in Rb. Write

V =

∫
E

b(s)f(s)ds ∈ Rb, ε := essinfs∈[c,d]f(s) > 0.

Define

M0 =

∫ d

c

bbT (s)ds.

By assumption, for all i, the function b2
i 6= 0 on [a, b]. Thus, M0 is symmetric

positive definite, and especially non-singular. Then, the family (V0
i ){i=1,...,Card(b)}

of its column is a basis of RCard(b). Therefore, for all α > 0, the set

V =

{
V + α

∑
i

λiV
0
i , λi ∈]− 1, 1[, i = 1, ...,Card(b)

}
(9)

is a neighborhood of V in RCard(b). Now, chose a coefficient α such that

0 < α <
ε∑

i

‖bi‖∞,[c,d]
. (10)

With this choice of α, one shows that∥∥∥∥∥α∑
i

λibi

∥∥∥∥∥
∞,[c,d]

< ε, ∀λi ∈]− 1, 1[, i = 1, ...,Card(b).
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Thus, any vector in V is realized by a function of f+α1[c,d]

∑
i

λibi ∈ L1
Card(b)+1(E)+,

thus V ⊂ Rb.

Remark 2. • This also provides that Rcb is a (closed) convex cone and that
Rb = int(Rcb).

• This property is commonly used when constructing numerical schemes for mo-
ment equations in order to prove that such schemes preserve the realizability
property from one step to another (see e.g. [3, 52, 53]).

2.3. Characterizations of the realizability domain. In this subsection, we
recall the well-known Hausdorff, Hamburger and Stieltjes moment problems ([1, 16])
which provides characterizations of the realizability property.

Theorem 2.3 (Hausdorff). Suppose that s ∈ E = [−1,+1] and either b = b2K

(even case) or b = b2K+1 (odd case). Define the matrices

Even case : M1
V=RV(bKbTK), M2

V=RV

(
(1− s2)bK−1b

T
K−1

)
, (11a)

Odd case : M1
V=RV

(
(1 + s)bKbTK

)
, M2

V=RV

(
(1− s)bKbTK

)
. (11b)

Then,

• A vector V ∈ Rb if and only if M1
V and M2

V are positive definite.
• A vector V ∈ Rmb if and only if M1

V and M2
V are positive semi-definite.

• A vector V ∈ Rcb if and only if M1
V and M2

V are positive semi-definite.

Theorem 2.4 (Hamburger). Suppose that s ∈ E = R and either b = b2K (even
case) or b = b2K+1 (odd case). Define

M1
V = RV(bKbTK). (12a)

Then,

• A vector V ∈ Rb if and only if M1
V is positive definite.

Write furthermore

J = Rank(M1
V), M2

V = RV(bJ−1b
T
J−1), Vj = RV(sjbJ−1), (12b)

• A vector V ∈ Rmb if and only if M2
V is positive definite and

RV(sj) =

{
Vi(M2

V)−1Vi if j = 2i is even,
Vi(M2

V)−1Vi+1 if j = 2i+ 1 is odd
(12c)

for all 2J < j ≤ Card(b),
• A vector V ∈ Rcb if and only if M1

V is positive semi-definite.

Theorem 2.5 (Stieltjes). Suppose that s ∈ E = R+ and either b = b2K (even
case) or b = b2K+1 (odd case). Define

Even case : M1
V=RV(bKbTK), M2

V=RV(sbK−1b
T
K−1), (13a)

Odd case : M1
V=RV

(
bKbTK

)
M2

V=RV(sbKbTK). (13b)

Then,

• A vector V ∈ Rb if and only if M1
V and M2

V are positive definite.

Write furthermore

J1 = Rank(M1
V), J2 = Rank(M2

V), (13c)

J = min(J1, J2), Vj = RV(sjbJ−1), (13d)
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and, if J1 ≤ J2

M3
V = RV(bJ1−1b

T
J1−1), M4

V = RV(sbJ1−2b
T
J1−2), L = 2J1. (13e)

or, if J1 > J2

M3
V = RV(sbJ2−1b

T
J2−1), M4

V = RV(bJ2−1b
T
J2−1), L = 2J2 + 1. (13f)

• A vector V ∈ Rmb if and only if M3
V and M4

V are positive definite and

RV(sj) =

{
Vi(M3

V)−1Vi if j = 2i is even,
Vi(M3

V)−1Vi+1 if j = 2i+ 1 is odd,
(13g)

for all L < j ≤ Card(b).
• A vector V ∈ Rcb if and only if M1

V and M2
V are positive semi-definite.

Proofs of the characterizations of Rb can be found e.g. in [1, 2, 35, 16, 37].
The characteriszations of Rcb are obtained by taking the closure of Rb.
The characterizations of Rmb in the case of Hausdorff is also well-established in the
literature ([1, 2, 35, 16, 37]).
The characterizations ofRmb in the cases of Hamburger and Stieltjes are obtained by
reformulating results from [16]. These reformulations are provided for completeness.

First, definitions from [16] are recalled.

Definition 2.6. • The rank of a moment vector V ∈ RN with N = 2K or
N = 2K + 1 is

Rank(V) =


K + 1 if RV(bKbTK) is positive definite,
min

1≤j≤K
RV(bjbTj ) singular

j otherwise.

• A moment vector V is positively recursively generated if RV(bJ−1b
T
J−1)

is positive definite for J = Rank(V) and there exists (βi)i=1,...,J ∈ RJ such
that

RV(sj) =

J∑
i=1

βiRV(sj−i) for all J ≤ j ≤ N.

Lemma 2.7. Consider V ∈ RmbN with N = 2K or = 2K + 1 and write

J = Rank(V), MV = RV(bJ−1b
T
J−1) and Vj = RV(sjbJ−1).

Then V is positively recursively generated if and only if MV is positive definite and
for all 2J − 1 ≤ j ≤ Card(b)

RV(sj) =

{
ViM−1

V Vi if j = 2i is even,
ViM−1

V Vi+1 if j = 2i+ 1 is odd

Proof. We only need to show that the coefficients RV(sj) are equal in this repre-
sentation and in the definition.

If V is positively recursively generated, then Rank(RV(bKbTK)) = Rank(V).
Define its submatrices

S2i =

(
MV V i

(V i)T RV(s2i)

)
, S2i+1 =

(
MV V i+1

(V i)T RV(s2i+1)

)
.

By construction, Rank(Sj) = Rank(V) and these submatrices are singular. Their
first columns are linearly independent, then the last one is a combination of the
others, and inverting this expression provides the result.
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Remark that this also provides RV(si+j) = ViM−1
V Vj in a general manner.

Proof in the case of Hamburger. Theorems 3.1 (odd case) and 3.9 (even case) from [16]
state the equivalence between

• V is generated by a finite positive combination of Dirac measures,
• V is generated by a positive combination of Rank(V) Dirac measures,
• V is positively recursively generated.

The first assertion and the reformulaion of the last one using Lemma 2.7 provides
the result. The second assertion is used in the case of Stieltjes below.

Proof in the case of Stieltjes: This is obtained by adapting the proofs of Theo-
rems 5.1 (odd case) and 5.3 (even case) from [16].

First, writing V as a positive combination of b(si) over si ∈ R+ in the definitions
of M3

V, M4
V and RV(sj), one verifies that these matrices are positive definite and

that (13g) holds.
In the other way, supose that J1 ≤ J2 such that M3

V and M4
V are positive definite

and that (13g) holds. Then V satisfies the conditions of the Hamburger problem
and

V =

J1∑
i=1

αib(si).

By contradiction, suppose that one position s1 ≤ 0 is non-positive (the first without
loss of generalities). Then, define its Lagrange polynomial l1 and compute the
moment with respect to sl1(s)2

l1(s) =

J1∏
i=2

s− si
s1 − si

, RV(sl1(s)2) =

J1∑
i=1

αisil1(si)
2 = α1s1 ≤ 0.

However, rewriting l1 = βTbJ1−1 ∈ RJ1−1[X], this is also

RV(sl1(s)2) = βTM4
Vβ

which contradicts the positive definiteness of M4
V. Then all the si > 0, and V ∈ Rmb .

Similarily, in the case J1 > J2, then the vector RV(sbN−1) (without the 0-th
moment) satisfies the conditions of the Hamburger problem, and one has

RV(sbN−1) =

J2∑
i=1

αibN−1(si).

By contradiction, suppose that one position s1 ≤ 0 is non-positive (the first without
loss of generalities). Then, the moment with repect to (sl1(s))2 reads

RV(s2l21(s)) = RV(s(sl1(s)2)) =

J2∑
i=1

αisil1(si)
2 = α1s1 ≤ 0.

