A. Pombo and N. Dillon, Three-dimensional genome architecture: Players and mechanisms, Nat. Rev. Mol. Cell Biol, vol.16, pp.245-257, 2015.

S. F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen, Biomolecular condensates: Organizers of cellular biochemistry, Nat. Rev. Mol. Cell Biol, vol.18, pp.285-298, 2017.

S. Alberti, Phase separation in biology, Curr. Biol, vol.27, 2017.

A. A. Hyman, C. A. Weber, and F. Julicher, Liquid-liquid phase separation in biology, Annu. Rev. Cell Dev. Biol, vol.30, pp.39-58, 2014.

S. Alberti, A. Gladfelter, and T. Mittag, Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates, Cell, vol.176, pp.419-434, 2019.

M. Mir, W. Bickmore, E. E. Furlong, and G. Narlikar, Chromatin topology, condensates and gene regulation: Shifting paradigms or just a phase? Development, vol.146, 2019.

M. Boehning, C. Dugast-darzacq, M. Rankovic, A. S. Hansen, T. Yu et al., RNA polymerase II clustering through carboxy-terminal domain phase separation, Nat. Struct. Mol. Biol, vol.25, pp.833-840, 2018.

S. Chong, C. Dugast-darzacq, Z. Liu, P. Dong, G. M. Dailey et al., Imaging dynamic and selective low-complexity domain interactions that control gene transcription, Science, vol.361, 2018.

F. Court, J. Miro, C. Braem, M. N. Lelay-taha, A. Brisebarre et al., Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization, Genome Biol, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193487

V. Ea, M. O. Baudement, A. Lesne, and T. Forné, Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization, Genes, vol.6, pp.734-750, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02187390

E. P. Nora, B. R. Lajoie, E. G. Schulz, L. Giorgetti, I. Okamoto et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, vol.485, pp.381-385, 2012.

E. Lieberman-aiden, N. L. Van-berkum, L. Williams, M. Imakaev, T. Ragoczy et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, vol.326, pp.289-293, 2009.

E. P. Nora, A. Goloborodko, A. L. Valton, J. H. Gibcus, A. Uebersohn et al., Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization, vol.169, pp.930-944, 2017.

S. S. Rao, S. C. Huang, B. Glenn-st-hilaire, J. M. Engreitz, E. M. Perez et al., Cohesin Loss Eliminates All Loop Domains, vol.171, pp.305-320, 2017.

W. Schwarzer, N. Abdennur, A. Goloborodko, A. Pekowska, G. Fudenberg et al., Two independent modes of chromatin organization revealed by cohesin removal, Nature, vol.551, pp.51-56, 2017.

J. R. Dixon, I. Jung, S. Selvaraj, Y. Shen, J. E. Antosiewicz-bourget et al., Chromatin architecture reorganization during stem cell differentiation, Nature, vol.518, pp.331-336, 2015.

J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-380, 2012.

B. Bonev, N. Mendelson-cohen, Q. Szabo, L. Fritsch, G. L. Papadopoulos et al., Multiscale 3D Genome Rewiring during Mouse Neural Development, vol.171, pp.557-572, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623646

K. G. Alavattam, S. Maezawa, A. Sakashita, H. Khoury, A. Barski et al., Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development, Nat. Struct. Mol. Biol, vol.26, pp.175-184, 2019.

J. Gassler, H. B. Brandao, M. Imakaev, I. M. Flyamer, S. Ladstatter et al., A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture, vol.36, pp.3600-3618, 2017.

L. Patel, R. Kang, S. C. Rosenberg, Y. Qiu, R. Raviram et al., Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase, Nat. Struct. Mol. Biol, vol.26, pp.164-174, 2019.

Y. Wang, H. Wang, Y. Zhang, Z. Du, W. Si et al., Reprogramming of Meiotic Chromatin Architecture during Spermatogenesis, Mol. Cell, vol.73, pp.547-561, 2019.

