, Towards Sustainable Urban Energy Systems, vol.418, 2016.

M. Obersteiner, C. Azar, P. Kauppi, K. Möllersten, J. Moreira et al., Managing Climate Risk, Science, vol.294, pp.786-787, 2001.

C. Azar, K. Lindgren, E. Larson, and K. Möllersten, Carbon capture and storage from fossil fuels and biomass costs and potential role in stabilizing the atmosphère, Climatic Change, vol.74, pp.47-49, 2006.

C. Azar, K. Lindgren, M. Obersteiner, K. Riahi, D. Van-vuuren et al., The feasibility of low CO 2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS), Climatic Change, vol.100, pp.195-202, 2010.

R. Katofsky, M. Stanberry, and L. Frantzis, Achieving climate stabilization in an insecure world: does renewable energy hold the key?, 2010.

P. Luckow, M. Wise, J. J. Dooley, and S. Kim, Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO 2 concentration limit scenario, International Journal of Greenhouse Gas Control, vol.4, pp.865-877, 2010.

O. Ricci and S. Selosse, Global and regional potential for bioelectricity with carbon capture and storage, Energy Policy, vol.52, pp.689-698, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00661474

M. Van-den-broek, V. Veenendaal, P. Koutstaal, W. Turkenburg, and A. Faaij, Impact of international climate policies on CO 2 capture and storage deployment: Illustrated in the Dutch energy system, Energy Policy, vol.39, pp.2000-2019, 2011.

D. Van-vuuren, M. Elzen, P. Lucas, B. Eickhout, and B. Strengers, Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs, Climatic Change, vol.81, pp.119-159, 2007.

D. Van-vuuren, J. Vliet, and E. Stehfest, Future bio-energy potential under various natural constraints, Energy Policy, vol.37, pp.4220-4230, 2009.

K. Tokimatsu, R. Yasuoka, and M. Nishio, Global zero emission scenarios: The role of biomass energy with carbon capture and storage by forested land use, Applied Energy, vol.185, pp.1899-1906, 2017.

R. B. Jackson, J. G. Canadell, S. Fuss, J. Milne, N. Nakicenovic et al., Focus on negative emissions, vol.12, p.110201, 2017.

M. Muratori, K. Calvin, M. Wise, P. Kyle, and J. Edmonds, Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS), Environmental Research Letters, vol.11, p.95004, 2016.

S. Fuss, J. G. Canadell, G. P. Peters, M. Tavoni, R. M. Andrew et al., Betting on negative emissions, Nature Climate Change, vol.4, pp.850-853, 2014.

P. Viebahn, D. Vallentin, and S. Höller, Prospects of carbon capture and storage (CCS) in China's power sector -An integrated assessment, Applied Energy, vol.157, pp.229-244, 2015.

R. Loulou and . Etsap-tiam, The TIMES integrated assessment model. Part II: Mathematical formulation, vol.5, pp.41-66, 2008.

R. Loulou and M. Labriet, ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure, vol.5, pp.7-40, 2008.

C. Hendriks, W. Graus, and F. Van-bergen, Global carbon dioxide storage potential and costs. Report by Ecofys in cooperation with TNO. EEP-02001 by order of the: Rijksinstituut voor Volksgezondheid en Milieu (Dutch National Institute for Public Health and the Environment, 2004.

J. J. Dooley, S. H. Kim, J. A. Edmonds, S. J. Friedman, M. A. Wise-;-es-rubin et al., A First Order Global Geologic CO 2 Storage Potential Supply Curve and its Application in a Global Integrated Assessment Model, Greenhouse Gas Control Technologies Volume, vol.I, pp.573-581, 2005.

J. J. Dooley and S. J. Friedman, A Global but Regionally Disaggregated Accounting of CO 2 Storage Capacity: Data and Assumptions for Compiling Regional CO 2 Storage Capacity Supply Curves for Incorporation within ObjECTS>MiniCAM, 2005.