But again, RV(s2l21(s)) = βTM4
Vβ which contradicts is positive definiteness. Then

all the si > 0, and

RV(sbN−1) =

J2∑
i=1

κisibN−1(si), κi =
αi
si
.
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Therefore V is represented by

V = κ0b(0) +

J2∑
i=1

κib(si),

where κ0 = RV(1)−
J2∑
i=1

κi. As M4
V is positive definite, then its submatrix

RV(b1b
T
1 ) =

 RV(1)
J2∑
i=1

κisi

J2∑
i=1

κisi
J2∑
i=1

κis
2
i


is positive definite. The coefficient

∑
αis

2
i on the diagonal is strictly positive. Using

a Cauchy-Schwartz inequality, the determinant of this matrix is positive if and only
if κ0 > 0. Therefore, there exists a positive discrete representing measure for V.

Remark 3. • For all considered sets of integration E, one has

Rb ⊂ Rmb .

– Indeed, for Hausdorff TMP, if M1
V and M2

V are positive definite, then
they are positive semi-definite.

– For Hamburger TMP, if M1
V is positive definite, then J = K + 1 and one

has M1
V = M2

V and 2J > Card(b).
– For Stieltjes TMP, if M1

V and M2
V are positive definite, then M3

V and M4
V

are positive definite and L = Card(b).
• This provides especially that Rmb contains the open cone Rb and is contained

into its closure Rcb. Especially, Rb is dense in Rmb which is dense in Rcb and

Rb = int (Rmb ) , Rcb = Rmb . (14)

• In the case of Hausdorff, Rmb = Rcb is closed. This holds not in the other two
cases, this can be exhibited by the following counterexample. Define

∀ε > 0, Vε = ε2b2(ε−1) ∈ Rmb2
.

Then at the limit

V0 := lim
ε→0

Vε = (0, 0, 1)T ∈ Rcb2
\Rmb2

.

Indeed, V0 provides a positive semi-definite moment matrices

RV0(b1b
T
1 ) =

(
0 0
0 1

)
, RV0

(
sb0b

T
0

)
=
(

0
)
,

then V0 ∈ Rcb2
in both cases of Hamburger and Stieltjes. However, nei-

ther (12c) nor (13g) is satisfied (V0 is not recursively generated), then V0 /∈
Rmb2

is not generated by a sum of Dirac measures in Hamburger and Stieltjes
cases.

2.4. Representation results on the boundary ∂Rb. For the construction of
the closure, we widely exploit the description of the boundary of the realizability
domain ([20]) presented through the following propositions.



10 TEDDY PICHARD

2.4.1. Representation of ∂Rb ∩ Rmb . First, a representation result for the vectors
of ∂Rb ∩Rmb is recalled.

Proposition 2. For all vector V ∈ ∂Rb ∩ Rmb , there exists a unique representing
measure for V. This measure is given by

γ =

J∑
i=1

αiδsi , (15)

where (αi, si)i=1,...,J ∈ (R∗+×E)J are pairs of strictly positive weights and distinct
positions in E and the number J is

J = min
j

(
rank(M j

V)
)
,

where the matrices M j
V are given either by (11), (12a) or (13) depending on the

considered problem.

This so-called atomic decomposition ([16]), in 1D, can be deduced as a corollary
of the truncated Riesz-Haviland theorem, see e.g. [54, 30, 31, 16, 18] or surveys in
[20, 37], or of Tchakaloff theorem, see e.g. [62, 6, 17, 37].

In the case of Hausdorff, this proposition is sufficient to describe all ∂Rb, since
∂Rb ⊂ Rmb . In the other two cases, this describes only a part of the boundary. This
part of the boundary is not exploited in the construction of the closures in the next
section, but its description is provided for completeness and for further discussions.

2.4.2. Representation of ∂Rb\Rmb . In these cases, for the rest ∂Rb\Rmb , we exploit
the closure relation (6e) to obtain a weaker representation result.

Proposition 3. • For all vector V ∈ Rcb, there exists a measure γε, and its
moments Vε, of the form

γε =

J∑
i=1

αεiδsεi , Vε =

∫
E

b(s)dγε(s) =

J∑
i=1

αεib(sεi) (16a)

where J = bN2 c + 1 and (αεi , s
ε
i)i=1,...,J ∈ (R∗+ × E)J are pairs of strictly

positive weights and distinct positions in E, depending on a parameter ε > 0,
such that

V = lim
ε→0

Vε. (16b)

• If V ∈ ∂Rb, then there exists a decomposition of the form (16) such that

lim
ε→0

αε1 = 0. (17)

• If V ∈ ∂Rb\Rmb , then there exists a decomposition of the form (16) such that

lim
ε→0

(αε1, |sε1|) = (0,+∞), lim
ε→0

αε1b(sε1) 6= 0RCard(b) . (18)

Proof. • One remarks that Rcb = Rmb , then any vector V ∈ Rcb is the limit of a
certain Vε ∈ Rmb when ε→ 0.
The existence of the (non-unique) representation (16a) for any point Vε ∈ Rmb
is proved in [16].
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• Witout loss of generality, let us order αε1 ≤ αε2 ≤ . . . αεJ . By contradiction,
suppose that lim

ε→0
αε1 > 0.

First, suppose that all si := lim
ε→0

sεi are different (si 6= sj) and bounded

(|si| < +∞). Using the linearity of the Riesz function

RVε =

J∑
i=1

αεiRb(sεi)
,

one easily verifies that all matrices (11-13) are positive definite at the limit
ε→ 0. Using Theorems 2.3, 2.4 and 2.5, then V ∈ Rb, therefore V /∈ ∂Rb.

Second, suppose that s0 := lim
ε→0

sε1 = lim
ε→0

sε2 (or any other sεi) are equal and

bounded. Then

V = lim
ε→0

(
αε1b(sε1) + αε2b(sε2) +

J∑
i=3

αεib(sεi)

)

= lim
ε→0

(αε1 + αε2)b(s0) + lim
ε→0

J∑
i=3

αεib(sεi)

= lim
ε→0

J∑
i=1

βεib(sεi)

with βε1 = 0, βε2 = αε1 + αε2 and βεi = αεi for i > 2, and we simply exploit this
other representation of V.

Third, suppose that |sε1| → +∞ (or any other sεi) is unbounded. As b = bN ,
if N > 1, then s2K ∈ Span(b) for K = bN2 c. Then, lim

ε→0
(sεi)

2K > 0 for all i

and lim
ε→0

(sε1)2K = +∞, then RV(s2K) = lim
ε→0

RVε(s2K) = +∞ is unbounded

and can not belong to ∂Rb. If N = 1, then the decomposition (16a) possesses
a unique atom which is also unbounded.

This three cases cover all the possibilities. Therefore, this contradicts that
lim
ε→0

αε1 > 0.

• Consider V ∈ ∂Rb\Rmb , then it has a representation of the form (16-17).
By contradiction, suppose that all such representations have no pair (αεi , s

ε
i)

satisfying (18). Then, one verifies again that
– If all lim

ε→0
|sεi | < +∞ and lim

ε→0
αεi < +∞ are bounded, then V ∈ Rmb

– If some αεi are unbounded or some |sεi | are unbounded, but not those
associated to lim

ε→0
αεi = 0, then V is unbounded.

These all contradict V /∈ ∂R\Rmb .
Finally, the case lim

ε→0
αε1b(sε1) = 0RCard(b) is rejected since it has no impact

on the moment vector V.

2.4.3. Discussion on the non-uniqueness of the representations in Rcb. Even though
any vector V ∈ ∂R ∩ Rmb has a unique representing measure (15) (in Rmb ), the
representation (16) (in Rcb) remains non unique. Furthermore, the representations
of the form (16) are not the only ones representing vectors of Rcb. One could for
instance construct ε dependent functions (in L1

N (E)+) which limit captures V ∈ Rcb.
Representation results as those of the last subsections are often exploited to con-

struct closure relations (see next section). Thus, the choice of the set in which such
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a representation is chosen is important, especially because it impacts the existence
and uniqueness of a representation on the boundary ∂R. Indeed, a discrete mea-
sure representation (in Rmb ) exists and is unique over ∂R∩Rmb but does not exists
over ∂R\Rmb , while the representation (16) (in Rcb) exists everywhere but is never
unique.

