C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil et al., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses. Société Mathématique de France, vol.10, 2000.

D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenchaften, vol.348, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00929960

F. Barthe, P. Cattiaux, and C. Roberto, Concentration for independent random variables with heavy tails, AMRX, issue.2, pp.39-60, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004959

F. Barthe, P. Cattiaux, and C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iber, vol.22, issue.3, pp.993-1066, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00014138

F. Barthe, P. Cattiaux, and C. Roberto, Isoperimetry between exponential and Gaussian, Electron. J. Probab, vol.12, pp.1212-1237, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00017377

F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Studia Math, vol.159, issue.3, pp.481-497, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00693117

S. G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab, vol.27, issue.4, pp.1903-1921, 1999.

S. G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures, Geometric aspects of functional analysis, vol.1807, pp.37-43, 2000.

S. G. Bobkov, Large deviations and isoperimetry over convex probability measures, Electron. J. Probab, vol.12, pp.1072-1100, 2007.

S. G. Bobkov and C. Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer. Math. Soc, vol.129, issue.616, p.111, 1997.

S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal, vol.10, issue.5, pp.1028-1052, 2000.

S. G. Bobkov and B. Zegarlinski, Entropy bounds and isoperimetry. Mem. Amer. Math. Soc, vol.176, issue.829, p.69, 2005.

M. Bonnefont, A. Joulin, and Y. Ma, Spectral gap for spherically symmetric log-concave probability measures, and beyond, J. Funct. Anal, vol.270, issue.7, pp.2456-2482, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01009383

P. Cattiaux and A. Guillin, On the Poincaré constant of log-concave measures. To appear in Geometric Aspects of Functional Analysis: Israel Seminar (GAFA), 2019.

P. Cattiaux, I. Gentil, and A. Guillin, Weak logarithmic Sobolev inequalities and entropic convergence, Probab. Theory and Rel. Fields, vol.139, issue.3-4, pp.563-603, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00013700

P. Cattiaux, N. Gozlan, A. Guillin, and C. Roberto, Functional inequalities for heavy tailed distributions and applications to isoperimetry, Electron. J. Probab, vol.15, pp.346-385, 2010.

P. Cattiaux and A. Guillin, Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity, J. Funct. Anal, vol.272, issue.6, pp.2361-2391, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930369

P. Cattiaux, A. Guillin, F. Y. Wang, and L. Wu, Lyapunov conditions for super Poincaré inequalities, J. Funct. Anal, vol.256, issue.6, pp.1821-1841, 2009.

P. Cattiaux, A. Guillin, and L. Wu, A note on Talagrand's transportation inequality and logarithmic Sobolev inequality, vol.148, pp.285-304, 2010.

P. Cattiaux, A. Guillin, and L. Wu, Some remarks on weighted logarithmic Sobolev inequalities, Indiana Univ. Math. J, vol.60, issue.6, pp.1885-1904, 2011.

M. Émery and J. E. Yukich, A simple proof of the logarithmic Sobolev inequality on the circle, Séminaire de Probabilités, XXI, vol.1247, pp.173-175, 1987.

N. Huet, Isoperimetry for spherically symmetric log-concave probability measures, Rev. Mat. Iberoamericana, vol.27, issue.1, pp.93-122, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00358888

M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds, Surveys in differential geometry., volume IX, pp.219-240, 2004.

M. Ledoux, From concentration to isoperimetry: semigroup proofs, Concentration, functional inequalities and isoperimetry, vol.545, pp.155-166, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00993118

Y. T. Lee and S. S. Vempala, Stochastic localization + Stieltjes barrier = tight bound for Log-Sobolev, Available on Math. ArXiv, 2017.

E. Milman, On the role of convexity in functional and isoperimetric inequalities, Proc. Lond. Math. Soc, vol.99, issue.3, pp.32-66, 2009.

E. Milman, On the role of convexity in isoperimetry, spectral-gap and concentration, Invent. math, vol.177, pp.1-43, 2009.

M. Röckner and F. Y. Wang, Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups, J. Funct. Anal, vol.185, issue.2, pp.564-603, 2001.

F. Y. Wang, Functional inequalities, Markov processes and Spectral theory, 2005.

F. Y. Wang, From super Poincaré to weighted log-Sobolev and entropy cost inequalities, J. Math. Pures Appl, vol.90, pp.270-285, 2008.

P. A. Zitt, Super Poincaré inequalities, Orlicz norms and essential spectrum, Potential Anal, vol.35, issue.1, pp.51-66, 2011.

C. Patrick and I. De-mathématiques-de-toulouse, CNRS UMR, vol.5219

, E-mail address: cattiaux@math.univ-toulouse.fr

G. Arnaud, L. De-mathématiques-blaise, and . Pascal, CNRS UMR, vol.6620

W. U. Liming, L. De-mathématiques-blaise, and . Pascal, CNRS UMR, vol.6620