

Students’ Process and Strategies as They Program for Mathematical

Investigations and Applications

Chantal Buteau
1
, Eric Muller

1
, Kirstin Dreise

1
, Joyce Mgombelo

1
 , and Ana Isabel Sacristán

2

1
Brock University, Department of Mathematics, St.Catharines, Canada; cbuteau@brocku.ca;

2
Cinvestav, Mexico; asacrist@cinvestav.mx

This paper focuses on the process of university mathematics students engaging in a sequence of

programming-based mathematical project tasks as part of a course. Data of this naturalistic

research was collected mainly through four student projects and semi-structured individual

interviews. The analysis led to narratives of students’ development process (instrumental genesis)

in which enacted strategies (instrumented actions) are highlighted. In this paper we discuss a

participant’s development process. Results suggest that the student, after 1 course, has

appropriated programming as instrument for creating a tool for pragmatic purposes; however, not

yet as instrument for mathematics investigations and applications, i.e., as an object-to-think-with

(Papert, 1980).

Keywords: Programming, Instrumental Genesis, Strategies, University Mathematics Education.

Introduction

There is a resurgence of interest in integrating computer programming—more broadly,

computational thinking (CT)—in education (e.g. in UK; Benton et al., 2017). This interest reflects

how scientific fields, including mathematics, have developed computational counterparts (Weintrop

et al., 2016), as well as the rise and need for proficiency in computational practices as 21st century

skills. We see a crucial need to understand how students can be empowered to participate in such

computational thinking, now an integral part of the mathematics and broader community.

In our work, we want to better understand how students come to appropriate programming as an

instrument for mathematics investigations and applications “as mathematicians do”. This

appropriation involves students developing fluency (e.g. enacting strategies to progress forward) as

they are (in the process of) engaging in this kind of mathematical work. This includes, not only

becoming skilled at programming, but also designing and interpreting the mathematical work

facilitated, or made possible, by programming. In this proposal, we discuss the case of a student’s

fluency development, analysed from the first-year data that was collected as part of a five-year

study that examines how postsecondary mathematics students learn to use programming as a CT

instrument for mathematics. It is a naturalistic (i.e., not design-based) research that takes place in a

sequence of three project-based mathematics courses (called ‘MICA’) implemented in the

mathematics department at Brock University (Canada) since 2001, where undergraduate

mathematics majors and future mathematics teachers learn to design, program (e.g. in VB.net), and

use interactive computer environments to investigate mathematics conjectures, concepts, theorems,

or real-world applications (Buteau, Muller, & Ralph, 2015; Muller, Buteau, Ralph, & Mgombelo,

2009).

Conceptual Framework

Our work is framed by various interrelated concepts reflected in the literature on CT, CT in

mailto:cbuteau@brocku.ca
mailto:asacrist@cinvestav.mx

mathematics, and in mathematics education (Buteau, Muller, Mgombelo, & Sacristán, 2018). Wing

(2014) defines CT as “the thought processes involved in formulating a problem and expressing its

solution(s) in such a way that a computer—human or machine—can effectively carry out” (p. 5),

while Hoyles and Noss (2015) consider CT as abstraction, algorithmic thinking, decomposition, and

pattern recognition. CT is an underlying process to computer programming described e.g. by

Weintrop et al. (2016) as understanding, modifying, and writing codes (e.g., in Python or C++).

Brennan and Resnick (2012) identify key dimensions for developing CT, namely computational

concepts (e.g. iteration), computational practices (e.g. debugging projects or remixing others’

work), and computational perspectives (e.g. a designer’s evolving views about what could be

programed).

CT has changed the nature of contemporary research in mathematics; for example, we now see

computer-based proofs and new domains of research related to mathematics and computation such

as bioinformatics. The European Mathematical Society (2011) recognizes this emerging way of

engaging in mathematical research: “Together with theory and experimentation, a third pillar of

scientific inquiry of complex systems has emerged in the form of a combination of modelling,

simulation, optimization and visualization” (p. 2).

Based on their literature review and interviews with experts who use CT, Weintrop et al. (2016)

outline what they believe to be the integral CT practices for mathematics and science, in particular

encompassing this third pillar (Broley, Buteau, & Muller, 2017), across four main categories

throughout which programming is an underlying practice: data practices, modelling and simulation

practices, systems thinking practices, and computational problem-solving practices. E.g., the latter

practice involves interpreting and preparing problems for mathematical modeling, assessing

different approaches, developing modular solutions, and creating computational abstractions.