Example. Consider V = (1, 0, 1, 0, 1)T and E = R. One verifies that

V =
b4(+1) + b4(−1)

2
=

∫
R

b4(s)dγ(s) ∈ ∂Rb4 ∩Rmb4
, (19a)

γ =
δ1 + δ−1

2
,

is the unique representing measure for V. However, V is also represented e.g. by

V = lim
ε→0

b4(1) + b4(−1) + ε5b4(ε−1)

2
= lim
ε→0

∫
R

b4(s)dγε(s) ∈ Rcb, (19b)

γε =
δ1 + δ−1 + ε5δε−1

2
.

These two representations provide different closures, i.e. moment of order N+1 = 5.
Indeed, the fifth order moment of the unique representing measure γ from (19a) is
0, while the limit of the representation γε from (19b) when ε→ 0 would be 1

2 .
In the next section, we always choose the unique measure representation (15)

along the boundary ∂Rb ∩Rmb and avoid considering the boundary ∂Rb\Rmb .

In the case of Hausdorff, the positions sεi are bounded as E = [−1, 1]. Then,
in the representation (16), only the coefficients αεi may be unbounded. However,
if any αεi → +∞, then the limit V is unbounded. This implies that the boundary
∂R in that case is only represented by a measure, which was shown to be unique in
Proposition 2. This means that all representations (16) have the same measure (15)
for limit in that case.

Vectors V ∈ ∂Rb\Rmb can not be represented by a measure. However, they
remain at an arbitrarily small distance from a vector Vε represented by a sum
of Diracs. One could think of using such an aritrarily close representation. In
practice, this remains insufficient to construct closures over ∂Rb\Rmb as some of
these vectors can simply not have a bounded closure whatever representation is
used. This is illustrated in the next section.

For these reasons, the case of Hausdorff, easier to deal with, is mainly focused on
in the next sections, even if part of the present construction is general to all E ⊂ R.
The extension of this construction to such unbounded sets requires further tech-
niques discussed in the conslusive Section 5.3.2 the analysis of which is postponed
for future work.

3. Realizable closures in 1D. We present in this section a strategy to construct
a realizable closure for 1D problems. In the following section, we will focus on
moments over s ∈ [−1,+1] and compare such realizable closures to the linear PN
closure.

3.1. Computation of the closure: Decomposition of moment vectors. In
the following, we will assume that the collision operator is a simple linear function
of the unknown, and we will only focus on the construction of the flux vector F as
a function of a vector of moments f .
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3.1.1. Construction of the closure. The main idea to construct a closure, realizable
or not, is to reconstruct from a vector f a representing measure γ, i.e. satisfying∫

E

b(s)dγ(s) = f . (20)

Once this reconstruction γ is found, one simply construct the flux vector as the
moment flux associated to this representing measure γ, i.e. one defines

F(f) =

∫
E

sb(s)dγ(s),

where γ satisfies (20).
As we only consider monomial basis bN defined in (5), one observes that all but

the last coefficient of the flux F already belong to the vector f . In practice, we
denote κ the closure, i.e. this only unknown coefficient that can be defined as

κ(f) =

∫
E

sN+1dγ(s).

Definition 3.1. Consider a function κ : RN+1 → R.

• κ is a realizable closure if the function (IdRN+1 , κ) sends RbN into RbN+1
.

• κ is a m-realizable closure if it is a realizable closure and (IdRN+1 , κ) sends
RmbN into RmbN+1

.

This definition corresponds to defining κ from a positive integrable function, resp.
discrete measure, satisfying the moment constraints (20).

In order to obtain appropriate descriptions of certain physical phenomena, we
need to impose the value of the closure and its representing measure when the
moment vector correpsonds to the moment of specific measures. In practice, we
focus on two types of measures that we aim to retreive when reconstructing the
measure γ:

• some equilibrium function feq for the PDE (1). Then, when

f = Veq =

∫
E

b(s)feq(s)ds,

we aim to construct underlying measure γ and a closure such that

dγ(s) = feq(s)ds, κ =

∫
E

sN+1feq(s)ds.

• some purely anistropic measures, i.e. Dirac measures δsi in some locations si,
and potentially sums of such measures. Then, when

f = b(si),

we aim to construct underlying measure γ and a closure such that

dγ(s) = δsi(s), κ = sN+1
i .

Since δsi is the only positive measure representing b(si). This implies that all
realizable closures capture these purely anisotropic measure.

These two types of measures are sufficient to represent any vector in Rmb , and
therefore to constructm-closures. However, as discussed in Section 2.4, some vectors
of Rcb can not be represented by measures and are therefore rejected by the present
construction of a closure. One could think of using a representation (16) for vectors
in ∂Rb\Rmb . This would not necessarily provide a closure, because some vectors of
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∂Rb\Rmb have no representation of the form (16) with a bounded moment of order
N + 1.

Example. Consider E = R+, b(s) = b1(s) = (1, s)T and V = (0, 1)T .
The matrices M1

V = (0) ∈ R1×1 and M2
V = (1) ∈ R1×1 from (13) are symmetric

positive semi-definite, but V is not recursively generated (the 0-th moment is 0).
Therefore V ∈ ∂Rb\Rmb .
Now, consider a representation of the form (16), i.e. here

V = lim
ε→0

∫
R+

b(s)αεδsε(s),

where αε and sε are such that lim
ε→0

αε = 0 and lim
ε→0

αεsε = 1. The closure would be

given by

lim
ε→0

∫
E

s2αεδsε(s) = lim
ε→0

(αεsε)sε = +∞.

Indeed, αεsε is bounded by construction, while sε is not according to Proposition 3.

For this reason, the boundary ∂Rb\Rmb is always rejected for the construction of
a closure in the present paper. In the numerical applications below, we only focus on
the Hausdorff case for which ∂Rb\Rmb = ∅. The applications of the present closure
to unbounded sets requires further investigation which are discussed in conclusions.

3.1.2. Decomposition of the moment vector. The strategy for constructingm-realizable
closures consists in decomposing the known vector of moments V ∈ RmbN into dif-
ferent realizable parts

V =
∑
i

Vi with Vi ∈ RmbN ,

for which a m-realizable closure κi(Vi) is known, or can be computed. Then, one
simply define the closure

κ(V) =
∑
i

κi(Vi),

which is realizable since the realizability domains are convex cones, i.e. we construct
(Vi, κi) ∈ RmbN+1

then

∑
i

(Vi, κi(Vi)) =

(∑
i

Vi,
∑
i

κi(Vi)

)
= (V, κ(V)) ∈ RmbN+1

.

For such decompositions, we will exploit two types of vectors V ∈ RmbN for which
we know easily how to construct m-realizable closures. These are simply the ones
described in the previous paragraph that we aim to capture exactly:

• Realizable moments Veq ∈ RbN of some known given function feq ∈ L1
N (E)+

Veq =

∫
E

bN (s)feq(s)ds.

In practice, we chose a function feq corresponding to an equilibrium of the
PDE (1) we aim to solve. Here the designated closure of such a vector is
simply the N + 1-th moment of feq as this function is data

κeq =

∫
E

sN+1feq(s)ds.
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• Moments Vs ∈ ∂RbN ∩Rmb on the boundary of the realizability domain
represented by discrete measures. Using Proposition 2, there exists a unique
representing measure γs for Vs which is singular over E, i.e.

γs =

J∑
i=1

αiδsi ∈M(E), Vs =

∫
E

bN (s)dγs(s) =

J∑
i=1

αiδsi .

Thus, any m-realizable closure satisfies for such vector

κs(Vs) =

∫
E

sN+1dγs(s) =

J∑
i=1

αis
N+1
i . (21a)

In the following, we will focus on two m-realizable closures based on such decom-
position methods.

3.2. Kershaw KN closure for Hausdorff problem. For completeness, we recall
the construction of KN closure ([34, 46, 57]) for Hausdorff problem E = [−1,+1].
Decomposition of V: Here, we decompose a vector V ∈ RbN into two parts

V = αV1 + (1− α)V2, V1 = V = V2,

where the computation of α will be detailed below. The closure becomes

κKN (V) = ακ1(V) + (1− α)κ2(V),

and we use different closures κ1 for V1 and κ2 for V2.
Closures for V1 and V2: Both closures are constructed such that (Vi, κi) ∈ ∂RbN+1

are on the boudary of the realizability domain. In practice, using the notations (11-
13), we chose these closures κi(Vi) such that

M i
(Vi,κi)

is positive semi-definite and singular.

The numerical computation of these closures is detailed in Subsection 3.4 below.
Computation of κKN : Finally, the coefficients α ∈ [0, 1] in the convex combination
is chosen in order to recover the closure κeq of some given equilibrium state Veq,
i.e.