Z. Du, H. Zheng, B. Huang, R. Ma, J. Wu et al., Allelic reprogramming of 3D chromatin architecture during early mammalian development, Nature, vol.547, pp.232-235, 2017.

I. M. Flyamer, J. Gassler, M. Imakaev, H. B. Brandao, S. V. Ulianov et al., Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition, Nature, vol.544, pp.110-114, 2017.

Y. Ke, Y. Xu, X. Chen, S. Feng, Z. Liu et al., 3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis, vol.170, pp.367-381, 2017.

H. Miura, S. Takahashi, R. Poonperm, A. Tanigawa, S. I. Takebayashi et al., Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization, Nat. Genet, vol.51, pp.1356-1368, 2019.

R. Stadhouders, E. Vidal, F. Serra, B. Di-stefano, F. Le-dily et al., Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming, Nat. Genet, vol.50, pp.238-249, 2018.

H. Zheng and W. Xie, The role of 3D genome organization in development and cell differentiation, Nat. Rev. Mol. Cell Biol, vol.20, pp.535-550, 2019.

M. R. Frey and A. G. Matera, Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells, Proc. Natl. Acad. Sci, vol.92, pp.5915-5919, 1995.

Q. Wang, I. A. Sawyer, M. H. Sung, D. Sturgill, S. P. Shevtsov et al., Cajal bodies are linked to genome conformation, Nat. Commun, 2016.

D. A. Jackson, F. J. Iborra, E. M. Manders, and P. R. Cook, Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei, Mol. Biol. Cell, vol.9, pp.1523-1536, 1998.

F. M. Boisvert, S. Van-koningsbruggen, J. Navascues, and A. I. Lamond, The multifunctional nucleolus, Nat. Rev. Mol. Cell Biol, vol.8, pp.574-585, 2007.

J. G. Gall, The centennial of the Cajal body, Nat. Rev. Mol. Cell Biol, vol.4, pp.975-980, 2003.

Q. Liu and G. Dreyfuss, A novel nuclear structure containing the survival of motor neurons protein, EMBO J, vol.15, pp.3555-3565, 1996.

A. J. Saurin, C. Shiels, J. Williamson, D. P. Satijn, A. P. Otte et al., The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain, J. Cell Biol, vol.142, pp.887-898, 1998.

V. Lallemand-breitenbach and H. De-the, PML nuclear bodies, Cold Spring Harb. Perspect. Biol, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00102123

J. N. Hutchinson, A. W. Ensminger, C. M. Clemson, C. R. Lynch, J. B. Lawrence et al., A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains, BMC Genom, vol.8, p.39, 2007.

N. Saitoh, C. S. Spahr, S. D. Patterson, P. Bubulya, A. F. Neuwald et al., Proteomic analysis of interchromatin granule clusters, Mol. Biol. Cell, vol.15, pp.3876-3890, 2004.

C. M. Clemson, J. N. Hutchinson, S. A. Sara, A. W. Ensminger, A. H. Fox et al., An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles, Mol. Cell, vol.33, pp.717-726, 2009.

T. Naganuma, S. Nakagawa, A. Tanigawa, Y. F. Sasaki, N. Goshima et al., Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles, EMBO J, vol.31, pp.4020-4034, 2012.

T. Misteli, The concept of self-organization in cellular architecture, J. Cell Biol, vol.155, pp.181-185, 2001.

A. Grob, C. Colleran, and B. Mcstay, Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division, Genes Dev, vol.28, pp.220-230, 2014.

T. E. Kaiser, R. V. Intine, and M. Dundr, De novo formation of a subnuclear body, Science, vol.322, pp.1713-1717, 2008.

H. R. Salzler, D. C. Tatomer, P. Y. Malek, S. L. Mcdaniel, A. N. Orlando et al., A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs, Dev. Cell, vol.24, pp.623-634, 2013.

C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege et al., Germline P granules are liquid droplets that localize by controlled dissolution/condensation, Science, vol.324, pp.1729-1732, 2009.