In the field of mathematics education, CT is not new; indeed, it has a 45-year legacy that started

with the LOGO programming language (Papert, 1980) and extended into the theory of

constructionism. Studies of constructionism in undergraduate-level mathematics education show

how programming supports students’ understanding of mathematical concepts and contributes to

the development of critical thinking skills (e.g., Wilensky, 1995). As for students’ processes when

engaging in using programming for mathematical investigations and applications, we proposed a

model based on insightful reflections on MICA student experiences (Buteau & Muller, 2010) which

was later refined through a literature review (Marshall & Buteau, 2014); see Figure 1.

Figure 1. Development process model of a student engaging in programming for a mathematical

investigation or application (Marshall & Buteau, 2014)

We use Lave and Wenger’s (1991) concept of “legitimate peripheral participation,” which describes

how learners enter into a community of practice and gradually take up its practices, to understand

how undergraduate students learn mathematics through CT activities. Based on this idea,

mathematics is not knowledge to be acquired but rather is a process of participation through which

the student gradually gains membership to a community (of mathematicians). We thus focus on

how students create and use computer tools to engage in opportunities to participate peripherally in

practices considered to be integral to the mathematical community as outlined by Weintrop et al.

(2016), i.e., in the four CT practice categories. Thus, our work is focussed on how students

(newcomers) engage in computational thinking for mathematics as mathematicians (elders) do. In

fact, the proposed development process of a student engaging in programming for mathematical

work as summarized in Figure 1 (removed of its numbering) seems to align with the process by

which pure mathematicians use programming in their research work (Broley, Caron & St-Aubin,

2018).

In this proposal, we focus on this process and the strategies that students enact when engaging in

CT-based mathematics work. In the instrumental approach framework (Rabardel, 1995/2002), the

process is related to a student’s instrumental genesis (Artigue, 2002): the process by which the

student transforms an artifact into an instrument through schemes of usage and action. The

instrumental genesis is a twofold process: instrumentalization –directed towards the artefact–, and

instrumentation –directed towards the user–concerning “the development and appropriation of

schemes of instrumented action which progressively take shape as techniques that permit an

effective response to given tasks” (Artigue, 2002, p. 250). These schemes of instrumented action

consist of technical and conceptual components. According to Drijvers, Godino, Font, and Trouche

(2013), techniques may be considered “as the observable part of the students’ work on solving a

given type of tasks (i.e., a set of organized gestures)” (p.27), e.g., strategies used by a student at a

certain step/cycle (see Figure 1) when engaging in a given programming-based mathematical task;

and the schemes “as the cognitive foundations of these techniques that are not directly observable,

but can be inferred from the regularities and patterns in students’ activities”(p. 27). As Bozkurt et

al. (2018) summarize:

An artefact is initially not meaningful to the user until he or she develops associated

schemes of instrumented action to use the artefact for achieving a task, and effectively

turning the artefact into a useful mathematical instrument. (p.44)

E.g., turning (VB.net) programming into an instrument for mathematics investigation or application

as mathematicians do, which we call ‘a CT-instrument for mathematics’. In this proposal we discuss

first results commencing to address our research question: How do post-secondary students come to

appropriate programming as a CT-instrument for mathematics?

Methodology

Our research uses iterative design methods whereby some parts (participant recruitment and data

collection) were designed in a way that would be least intrusive to (or constrained by) the natural

learning environment. The study follows students’ development over the course of (and beyond)

their MICA I-II-III courses as they engage in 14 exploratory object (EO) mathematics project tasks,

each resulting in an interactive environment and a report of mathematical findings (Muller et al.,

2009). This paper focusses on a first analysis of data collected from the first year of our research. It

thus draws from MICA I students where six (among 46) participants were recruited (voluntarily). In

the MICA I course, there are 4 EO project tasks (which count for 71 % of students’ final grades): 3

assigned individual ones, and a fourth one where students select the topic and can work in pairs or

individually. Two-hour weekly labs progressively integrate through guided exercises the learning of

computational concepts (variables, loops, etc.) in a mathematical context, whereas two-weekly hour

lectures introduce the math background needed for engaging in the EO tasks (Buteau et al., 2015).