Veq =

∫ +1

−1

bN (s)feq(s)ds, κeq =

∫ +1

−1

sN+1feq(s)ds,

typically for the given function feq = 1. Thus α is defined by

κKN (Veq) = κeq ⇒ α =
κeq − κ2(Veq)

κ1(Veq)− κ2(Veq)
.

Remark 4. In practice, the Kershaw method recovers the exact value of the closure
κKN = κeq when f = Veq, but it does not retreive the exact value of the representing
measure dγKN (s) 6= feq(s)ds.

Representing measure γKN : In practice, with such a KN model, the kinetic distri-
bution f is approximated by a measure γKN of the form

γKN = γ1α+ γ2(1− α), γ1 =

J∑
i=1

αiδsi , γ2 =

2J∑
i=J+1

αiδsi , (22)

where γ1 and γ2 are the unique representing measure for (V, κ1) ∈ ∂RmbN+1
and

(V, κ2) ∈ ∂RmbN+1
. Following Proposition 2, the number of Diracs in this KN

representation can reach at most 2J = 2 min
i
rank(M i

V), i.e. 2K = N if N is even
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or 2K = N−1 if N is odd. Remark that the number of Diracs in this decomposition,
so-called atoms in [16, 18, 17], is not minimized.

A numerical method to compute the coefficient αi and the positions si is given
below in Section 3.5.2.

Remark 5. This construction only holds for moments over [−1,+1], because it
requires two extensions of a realizable moment vector of size N onto the boundary
of the realizability domain for moments of order N + 1. However such an extension
technique for Hamburger (E = R) or Stieltjes (E = R+) problems would provide a
unique closure κ since this coefficient appears only in one matrix through (12a) or
through (13).

3.3. Projective ΠN closure. The construction of the present projection closure,
afterward called ΠN closure for projection (PN being already taken for polynomial
closure), is based on a decomposition of any realizable vector into a regular part
Veq, i.e. moments of a given regular function

Veq =

∫
E

bN (s)feq(s)ds,

and a part Vs ∈ ∂Rb on the boundary of the realizability domain.
Decomposition of V: Here, we decompose

V = x̄Veq + Vs, (23)

and we construct the closure as

κΠN (V) = x̄(V)κeq + κs(V − x̄(V)Veq),

where κeq =
∫
E
sN+1feq(s)ds is a given value.

Computation of the closures: In practice, we follow two steps the computations of
which will be detailed in the next subsections:

1. Regular part: The closure of the regular part κeq is already known, only the
multiplicative coefficient x̄ needs to be computed. Find a maximum scalar
x̄ ≥ 0 s.t.

V − x̄Veq ∈ ∂Rb.

This part is computed in Subsection 3.4. In this paper, we will only focus on
the cases where this projection V − x̄Veq ∈ ∂Rb ∩ Rmb is represented by a
discrete measure. Of course, such a requirement only holds under condition
over V and Veq. This is discussed in Section 5.3.2.

2. Singular part: Compute a m-realizable closure for the singular part

κs(V − x̄(V)Veq).

This part is computed in Subsection 3.5. This construction of κs is restricted
to moments in V − x̄(V)Veq ∈ ∂Rb ∩Rmb .

Remark 6. This construction also generalizes out of the realizability domain. One
would only need to seek for a x̄ < 0. In the result below, we prove that there exists
a unique x̄ > 0 satisfying the second step. This only holds if V ∈ Rb is in the
interior of the realizability domain.
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Representation of the ΠN closure: Formally, the ΠN model corresponds to approx-
imate the kinetic distribution f by the discrete measure

γΠN (s) = x̄feq(s)ds+ γ0, γ0 =

J∑
i=1

αiδsi , (24)

where γ0 is the unique representing measure for V− x̄Veq ∈ ∂RbN ∩Rmb . Following
Proposition 2, the number of Diracs can reach at most J = min

i
rank(M i

V−x̄Veq
),

i.e. K − 1 = N
2 − 1 if N is even or K − 1 = N−1

2 − 1 if N is odd. This number
depends on the choice of feq but is inferior to the one in (22) for KN closure.

3.4. Projection on the boundary ∂Rb: Computation of the regular part.
From a chosen regular distribution feq(s), we construct a projection of any realizable
vector V ∈ Rmb onto the boundary of the realizability domain. This is simply
performed by removing from V the moments of feq. For this purpose, we define

Veq :=

∫
E

b(s)feq(s)ds.

We first exhibit the uniqueness of a decomposition of any realizable vector into
the sum of Veq ∈ Rb and a vector on the boundary Vs ∈ ∂Rb.

Proposition 4. For all vectors V ∈ Rcb, there exists a unique decomposition of the
form

V = x̄Veq + Vs. (25a)

where Vs ∈ ∂Rb and x̄ ∈ R+. These parameters are given by

M̃ i
V := (M i

Veq
)−1/2M i

V

(
(M i

Veq
)−1/2

)T
, (25b)

x̄ = min
i

minSp
(
M̃ i

V

)
, Vs = V − x̄Veq, (25c)

where M−1/2 is positive definite such that M−1/2M(M−1/2)T = I (use e.g. Cholesky
decomposition of M), and the matrices M i

V are defined in (11), (12a) or (13) de-
pending on the considered problem.

Proof. We perform the computations in the case of even order moment over [−1,+1]
but the method can be generalized to all the other cases. We first prove the existence
and uniqueness of the decomposition, then we compute x̄ and Vs.

Existence of the decomposition:
As Veq ∈ Rb, then its moment matrices M i

Veq
are symmetric positive definite.

If V ∈ ∂Rb, then V = Vs + x̄Veq with Vs = V ∈ ∂Rb and x̄ = 0 ∈ R+.
Otherwise, V ∈ Rb and its moment matrices (11) are positive definite. Defining

(see Fig. 1)
W(y) := V − yVeq,

we have W(0) = V ∈ Rb. One observes that

∀y > z :=
max
i

max(Sp(M i
V))

min
i

min(Sp(M i
Veq

))
, M i

W(y) is symmetric negative definite,

then especially −W(z) ∈ Rcb. As y 7→W(y) is a linear (continuous) function of y,
then there exists a point x̄ ∈]0, z] such that W(x̄) ∈ ∂Rb.

Uniqueness of the decomposition:
Suppose that there exists two points 0 ≤ x1 < x2 such that W(x1) ∈ ∂Rb and
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∂Rb Rb

×Veq

×V

−Veq

•W(x̄)

Figure 1. Schematic representation of a ray starting at a point
V ∈ Rb directed by −Veq and crossing ∂Rb in W(x̄).

W(x2) ∈ ∂Rb. By convexity of Rcb, we have W(x) ∈ Rcb for all x ∈ [x1, x2].
However,

W(x) = W(x2)(1− α) + W(x1)α

= W(x2) + α(x2 − x1)Veq,

with α ∈ [0, 1]. As α(x2 − x1) > 0, then W(x) is a positive combination of
W(x2) ∈ ∂Rb and of Veq ∈ Rb = int(Rcb), then W(x) ∈ Rb which contradicts
with W(x1) ∈ ∂Rb. Thus x̄ > 0 is unique.

Computation of x̄ and Vs:
Remark that M i

Veq
is symmetric positive definite, then invertible and we may de-

fine (M i
Veq

)−1/2 using its diagonalization. Based on the characterizations of Theo-

rems 2.3, 2.4 and 2.5, and on the construction (25b), we observe that

V ∈ Rcb ⇔ M i
V symmetric positive semi-definite

⇔ M̃ i
V symmetric positive semi-definite.

Then, exploiting the linearity of the Riesz functional, we obtain

M̃ i
W(y) = M̃ i

V − yI.

Through this formula, considering that M̃ i
W(x̄) is positive semi-definite and singular,

we obtain that

x̄ = min
i

minSp(M̃ i
V).

In all the following, the coefficient x̄ is defined as (25c) where (M i
Veq

)−1/2 is the

inverse of the Cholesky decomposition of M i
Veq

. Remark that since Veq ∈ Rb is

in the interior of the realizability domain, then the matrices M i
Veq

are symmetric

positive definite and their Cholesky decomposition exist.
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3.5. Computation of the closure on the boundary ∂Rb∩Rmb : Computation
of the singular part. Naively, one could compute all the coefficients αi and si,
and then reinject it in (21) to obtain κs. However, this would not be very efficient
from a numerical point of view. We focus here on the computation in ∂Rb ∩ Rmb
and its representing measure.