D. Zwicker, M. Decker, S. Jaensch, A. A. Hyman, and F. Julicher, Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles, Proc. Natl. Acad. Sci, vol.111, pp.2636-2645, 2014.

M. Jin, G. G. Fuller, T. Han, Y. Yao, A. F. Alessi et al., Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress, vol.20, pp.895-908, 2017.

M. Kato, T. W. Han, S. Xie, K. Shi, X. Du et al., Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels, Cell, vol.149, pp.753-767, 2012.

L. Zhu and C. P. Brangwynne, Nuclear bodies: The emerging biophysics of nucleoplasmic phases, Curr. Opin. Cell. Biol, vol.34, pp.23-30, 2015.

J. Berry, S. C. Weber, N. Vaidya, M. Haataja, and C. P. Brangwynne, RNA transcription modulates phase transition-driven nuclear body assembly, Proc. Natl. Acad. Sci, vol.112, pp.5237-5245, 2015.

S. C. Weber and C. P. Brangwynne, Inverse size scaling of the nucleolus by a concentration-dependent phase transition, Curr. Biol, vol.25, pp.641-646, 2015.

M. Feric, N. Vaidya, T. S. Harmon, D. M. Mitrea, L. Zhu et al., Coexisting Liquid Phases Underlie Nucleolar Subcompartments, Cell, vol.165, pp.1686-1697, 2016.

T. J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner et al., Coexisting Liquid Phases Underlie Nucleolar Subcompartments, Cell, vol.57, pp.936-947, 2015.

F. Erdel and K. Rippe, Formation of Chromatin Subcompartments by Phase Separation, Biophys. J, vol.114, pp.2262-2270, 2018.

D. T. Mcswiggen, A. S. Hansen, S. S. Teves, H. Marie-nelly, Y. Hao et al., Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation, vol.8, p.47098, 2019.

A. G. Larson, D. Elnatan, M. M. Keenen, M. J. Trnka, J. B. Johnston et al., Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin, Nature, vol.547, pp.236-240, 2017.

A. R. Strom, A. V. Emelyanov, M. Mir, D. V. Fyodorov, X. Darzacq et al., Phase separation drives heterochromatin domain formation, Nature, vol.547, pp.241-245, 2017.

A. Peng and S. C. Weber, Evidence for and against Liquid-Liquid Phase Separation in the Nucleus, Noncoding RNA, vol.5, p.5040050, 2019.

S. Machida, Y. Takizawa, M. Ishimaru, Y. Sugita, S. Sekine et al., Structural Basis of Heterochromatin Formation by Human HP1, Mol. Cell, vol.69, pp.385-397, 2018.

D. Hnisz, K. Shrinivas, R. A. Young, A. K. Chakraborty, and P. A. Sharp, A Phase Separation Model for Transcriptional Control, vol.169, pp.13-23, 2017.

W. K. Cho, J. H. Spille, M. Hecht, C. Lee, C. Li et al., Cisse, I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates, Science, vol.361, pp.412-415, 2018.

B. R. Sabari, A. Dall'agnese, A. Boija, I. A. Klein, E. L. Coffey et al., Coactivator condensation at super-enhancers links phase separation and gene control, Science, vol.361, 2018.

A. Boija, I. A. Klein, B. R. Sabari, A. Dall'agnese, E. L. Coffey et al., Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains, Cell, vol.175, pp.1842-1855, 2018.

D. T. Mcswiggen, M. Mir, X. Darzacq, and R. Tjian, Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences, Genes Dev, vol.8, p.119, 2019.

N. O. Taylor, M. T. Wei, H. A. Stone, and C. P. Brangwynne, Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching, Biophys. J, vol.117, pp.1285-1300, 2019.

Y. Shin, Y. C. Chang, D. S. Lee, J. Berry, D. W. Sanders et al., Liquid Nuclear Condensates Mechanically Sense and Restructure the, Genome. Cell, vol.175, pp.1481-1491, 2018.

Y. Lin, D. S. Protter, M. K. Rosen, and R. Parker, Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins, Mol. Cell, vol.60, pp.208-219, 2015.