Data from the participants included each participant’s 4 project assignments (EO and report) and

individual semi-structured interviews after completion of each of these EO tasks. The design of the

interview guiding questions was informed largely by the students’ development process model

(Figure 1). In addition, data collected included weekly post-laboratory session online reflections

(answering guiding questions) and an initial baseline online questionnaire before the beginning of

MICA I course. Lab session and EO assignment guidelines were also collected and were

complemented by an informal understanding of the MICA I course from the research team

members’ experiences in different capacity (researcher, instructor, course approver, former student).

All of the collected student data were analysed through thematic analysis techniques. Codes were

developed based on categories informed by the conceptual framework (and associated literature).

Each participant’s interview and lab reflection data was coded individually by two coders, followed

by a thematic analysis done jointly by the two coders. Themes were consolidated among the six

participants’ analyses, and led to sixteen themes regrouped in five main meta-themes, one of which

concerned strategies. Narratives were composed, following the model steps from Figure 1, of each

participant’s process of engaging in their four EO projects, highlighting their enacted strategies, and

overall summary. We now present preliminary findings by illustrating one of the six participants’

development process with a focus on her use and development of instrumented techniques, i.e.,

enacted strategies (in italic, below), as a way to gain insights into her instrumental genesis towards

appropriating VB.net programming into a CT instrument for mathematics.

Findings: the case of Hannah

Hannah (pseudonym) is a mathematics and computer science co-major, and thus had programming

experience (in Java) prior to her MICA I course. In her first assigned EO project –exploring a

conjecture of their choice about prime numbers or hailstone sequences–, Hannah struggled with the

initial step of conjecturing (steps 1-2 in Figure 1); once she was passed this, she incrementally

designed and programmed (steps 2-3) with ease her interactive environment (EO). When the time

came to interpret the mathematics output of her program (steps 5-7), Hannah struggled and

provided only data examples without mathematical explanation. In the EO 2 project on a RSA

encryption application, Hannah reported feeling more satisfied and confident, finding it overall

easier, in particular since she could start right away with designing and programming (i.e., step 1

was provided by the assignment guidelines). However again, her focus on the mathematics (step 5-

7) seems to have been limited. We elaborate next on Hannah’s engagement in her third EO task.

Hannah’s development process and enacted strategies in her third assigned EO project task

Students are then asked to design, program, and use an interactive environment to explore,

graphically and numerically, the behavior of a dynamical system based on a two-parameter cubic

(Buteau et al., 2015). It follows an introduction of discrete dynamical systems in lectures, guided

computer lab activities to program an EO to explore the logistic function system (quadratic, 1

parameter), including an instructor guided exploration of the system as the parameter is changed. At

this time, students have been introduced to all basic computational concepts for mathematical work:

variables, interface design, loops, conditionals, events, sequencing, and graphing. This assignment

has a significant component on mathematical investigation. For Hannah, it is a critical learning

opportunity since she struggled with the mathematical components of the previous two EO projects.

Similarly to EO 2, the assignment guidelines provided the focus of the EO project (step 1 in

Figure 1). Hannah voices that she did not research the related mathematics (step 2) when beginning

the assignment because the lectures and labs were sufficient; however, in reflection, she believes

she would have needed more time spent on the math concept to grasp it. In fact, Hannah missed

some lectures due to illness and felt unable to catch up with the mathematical concepts. As in the

past assignments, Hannah understands the programming concepts and is able to start designing and

programming her project (step 3) in lab time by remixing from the two previous labs on the logistic

function dynamical system. She used the computational practice of incremental steps with testing

to complete the programming (programming cycle) – see Figure 2 for a screenshot of her EO:

Hannah: the first step was setting up everything. … we have to setup the graph... regardless

of … ‘a’ and ‘b’… we’re converting it to pixels instead of x and y’s… So, we had

to make sure that was working first before you could plug in anything.

Figure 2. Screenshot of Hannah’s third EO project about the 2-parameter cubic dynamical system

Hannah tested the mathematics output of her program against other students’ work and known

examples from class (step 4); e.g., Hannah says:

Hannah: I used the, um, same values that, um, [the instructor] put in the labs. And, um,

I checked, I compared the sequence and saw the math was working and then

the graph and how it looks.