3.5.1. Computation of the closure κs in ∂Rb ∩Rmb . As we only look for one higher
order moment, it is cheaper to exploit the principle of flat extension proposed by [16,
20] (available in ∂Rb∩Rmb ), which was also implicitly exploited in the construction
of Kershaw KN closure ([34, 46, 57]). This consists in remarking that the set of
moments f− x̄feq is recursively generated, i.e. that it is generated by J < N Diracs.
If Vs is generated by J Diracs, so is the extended vector (Vs, κs) and therefore the
matrices M i

(Vs,κs)
are also singular. Remarking that the moment of order N + 1,

i.e. fN+1 = κs, appears only once in the matrix in the last diagonal entry. Then,
we may decompose:
Hausdorff even case N = 2K:

R(Vs,κs)((1 + s)bKbTK) =

(
RVs((1 + s)bK−1b

T
K−1) RVs((1 + s)sKbK−1)

RVs
((1 + s)sKbK−1)T RVs

(s2K) + κs

)
,

(26a)

R(Vs,κs)((1− s)bKbTK) =

(
RVs((1− s)bK−1b

T
K−1) RVs((1− s)sKbK−1)

RVs
((1− s)sKbK−1)T RVs

(s2K)− κs

)
.

(26b)

According to the previous decomposition, these matrices are singular and the last
column is in the Span of the others. This provides

κs =−RVs(s
2K) +RVs((1 + s)sKbK−1)TRVs((1 + s)bK−1b

T
K−1)+RVs((1 + s)sKbK−1)

(27a)

= RVs(s
2K)−RVs((1− s)sKbK−1)TRVs((1− s)bK−1b

T
K−1)+RVs((1− s)sKbK−1),

(27b)

where the superscript + refers to pseudo-inverse, and it can be computed by stan-
dard methods.
Hausdorff odd case N = 2K + 1:

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs

(bKbTK) RVs
(sK+1bK)

RVs
(sK+1bK)T κs

)
,

R(Vs,κs)((1− s2)bKbTK) =

(
RVs

((1− s2)bK−1b
T
K−1) RVs

((1− s2)sKbK−1)
RVs

((1− s2)sKbK−1)T RVs
(s2K)− κs

)
.

which leads to

κs = RVs(s
K+1bK)T RVs(bKbTK)+ RVs(s

K+1bK)

= RVs
(s2k)−RVs

((1− s2)sKbK−1)TRVs
((1− s2)bK−1b

T
K−1)+RVs

((1− s2)sKbK−1),

Hamburger even case N = 2K: The vector

R(Vs,κs)(s
K+1bTK) ∈ Im

(
RVs(bKbTK)

)
,

where the matrix on the RHS is singular. This can be rewritten(
RVs(s

K+1bK−1)T , κs
)T ∈ Im( RVs

(bK−1b
T
K−1) RVs

(sKbK−1)
RVs(s

KbK−1)T RVs(s
2K)

)
.
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This leads to

κs = RVs
(sKbK−1)TRVs

(bK−1b
T
K−1)+RVs

(sK+1bK−1)

Hamburger odd case N = 2K + 1: The matrix

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs(bKbTK) RVs(s

K+1bK)
RVs

(sK+1bK)T κs

)
.

is singular. This leads to

κs = RVs
(sK+1bK)TRVs

(bKbTK)+RVs
(sK+1bK).

Stieltjes even case N = 2K: The matrix

R(Vs,κs)(sbKbTK) =

(
RVs(sbK−1b

T
K−1) RVs(s

K+1bK−1)
RVs

(sK+1bK−1)T κs

)
.

is singular. This leads to

κs = RVs
(sK+1bK−1)TRVs

(sbK−1b
T
K−1)+RVs

(sK+1bK−1).

Stieltjes odd case N = 2K + 1: The matrix

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs

(bKbTK) RVs
(sK+1bK)

RVs
(sK+1bK)T κs

)
.

is singular. This leads to

κs = RVs(s
K+1bK)TRVs(bKbTK)+RVs(s

K+1bK).

Remark 7. These computations can be the source of roudoff errors which can be
amplified. In order to smooth them out, we propose the following tricks.

• These computations are all based on the computations of pseudo-inverses M+

of matrices M which are expected to be singular by construction. In practice,
we simply use a basic QR decomposition for such pseudo-inverse. However, as
roundoff errors may occure in the construction of those matrices, we filter the
lowest eigenvalues of R in the QR decomposition below a certain threshold
(10−10 maxi,j Ri,j in the applications below).

• Similarily, in the Hausdorff case, the closure κs is obtained equivalently by
two formula (27), in the applications below, again to smooth roudoff errors,
we use a convex combinations of the two definitions with a parameter based
on the determinant of the non-zero part of the R in the QR decompositions
of RVs((1± s)bK−1b

T
K−1).

3.5.2. Computation of the representing measure γs in ∂Rb∩Rmb . Even if its compu-
tation is more expensive, it remains possible to compute numerically the coefficients
αi and the positions si in the definition of the closue. These computations are also
exploited in the numerical experiments in Section 4.
Computation of the positions si. One first needs to compute the positions si ∈ E.
For this purpose, we exploit again the singularity of one of the matrices M i

Vs
. We

know that these matrices are symmetric positive semi-definite and one is singular.
Furthermore, Vs is a non-negative sum of b(si) for some si ∈ E. Let us write X
the eigenvector associated to the eigenvalue zero of M i

Vs
, i.e.

M i
Vs

X = 0bK .

Since Vs is the moment vector of a (singular) measure γs, we have

XTM i
Vs

X =

∫
E

pi(s)
(
b(s)TX

)2
dγ(s) = 0,
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where pi are the polynomial 1, (1±s), or (1−s2) depending on the case considered,
associated to the matrix M i

V, i.e. from formula (11-13). Especially, pi is non-

negative on E. Since γ is non-negative and p(s)
(
b(s)TX

)2
also, this implies that

the locations si of the Diracs composing γ are the roots of (bTX)p. As this holds
for all eigenvectors X associated to zero, we obtain

Supp(γ) =
⋂
i

⋂
MVis

X=0

Z (pbX) , (28)

where Supp(γ) is the support of the measure γ, and Z(p) is the zero set of p. This
all rewrites:

Hausdorff even case N = 2K: • If RVs(bKbTK) is singular,

∀X ∈ RN s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs
((1− s2)bK−1b

T
K−1) is singular,

∀X ∈ RK s.t. RVs((1−s2)bK−1b
T
K−1)X = 0RK−1 then Supp(γ) ⊂ Z((1−s2)bK−1X).

Hausdorff odd case N = 2K + 1: • If RVs((1− s)bKbTK) is singular,

∀X ∈ RK s.t. RVs
((1−s)bKbTK)X = 0RK then Supp(γ) ⊂ Z((1−s)bKX).

• If RVs((1 + s)bKbTK) is singular,

∀X ∈ RK s.t. RVs
((1+s)bKbTK)X = 0RK then Supp(γ) ⊂ Z((1+s)bKX).

Hamburger even case N = 2K: • If RVs
(bKbTK) is singular,

∀X ∈ RK s.t. RVs(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

Hamburger odd case N = 2K + 1: • If RVs
(bKbTK) is singular,

∀X ∈ RK s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

Stieltjes even case N = 2K: • If RVs(bKbTK) is singular,

∀X ∈ RK s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs(sbK−1b
T
K−1) is singular,

∀X ∈ RK−1 s.t. RVs(sbK−1b
T
K−1)X = 0RK−1 then Supp(γ) ⊂ Z(sbK−1X).

Stieltjes odd case N = 2K + 1: • If RVs
(bKbTK) is singular,

∀X ∈ RK s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs(sbKbTK) is singular,

∀X ∈ RK s.t. RVs
(sbKbTK)X = 0RK then Supp(γ) ⊂ Z(sbKX).

Both the eigenvectors X and the roots of these polynomials can be computed
with standard techniques.
Computation of the coefficients αi. Finally, in order to retreive the coefficients αi

in front of the Diracs, we use the fact that γs =
J∑
i=1

αiδsi realize the moments

Vs. Knowing the locations si, we simply compute the first J moments of such
distribution to obtain

RVs
(bJ) =

J∑
i=1

αibJ(si).

This is a simple linear system that we can invert to obtain the coefficients αi.
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4. Numerical test for the radiative transfer equation. We consider here the
equation (1) with s ∈ [−1,+1] and its moment system (3a) and a collision operator
of the form

C(f) = K

(
1

2

∫ +1

−1

f(s)ds− f
)
, C(f) = K

(
Rf (1)

2
Viso − f

)
, Vi

iso =

∫ +1

−1

sids.