R. Engelke, J. Riede, J. Hegermann, A. Wuerch, S. Eimer et al., The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization, J. Proteome Res, vol.13, pp.3940-3956, 2014.

M. O. Baudement, A. Cournac, F. Court, M. Seveno, H. Parrinello et al., High-salt-recovered sequences are associated with the active chromosomal compartment and with large ribonucleoprotein complexes including nuclear bodies, Genome Res, vol.28, pp.1733-1746, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912447

C. Braem, B. Recolin, R. C. Rancourt, C. Angiolini, P. Barthes et al., Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus, J. Biol. Chem, vol.283, pp.18612-18620, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01600983

P. G. Giresi, J. Kim, R. M. Mcdaniell, V. R. Iyer, and J. D. Lieb, FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin, Genome Res, vol.17, pp.877-885, 2007.

J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat. Methods, vol.10, pp.1213-1218, 2013.

D. J. Gaffney, G. Mcvicker, A. A. Pai, Y. N. Fondufe-mittendorf, N. Lewellen et al., Controls of nucleosome positioning in the human genome, PLoS Genet, vol.8, 2012.

J. G. Henikoff, J. A. Belsky, K. Krassovsky, D. M. Macalpine, and S. Henikoff, Epigenome characterization at single base-pair resolution, Proc. Natl. Acad. Sci, vol.108, pp.18318-18323, 2011.

A. Valouev, S. M. Johnson, S. D. Boyd, C. L. Smith, A. Z. Fire et al., Determinants of nucleosome organization in primary human cells, Nature, vol.474, pp.516-520, 2011.

M. J. Vogel, D. Peric-hupkes, and B. Van-steensel, Detection of in vivo protein-DNA interactions using DamID in mammalian cells, Nat. Protoc, vol.2, pp.1467-1478, 2007.

J. R. Dobson, D. Hong, A. R. Barutcu, H. Wu, A. N. Imbalzano et al., Identifying Nuclear Matrix-Attached DNA Across the Genome, J. Cell. Physiol, vol.232, pp.1295-1305, 2017.

Y. Chen, Y. Zhang, Y. Wang, L. Zhang, E. K. Brinkman et al., Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler, J. Cell Biol, vol.217, pp.4025-4048, 2018.

R. Zhang, B. R. So, P. Li, J. Yong, T. Glisovic et al., Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly, Cell, vol.146, pp.384-395, 2011.

S. Kroschwald, S. Maharana, S. Alberti, and . Hexanediol, A chemical probe to investigate the material properties of membrane-less compartments, 2017.

T. Yamazaki, S. Souquere, T. Chujo, S. Kobelke, Y. S. Chong et al., Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation, Mol. Cell, vol.70, pp.1038-1053, 2018.

M. D. Hebert and A. R. Poole, Towards an understanding of regulating Cajal body activity by protein modification, RNA Biol, vol.14, pp.761-778, 2017.

D. Berchtold, N. Battich, and L. Pelkmans, A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells, Mol. Cell, vol.72, pp.1035-1049, 2018.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, vol.297, pp.1183-1186, 2002.

J. Berry, C. P. Brangwynne, and M. Haataja, Physical principles of intracellular organization via active and passive phase transitions, Rep. Prog. Phys, vol.81, p.46601, 2018.

A. Lemarchand, A. Lesne, and M. Mareschal, Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of internal noise, Phys. Rev. E, vol.51, pp.4457-4465, 1995.

G. Dellaire, R. W. Ching, H. Dehghani, Y. Ren, and D. P. Bazett-jones, The number of PML nuclear bodies increases in early S phase by a fission mechanism, J. Cell Sci, vol.119, pp.1026-1033, 2006.

S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, E. Bonabeau et al., Self-Organization in Biological Systems, 2003.

J. M. Lehn, Toward complex matter: Supramolecular chemistry and self-organization, Proc. Natl. Acad. Sci, vol.99, pp.4763-4768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670