However, she had difficulty in investigating the given math topic or understand its meaning (steps 5

& 6), although she did investigate the cubic function by systematically varying its parameters:

Hannah: I left ‘b’ fixed at zero and I increased ‘a’ a little bit and little bit and I see how

it affected the curve….So, yeah, I played around with [a and b] until, um,

until I got the fixed points.

but struggled with understanding the cobweb:

Hannah: one of the challenges was, um, the, um, trying to figure out if it actually does

converge. Because, um, the way we visualize it is, um, for each of the points.

So, if you have 10 points, uh, 10 sequence numbers that you have, you draw

lines between them. But, because we don’t have like, sort of like, the starting

point of the line and the ending point, you don’t know if it is going that

direction, which direction are going.

In the final part of the assignment, the report, Hannah’s lack of understanding becomes clearer.

Although her program works, her report does not reflect understanding; in particular, she uses the

program to generate an example, rather than elaborating calculations and drawing it by hand as

asked (similar to how she completed her EO 2). Her report is lacking in explanations or conclusions

to communicate her mathematical knowledge (step 7) and the discussion portion of the report is

missing. This EO project could have been a great positive learning experience for Hannah to use

programming for mathematics (learning) as this assignment was heavier on the mathematics

investigation than previous ones. However, Hannah missed the opportunity partly due to external

factors (illness).

Hannah’s overall trend over the 4 EOs

Throughout the course, Hannah’s focus seems to remain on programming rather than moving on to

programming for mathematics, as revealed through her general approach to the 4 EO assignments.

Hannah finds difficulty in identifying on her own, a mathematics topic relevant to a programming-

based approach (step 1). She prefers to be given a conjecture (as in EO 2) and avoids creating her

own when possible (as in EO 4). Once the mathematics problem or conjecture is sorted out, Hannah

becomes much more comfortable. Most of the time, she researches thoroughly and uses resources to

be well prepared for a solution before starting to program. She wants to understand the mathematics

a priori and then program it, rather than using programming to understand (her general approach to

‘interpreting and preparing problems for mathematical modeling’ practice). This method causes

difficulty in EO3 as programming for investigation is an intended way for students to understand.

Figure 3. Hannah’s summarized enacted strategies during the development of her 4 EO projects

Hannah uses her previous programming experience to help her complete the design and

programming (step 3) with ease and little help from others: she works incrementally and uses

functions and modules to structure her program (her approach to ‘developing modular solutions’

practice). Hannah developed multiple methods of checking her mathematical work including using

online resources, calculating by hand, and comparing known examples. Because of her heavy

preparation (in step 2) and strong programming skills (in step 3) there are not often many bugs to

solve (step 4). When attempting to use the program to investigate the math problem (step 5) beyond

the creation of the project, Hannah seems to lack confidence. She often isn’t sure how or what to

conclude from the program output. She doesn’t seem to know how to use the program for

investigation and wants to understand first, then “explore” later to confirm what she knows rather

than to discover new ideas. Her limited investigations make it hard to integrate the results with her

math knowledge (step 6). She finds some results noteworthy, but not necessarily what is intended as

part of the investigation and her insights, rather than mathematical, are more often related to

programming. Lastly, when communicating her results in her written report (step 7), her

descriptions are often short and not thorough in explanations. She provides examples that are either

too simple to demonstrate knowledge or uses her program to generate an answer without further

explanation of the process. Figure 3 summarizes Hannah’s enacted strategies over the course of her

4 EO tasks.

Overall, Hannah seems to treat the course as a programming class for designing mathematics

calculators rather than a mathematics class using programming as a tool for understanding and

investigation, i.e. as an “object-to-think-with” (Papert, 1980). This perspective seems to limit her

ability to dive in and explore new mathematical concepts deeply. In the final interview, Hannah said

she intends and is looking forward to take the MICA II course. It will be interesting to see how (and

if) she adapts her approach, enacting new strategies, in this more mathematically demanding course.

Conclusion

We have described Hannah’s development process (including her strategies) as she engages with

designing, programming, and using mathematics EOs. We observed that Hannah seems to

appropriate programming as instrument for creating a tool for pragmatic purposes –i.e. as a

calculator– however, not yet as instrument for mathematics investigations and applications –i.e., as

an object-to-think-with (Papert, 1980). The findings provide insights on Hannah’s development of

fluency and instrumental genesis –i.e. how far she has come, through MICA I course, to appropriate

(VB.net) programming as a CT instrument for mathematics investigations and applications. The

transition from an instructionist to a constructionist approach to learning mathematics seems to have

remained a challenge for Hannah, even with her previous programming background. In the near

future and with the current trend, it is expected that students will arrive in mathematics department

with programming skills. The case of Hannah can thus be considered as of a typical ‘student’ of the

near future, and as such, provides insights of how these typical students’ instrumental genesis may

develop.