The equation is discretized with the following scheme

fn+1
i − fni

∆t
+
Fn
i+ 1

2

−Fn
i− 1

2

∆x
= K

(
Rfni

(1)

2
Viso − fn+1

i

)
, (29a)

Fi+ 1
2

=
1

2

[
F(fni+1) + F(fni )− (fni+1 − fni )

]
. (29b)

One easily proves using standard techniques (see e.g. [47, 4, 56, 50, 36]) that this
schemes preserves realizability as the solution fn+1

i is a linear combination with
positive coefficients of realizable vectors of the form f or f ± F(f). The consis-
tence with (3a) is classical. The stability is however more complicated to study as
it relies on the fact that the eigevalues of the Jacobian of the fluxes are smaller
than one, i.e. that Sp(∇fF(f)) ⊂ [−1, 1], which is commonly expected in radiative
transfer, though this remains to verify with the present ΠN closure. This analysis
is postponed to futur work.

We test and compare the closure presented in the previous section with the
PN polynomial approximation and the KN closure (see Section 3.2 and [34, 46,
57]) on four test cases. The first one is simply meant to study quantitatively the
accuracy of the methods. The next two are known to be difficult to model with
moment approaches as they require good approximation of both isotropic and purely
anisotropic regimes. The methods are compared qualitatively on these two cases.
The last test case is a rather elementary test that involving a small perturbation
of an equilibrium function. Such a distribution is well-captured only by the ΠN

models.
For the first two test cases, the obtained solution is compared to a reference

which is computed using the following method. Remarking that the kinetic orig-
inal equation (1) is linear, we decompose its solution f into two parts fn and fs
respectively solution of

∂tfn + s∂xfn = −Kfn, (30a)

fn(x) = f(x) on the boundaries x = 0 and x = L, (30b)

∂tfs + s∂xfs = K

(
1

2

∫ +1

−1

fs(s) + fn(s)ds− fs
)
, (30c)

fs(x) = 0 on the boundaries x = 0 and x = L. (30d)

Physically, fn and fs correspond to the distribution of particles that have never
scattered in the domain and to the ones that have scattered at least once. The
first equation is solved analytically, while the second is solved using a P24 moment
method and the scheme (29). This decomposition is commonly more accurate than
discretizing directly (1) because fn is analytical and fs is smooth enough with re-
spect to s such that basic moment approximation is accurate enough. This technique
was exploited e.g. for the developpement of the codes [41, 63, 32, 8, 7, 14, 13, 49].

For the third test case, the distribution fn of non-scattered particles is enhanced
by the initial condition which is thus a Dirac in time and position. Even if this
distribution can be computed, it requires a special treatement when introduced in
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the second equation. Instead, we compare to the P24 solution applied directly to
the full equation (1). We found experimentally this solution smooth and accurate
enough for the present problem.

The last test case corresponds to a kinetic which has an analytical solution, and
therefore needs no additional numerical treatement.

The simulations are performed in Python using standart numpy.linalg functions
([48]), i.e. qr multiply for the pseudo-inverse and eigh for the minimum eigvenvalue.
The advantages of the present construction relies not in the numerical efficiency, but
in the generality of models it can be applied to. Here, no particular code optimiza-
tion was performed for any of the methods to accelerate the simulations. Especially,
the KN and ΠN closures are computed by passing from vector storage of moments
to matrices (26) storage, instead of computing compressed closure formulae at fixed
N as in [46, 57]. Such a implementation makes those simulations much longer and
the KN , resp. ΠN , simulations below are around nine times, resp. thirteen times,
longer the PN simulations for the same moment order N .

4.1. Simple beam test. The beam is modeled by giving as boundary conditions
the moments of

f(t, x = 0) = 1012b(1) exp(−10t).

The initial condition is set to

f(t = 0, x) = 0RCard(b) .

Remark that numerical simulations using realizable closures, typically MN , com-
monly require realizable initial and boundary conditions in the sense of L1(E)+

functions, i.e. in Rb. Here, this is not necessary and those are chosen on the
boundary ∂Rb.

We fix a spatial domain [0, L = 1] meshed with 101 cells, the collision parameter
is fixed at K = 6 low enough to preserve an anisotropic distribution in the domain,
but sufficiently large such that the discontinuity due to the propagation of non-
scattered particles fn in (30) is smoothed down. Such discontinuities may affect the
convergence of the method with respect to the number N of moments. The final
time Tmax = 0.8 is chosen such that the beam has not yet reach the other end at
final time. The time step is computed from the fixed Courant number at ∆t

∆x = 0.95.
The moments of order 0 and 1 obtained at final time with Π7, K7, P7 and the

reference solution of (30) (first equation solved analytically, second one solved with
P24) are plotted on Fig. 2 as an indication of the expected solution. The discrete
l1, l2 and l∞ errors of the f0 component compared to the reference solution are
plotted as a function of N on Fig. 3.

On this simple test case, the realizable KN and ΠN methods provides much more
accurate results. This is expected since realizable closures captures perfectly Dirac
distributions, while polynomial approximations cannot. And the solution of the
present problem (1) or equivalently of (30) is the sum of the propagation of a Dirac
distribution fn with a regular one fs.

One observes convergence with respect to N in discrete l1 and l2 norm for the
KN and ΠN models. This convergence is faster than for the PN method which is
already exponential. The discrete l∞ error cannot tend to zero on this test because
of the discontinuity due to the propagation of the front of fn.

Qualitatively, the moment results are similar for both odd and even order mo-
ment methods. Though, quantitatively, one observes a small difference of precision
between the odd and even order ΠN methods. Both methods converge in discrete l1
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Figure 2. Moments of order 0 (left) and 1 (right) obtained with
P7, K7, Π7 and reference solution for the simple beam test case.
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Figure 3. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference solution
for the PN , KN and ΠN as a function of N for the simple beam
test case.

and l2 and l∞ norms (the solution being smooth enough for that), but the odd order
ones are more accurate. These discrepencies are due to the numerical methods used
for the computation of the closure for several reasons which are mainly related to
the moment matrices RV((1± s)b⊗b), RV((1− s2)b⊗b) and RV(b⊗b) that we
exploit for the construction of ΠN closure:

• The matrices to pseudo-invert have a different size between odd and even
orders.

• Some moment matrices RV((1±s)b⊗b), RV((1−s2)b⊗b) and RV(b⊗b) are
expected to be singular. We may expect for this test case that the moment
solution in most of the cells to be close to the moment of a Dirac peak in
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s = +1. For this reason, RV((1 − s)b ⊗ b) should have a smaller dimension
than the other matrices (due to the position of the Dirac). Thus, the numerical
errors producted during the computations of the different moment matrices
may affect differently the QR algorithm used.

• Similarily, the formula (26) and (27) are simply different between odd and
even orders and this may affect differently the numerical accuracy.

4.2. Double beam test. This test case ([28, 51, 50]) consists in having two beams
of particles cross each other. As beams are used, purely anisotrpic distribution
need to be well-modeled by the approach. Furthermore, in the mixing region, the
distribution is the sum of two anisotropic distribution, and low order approaches
(first order) are insufficient to model such distributions.

The two beams are modeled by giving as boundary conditions the moments of
Diracs

f(t, x = 0) = 1012b(+1) exp(−20t),

f(t, x = L) = 1012b(−1) exp(−20t),

Again the initial condition is fixed at

f(t = 0, x) = 0RCard(b) .

We fix a spatial domain [0, L = 2] meshed with 201 cells, the collision parameter
is again fixed at K = 6. The final time Tmax = 1.5 is chosen such that the beam
emerging from one end has not reached the other end at final time but they have
crossed each others in the center region. The time step is computed from the fixed
Courant number at ∆t

∆x = 0.95.
The moments of order 0 and 1 obtained at final time with ΠN , KN and PN for

N = 2, 3, 6, 7 (even and odd together) are plotted on Fig. 4. The results with the
reference solution of (30) (sum of resp. analytical and P24 solutions) are also given
as reference. The discrete l1, l2 and l∞ errors on the 0-th moment compared to this
reference of PN , ΠN and KN models are plotted as a function of N on Fig. 5.

On this test case, the realizable closures are again more accurate than the poly-
nomial PN closure. This is expected for the same reason as in the previous case.
Especially the kinetic distribution in the middle region is composed of two beams
of opposite directions. Such distributions are poorly approximated by polynomials,
which oscillate around the solution, or by low order moment methods, while high
order realizable closures capture them perfectly. There remains some differences
between ΠN and KN . Mainly, the ΠN models present a small bump, alternatively
positive and negative, in the middle of the domain in the 0-th moment plot. This
bump is characteristic of the moment approximation of double-beam distributions.

As in the previous case, all the models converge with N to the desired solution.
Though, the final time Tmax is higher than in the previous case, and the two beams
cross each others. Such problems are known to be difficult to model with moment
approaches and we observe less regular convergence results with respect to N .

In order to study the mix of the two beams in the middle region, the measures
γ representing the moments f(Tmax, x = L/2) with the different models are repre-
sented on Fig. 6. These measures are given by (22) for KN , (24) for ΠN and by
a basic polynomial reconstruction for PN . These are compared to reconstruction
obtained with the reference solution given by the sum of the analytical solution
of (30a) (here composed of two Diracs of directions s = ±1) and of the P24 solution
of (30c). For KN and ΠN , these representing measures are composed of a regular
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Figure 4. Moments of order 0 (left) and 1 (right) obtained with
PN , KN , ΠN for N = 2 (first line), N = 3 (second line), N = 6
(third line), N = 7 (fourth line) and reference solution for the
double beam test case.

part and of a sum of Diracs. The Diracs are represented by a vertical segment of
length α, the coefficient in front of the Diracs, and located in s, the position of the
Dirac.

Every measure γ is symmetric with respect to s = 0 which is expected from
the x-symmetry of the problem. For this particular problem, at the very location
x = L/2, the PN polynomial approximation is positive. As expected, the represent-
ing measures with ΠN models is composed of less Diracs than for the KN model.
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Figure 5. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference solution
for the PN , KN and ΠN as a function of N for the double beam
test case.

Furthermore, these Dirac peaks have a lower amplitude than with KN . The number
of Dirac peaks raises with N for the KN models, while they seem to remain two for
the ΠN models. However, their positions and amplitude seem to oscillate around a
stable value near the position of the maximum of the reference distribution. Simi-
larily, the constant value x̄ seems to stabilize below the mean value of the reference
such that the mass of the two distributions, i.e. f0, are close.

Comparing the results with the two realizable closures KN and ΠN , we have a
better qualitative and quantitative accuracy with KN models. This can also be
interpreted from the representing measures. On this test case, the expected solu-
tion is supposed to be the superposition of two beams located around s = ±1. The
KN representing measures naturally captures purely anisotropic measures, and even
enhanced some, as it is constructed from the sum of (a priori an oversestimated
number of) Dirac peaks. On the contrary, the ΠN construction tends to overesti-
mate the isotropic part of the underlying representing measure as x̄ is maximized.
This results in an overestimation of the diffusion effects in s, and thus the appear-
ance of this bump in the center region. However, there remain some flexibility in
these model, especially in the choice of the equilibrium function feq the models aim
to capture. Studying alternative choices of such equilibrium functions is part of
outlooks.

4.3. Point source test. This test case ([12, 25, 28]) is a 1D version of the line
source problem. It consists in defining an isotropic source of particles in the middle
of a domain at initial time and letting it spread in all directions. In this test,
anisotropic distributions are enhanced from an isotropic one because, using a small
collision parameter K = 1, the distribution tends to an anisotropic distribution
pointed away from the center.
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Figure 6. Representation of the measures representing the vector
f(x = L/2) with PN , KN and ΠN models with N = 2 (top left),
3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left), 7
(bottom right) for the double beam test case.

The final time Tmax = 0.5 is again chosen such that no particles have reach a
boundary. In practice, we use as boundary conditions the moments of a realizable
very small distribution

f(t, x = 0) = 0RCard(b) , f(t, x = L) = 0RCard(b) ,

while the initial condition is fixed as

f(t = 0, x) = 1012δL/2(x)Viso,

i.e. a large isotropic distribution in the center of the domain.
The moments of order 0 and 1 obtained at final time with ΠN , KN and PN for

N = 2, 3, 6, 7 (even and odd together) are plotted on Fig. 7. The results with a P24

model are also given as a high order reference. The discrete l1, l2 and l∞ errors
on the 0-th moment compared to the most refined solution P24 of PN , ΠN and KN

models are plotted as a function of N on Fig. 8.
Again, we observe convergence with respect to N toward the desired solution.

However, we see rather different phenomena compared to the last test case. Here,
the accuracy of ΠN method is lower than the others, even than the polynomial PN
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Figure 7. Moments of order 0 (left) and 1 (right) obtained with
PN , KN , ΠN for N = 2 (first line), N = 3 (second line), N = 6
(third line), N = 7 (fourth line) and a reference P24 solution for
the point source test case.

one. Both realizable closures KN and ΠN , as well PN closure, present oscillations
around the reference solution. The quantity of these oscillations raise with N but
dicrease in amplitude. Their amplitudes are higher with ΠN approximation.

As for the last test case, in order to study this phenomenum, we plot on Fig. 9 the
measures representing the moments f(Tmax, x = L/2) in the middle of the domain,
where the source was at initial time. For this test case, even though the initial
condition isotropic in x = L/2, the analytical solution of (30a) turns into a beam



30 TEDDY PICHARD

2 3 4 5 6 7
N

109

1010

er
ro

r l
1

PN
KN

ΠN

2 3 4 5 6 7
N

109

1010

er
ro

r l
1

PN
KN

ΠN

2 3 4 5 6 7
N

1010

er
ro

r l
∞

PN
KN

ΠN

Figure 8. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference P24 sim-
ulation for the PN , KN and ΠN as a function of N for the point
source test case.

distribution of direction (L/2− x)/t at positive times. Thus, in x = L/2, this is a
Dirac in s = 0.

Again, the measure are all symmetric with respect to s = 0. However, for this
test case, the PN approximation is no more positive and have large amplitudes.
Again the ΠN measures possess less Diracs than KN ones and those are located
closer to the center s = 0 (as for the reference distribution) than with KN . The
valus of x̄ again stabilizes below the mean value of the reference distribution. At
this local level, the ΠN distribution seems closer to the reference solution, while it
is not at the moment level on Fig. 7.

Again, we may interprete the difference of accuracy of the models from their
representing measures. On this test case as in the previous one, we expect the
solution at one location to be an accumulation of beams, i.e. the initial one emerging
from the middle of the domain, and secondary ones created by collisional effects.
Such distribution are better captured by an accumulation of Diracs such as the one
used with KN , and less by isotropic distribution such as the one maximized with
ΠN model. Here, we exploited the most classical equilibrium function feq, though
a better understanding of the expected solution could lead to use a better adapted
function in the definition of KN and ΠN models.

One may observe also a very small negative amplitude of two Diracs (symmetric)
in the K7 representation. These negative values are due to the numerical approx-
imation of the position of ∂Rb. In practice, the moment matrix associated to K7

closure should be singular (i.e. on the boundary of ∂Rb), while round-off errors may
prevent such matrices to have exactly 0 as eigenvalues. In our computations, we
chose to filter away the smallest eigenvalues of those moment matrices, i.e. the ones
below a threshold of 10−4Rf (1). This seems sufficient to have decent simulation
results, though some small negative value may appear in the representing measures
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Figure 9. Representation of the measures representing the vector
f(x = L/2) with PN , KN and ΠN models for N = 2 (top left),
3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left), 7
(bottom right) for the point source test case.

of the method. Remark although that the closure remains well-defined and it affects
not the accuracy of the simulation.

4.4. Riemann problem with a small perturbation of the equilibrium.
While the previous tests are commonly performed to study various moment models,
this last one is meant to exhibit the advantages of the ΠN models. It consists of a
Riemann problem given by the initial conditions by

f(t = 0, x) = 1012 [20Viso + 0.5b(1)1R−(x− L/2)] ,

and boundary conditions

f(t, x = 0) = 1012 [20Viso + 0.5b(+1)] , f(t, x = L) = 1012 × 20Viso.

One remarks that the initial condition corresponds to the moments 20Viso of the
equilibrium function 20feq slightly perturbed by a beam distribution for 0.5δ1(s)
for all x < L/2.
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The spatial domain is of size L = 2 meshed with 201 cells. The final time is
chosen to be Tmax = 0.8 such that the beam b(+1) on the left side of the interface
has not yet reach the boundary at the end of the simulation. This test case is
collisionless K = 0 such that the solution to (1) is analytical, it yields

f(t, x, s) = 1012 [20 + 0.5δ1(s)1R−(x− t)] .
The moments of order 0 and 1 obtained at final time with ΠN , KN and PN for
N = 2, 3, 6, 7 (even and odd together) are plotted on Fig. 10. The moments of
the analytical solution are also plotted. The exact solution of this PDE is a wave
propargating at velocity 1. The distribution at x = L/2 is represented on Fig. 11.
The solution obtained with the ΠN models even at vey low order N = 2 are on top
of the analytical solution. The amplitude and the velocity of the discontinuity is
perfectly modeled with ΠN approximations. This can be expected for this test case
as this solution is one of those ΠN distributions. It is indeed a positive combination
of the equilibrium function and a Dirac.