The first year student data analysis led to refine further the development process model (see step 2

and step 3* in Figure 3) to better capture the different strategies enacted by students. By

highlighting how Hannah’s strategies are enacted in the development process model, our study

provides a beginning of how we can explore the role of strategies, as techniques, in students’

instrumental genesis, leading next to study the related instrumented action schemes. The next steps,

in our 5-year research, are also to bring together all of the thematic analysis findings and the

development narratives for a deeper insight into students’, including Hannah’s, instrumental

genesis, and to continue follow our participants into their upper-year MICA courses. It will also

include the examination of instructors’ adoption of learning environment (i.e., instrumental

orchestration).

Acknowledgement

This work is funded by SSHRC (#435-2017-0367) and received ethics clearance (REB #17-088).

References

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about

instrumentation and the dialectics between technical and conceptual work. International Journal

of Computers for Mathematical Learning, 7(3), 245–274.

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and

mathematics: Some findings of design research in England. DEME, 3(2), 115–138.

Bozkurt, G., Uygan, C., & Melih T. (2018). Instrumental genesis of a preservice mathematics

teacher: instrumented actions for perpendicular line construction in a dynamic geometry

environment. Proceedings of the 5th ERME Topic Conference MEDA 2018

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development

of computational thinking. Proceedings of the American Educational Research Association

(AERA) annual conference (1–25), Vancouver, Canada.

Broley, L., Buteau, C., & Muller, E. (2017, February). (Legitimate peripheral) computational

thinking in mathematics. Proceedings of the CERME (pp. 2515-23), Dublin, Ireland.

Broley, L., Caron, F., & Saint-Aubin, Y. (2018). Levels of Programming in Mathematical Research

and University Mathematics Education. International Journal of Research in Undergraduate

Mathematics Education, 4(1), 38–55.

Buteau, C. & E. Muller (2010): Student Development Process of Designing and Implementing

Exploratory and Learning Objects. In Proceedings of the Sixth CERME, 1111–1120.

Buteau, C., Muller, E., Mgombelo, J., & Sacristán, A. (2018). Computational thinking in university

mathematics education: A theoretical framework. Proceedings of RUME, San Diego, CA.

Buteau, C., Muller, E., & Ralph, B. (2015). Integration of programming in the undergraduate math

program at Brock University. In Proceedings of Math+Coding Symposium, London, ON.

Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses. Educational

Studies in Mathematics, 82(1), 23–49.

European Mathematical Society. (2011). Position paper on the European Commission’s

contributions to European research. Retrieved from http://ec.europa.eu/research/horizon2020/

pdf/contributions/post/european_organisations/european_mathematical_society.pdf

Hoyles, C., & Noss, R. (2015). Revisiting programming to enhance mathematics learning. Paper

presented at the Math + Coding Symposium, Western University.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York,

NY: Cambridge University Press.

Marshall, N. & C. Buteau (2014). Learning by designing and experimenting with interactive,

dynamic mathematics exploratory objects. Int’l J. for Technology in Mathematics Education, 21

(2),49-64.

Muller, E., Buteau, C., Ralph, B., & Mgombelo, J. (2009). Learning mathematics through the

design and implementation of exploratory and learning objects. International Journal for

Technology in Mathematics Education, 63(2), 63–73.

http://ec.europa.eu/research/horizon2020/pdf/contributions/post/european_organisations/e%20uropean_mathematical_society.pdf
http://ec.europa.eu/research/horizon2020/pdf/contributions/post/european_organisations/e%20uropean_mathematical_society.pdf

Rabardel, P. (1995/2002). Les hommes et les technologies; approche cognitives des instruments

contemporains. Paris, France: Armand Colin.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining computational thinking for mathematics and science classrooms. Journal for Science

Education and Technology, 25, 127–147.

Wilensky, U. (1995). Paradox, programming and learning probability. Journal of Mathematical

Behavior, 14(2), 231–280.

Wing, J. M. (2014, January 10). Computational thinking benefits society. Social Issues in Computing

[Web blog post]. Retrieved from http://socialissues.cs.toronto.edu/index.html%3Fp=279.html.

http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html