The solutions obtained with PN and KN models are not as accurate. They do not
capture the right location and amplitude of the analytical wave, and furthermore
create artificial ones. Indeed, at each N , one solves an hyperbolic system of N + 1
equations. The initial discontinuity creates N + 1 waves with different amplitudes
and velocities and none of them corresponds to the exact one. The wave structure
of the ΠN solution is briefly discussed in Section 5.2 below, but its complete analysis
is postponed to futur study. Note that the fluctuations in those plots actually have
a small amplitude, it is around 1% of the mean f0, i.e. max f0 ≈ 4.07 × 1013

and min f0 ≈ 4.03 × 1013. Quantitatively, the relative error is not so large, but
qualitatively, PN and KN models are not able to capture the propagation of such
a small perturbation while ΠN models are.

5. Conclusing discussions and perspectives. We have presented a method
based on the study of the realizability domain to construct realizable closures for
moment models over 1D domains. This method consists in projecting a realizable
vector on the boundary of the realizability domain along the direction of a given
realizable vector. The numerical computation of the closure relies on basic numer-
ical techniques: one Cholesky decomposition, the computations of eigenvalues of
symmetric positive semi-definite matrices and one pseudo-inverse. However, several
aspects of the construction and of the analysis of method are still missing. We list
here some that are left as perspectives.

5.1. Closure for multi-D integration domain. The projection techniques pre-
sented in this paper entirely depend on the knowledge of the position of the bound-
ary of the realizability domain. If this boundary is well known and characterized for
moments in 1D, this remains a difficult question for moment over multi-D domains,
typically on the unit sphere S2 or on R3 for the present applications.

Similar projection techniques were already exploited for the construction of ap-
proximations of the second order entropy-based M2 closure in 3D in [51, 40, 55]
over S2. For moments up to order 2, the associated realizability domain has been
characterized ([34]). However, those constructions are only valid inside the realiz-
ability domain and on its boundary. Especially, they are based on the computation
of some parameters characterizing the distance to the boundary, and which can not
be generalized out of Rcb2

. This non-linear realizability constraint on the numerical
solution also affects the robustness of the numerical method. This holds when using
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Figure 10. Moments of order 0 (left) and 1 (right) obtained with
PN , KN , ΠN for N = 2 (first line), N = 3 (second line), N = 6
(third line), N = 7 (fourth line) and those of the analytical solution
for the Riemann problem.

basic first order schemes, such as (29), to the moment system. It affects even more
the robustness of a code when using high order numerical schemes, which generally
require a particular treatement to preserve realizability (see e.g. [28, 5, 58]).

The present construction remains valid out of the realizability domain and can
therefore be exploited to extend the 3D second order closures [51, 40, 55] out of Rcb.
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Figure 11. Representation of the measures representing the vec-
tor f(x = L/2) with PN , KN and ΠN models for N = 2 (top left),
3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left), 7
(bottom right) for the Riemann problem.

5.2. Hyperbolicity and entropy decay. Only the realizability of the present
closure was studied here. However, among the main desirable properties expected
from a moment closure, one should list hyperbolicity of the resulting moment system
of equation, i.e. that the Jacobian of the flux F needs to be diagonalizable in R; and
entropy decay through this model, i.e. the existence of a convex function h that is
dissipated through the the moment system (3a).

From the present construction, it is unclear if both of these properties are satis-
fied by our approach. These two properties are obtained jointly in the construction
of the entropy-based MN models. For such a closure, the representing measure γ
is constructed by minimizing an entropy η ([43, 9, 10, 11, 60, 33, 38]) under the
constraint of satisfying the moments (and potentially of being positive [27]). This
reconstruction is known to be of the form η∗′(λ.b(s))ds where η∗ is the Legendre
dual of η and λ are Lagrange multipliers. The resulting system is symmetric hy-
perbolic ([24]) and dissipates the entropy η.
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The KN closure was shown to be hyperbolic for low order N in [46, 47, 57] by
straight computations of the Jacobian of the flux. The present ΠN construction is
a priori not based on an entropy minimization. However, the representing measure
γ behind ΠN closure is constructed to minimize the distance, in a certain measure
sense, to the chosen equilibrium function feq(s)ds. In our computations, this results
in maximizing x̄ in (23).

Furthermore, the present approach was only tested on a simple radiative transfer
equation. Experimentally, such problems over s ∈ [−1,+1] present less stiffness
than problems over non-bounded domains s ∈ R or s ∈ R+. For instance, one
typically requires the bounds on Sp(∇f (F(f)) to construct stable numerical scheme
for (3a). If those bounds are highly expected to be ±1 for moments over s ∈ [−1,+1]
(this holds for most of the reasonable closures), they are unknown for moments on
unbounded domains.

5.3. Solution-dependent equilibrium functions.

5.3.1. Physical equilibrium. For application in radiative transfer, one expects the
solution to relax toward an equilibrium represented by an isotropic distribution.
This choice is neither realistic for moments on unbounded domains, nor possible
since such a constant function is not integrable. One more realistic choice would
be to define the equilibrium function from a minimum-entropy solution, typically a
Maxwellian. However, such a Maxwellian is defined from the first moments. Such
a choice of solution-dependent equilibrium function would not affect the present
construction of the closure. It could be interpreted as a realizable correction of low
order moment method exploiting higher order moments.

5.3.2. Extension to unbounded and multi-D sets of integration. Having the equlib-
rium Veq depend on the unknown V could also be used to extend the present
construction to unbounded sets E = R or R+ and to multi-D problems E = S2.
Indeed, the main difficulty in these problems relies inthe lack of representation along
the boundary ∂Rb in the general case or just in the construction of such represen-
tation. Such construction is straightforward along ∂Rb ∩ Rmb as such vectors are
uniquely represented by a discrete measure which can be fully computed (or par-
tially to obtain only the closure) using basic linear algebra techniques. Projections
of any V ∈ Rb toward a fixed Veq can not always fall onto ∂Rb ∩ Rmb . However,
one could find an appropriate function Veq of V such that the projection to always
fall onto such a desirable part of the boundary. Such objective equilibrium function
should then capture the physical equilibrium and be such that the projection always
point toward ∂Rb ∩Rmb .

REFERENCES

[1] N. I. Akhiezer. The classical moment problem. Edinburgh : Oliver & Boyd, 1965.
[2] N. I. Akhiezer and M. G. Krein Some questions in the theory of moments. AMS Trans. Math.

Monographs : Vol. 2, 1962.
[3] G. Alldredge and F. Schneider. A realizability-preserving discontinuous galerkin scheme for

entropy-based moment closures for linear kinetic equations in one space dimension. J. Comput.

Phys., 295:665–684, 2015.
[4] G. W. Alldredge. Optimization Techniques for Entropy-Based Moment Models of Linear

Transport. PhD thesis, University of Maryland, 2012.

[5] G. W. Alldredge, C. D. Hauck, and A. L. Tits. High-order entropy-based closures for linear
transport in slab geometry II: A computational study of the optimization problem. SIAM J.

Sci. Comput., 34(4):361–391, 2012.



36 TEDDY PICHARD

[6] C. Bayer and J. Teichmann. The proof of Tchakaloff’s theorem. arXiv:0502473, pages 1–6,
2005.

[7] G. Birindelli. Modèle entropique pour le calcul de dose en radiothérapie externe et curi-
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Nicoläı, E. d’Humières, M. Frank, and V. Tikhonchuk. Deterministic model for the transport
of energetic particles. Application in the electron radiotherapy. Phys. Medica, 31(8):912–921,

2016.

[15] S. Chandrasekhar. Radiative transfer. Dover publications, 1960.
[16] R. Curto and L. Fialkow. Recursiveness, positivity, and truncated moment problem. Houston

j. Math., 17(4):603–635, 1991.

[17] R. Curto and L. Fialkow. A duality proof of Tchakaloff’s theorem. J. Math. Anal. Appl.,
269:519–532, 2002.

[18] R. Curto and L. Fialkow. An analogue of the Riesz-Haviland theorem for the truncated
moment problem. J. Functional Analysis, 255:2709–2731, 2008.

[19] B. Dubroca and J.-L. Feugeas. Hiérarchie des modèles aux moments pour le transfert radiatif.
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