U. S. Doe/netl, Carbon Utilization and Storage Atlas -Fourth Edition, p.130, 2012.

F. Nacsa and . Edition, , p.52, 2012.

S. Selosse and O. Ricci, Carbon capture and storage: Lessons from a storage potential and localization analysis, Applied Energy, vol.188, pp.32-44, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01412931

R. Wright, F. Mourits, L. Beltran-rodriguez, and M. D. Serrano, The first North American Carbon Storage Atlas, Energy Procedia, vol.37, pp.5280-5289, 2013.

S. Bachu, D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway et al.,

. Mathiassen, CO 2 storage capacity estimation: Methodology and gaps, International Journal of Greenhouse Gas Control, vol.1, pp.430-443, 2007.

S. Bachu, Screening and ranking of sedimentary basins for sequestration of CO 2 in geological media in response to climate change, Environmental Geology, vol.44, pp.277-289, 2003.

J. Bradshaw, S. Bachu, D. Bonijoly, R. Burruss, S. Holloway et al.,

. Mathiassen, CO 2 storage capacity estimation: Issues and developments of standards, International Journal of Greenhouse Gas Control, vol.1, pp.62-68, 2007.

J. J. Dooley, Carbon dioxide capture and geologic storage: a core element if a global energy technology strategy to address climate change, A technology report from the second phase of the global energy technology strategy program, p.37, 2006.

R. T. Dahowski, C. L. Davidson, and J. J. Dooley, Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO 2 transport & storage cost curves, Energy Procedia, vol.4, pp.2732-2739, 2011.

K. Michael, M. Arnot, P. Cook, J. Ennis-king, R. Funnell et al., CO 2 storage in saline aquifers I -current state of scientific knowledge, Energy Procedia, vol.1, issue.1, pp.3197-3204, 2009.

K. Michael, A. Allinson, A. Golab, S. Sharma, and V. Shulakova, CO 2 storage in saline aquifers II -experience from existing storage operations, Energy Procedia, vol.1, pp.1973-1980, 2009.

I. Kolenkovic, B. Saftic, and D. Peresin, Regional capacity estimates for CO 2 geological storage in deep saline aquifers -Upper Miocene sandstones in the SW part of the Pannonian basin, International Journal of Greenhouse Gas Control, vol.16, pp.180-186, 2013.

M. Van-den-broek, E. Brederode, A. Ramirez, L. Kramers, M. Van-der-kuip et al., Designing a cost-effective CO 2 storage infrastructure using a GIS based linear optimization energy model, Environmental Modelling and Software, vol.25, pp.1754-1768, 2010.

H. Haberl, T. Beringer, S. C. Bhattacharya, K. H. Erb, and M. Hoogwijk, The global technical potential of bio-energy in 2050 considering sustainability constraints, Current Opinion in Environmental Sustainability, vol.2, issue.5-6, pp.394-403, 2010.

, Renewables Energy Sources and Climate Change Mitigation, Special Report, issue.2, 2011.

V. Dornburg, A. Faaij, P. A. Verweij, H. Langeveld, G. Van-de-ven et al., Biomass assessment: assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Climate change scientific assessment and policy analysis (WAB) programme, 2008.

S. Kang, S. Selosse, and N. Maïzi, Contribution of global GHG reduction pledges to bioenergy expansion, Journal of Biomass & Bioenergy, vol.111, pp.142-153, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01543636

S. Kang and L. Place-de-la-bioénergie-dans-un-monde-sobre-en-carbone, Analyse prospective et développement de la filière biomasse dans le modèle TIAM-FR, 2017.

S. Kang, S. Selosse, and N. Maïzi, Is GHG mitigation policy enough to develop bioenergy in Asia: a long-term analysis with TIAM-FR, Special Issue on: IBSCE 2015 Bioenergy and Biofuels in Asia and Europe, vol.14, pp.5-31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419991

S. Kang, S. Selosse, and N. Maïzi, Strategy of bioenergy development in the largest energy consumers of Asia, vol.8, pp.56-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234013

E. Smeets, A. Faaij, and I. Lewandowski, A quickscan of global bio-energy potentials to 2050 An analysis of the regional availability of biomass resources for export in relation to the underlying factors, Bio-EnergyTrade, pp.0-121, 2004.

. Iiasa/fao, Global Agro-ecological Zones (GAEZ v3.0) [En ligne, p.179, 2012.

. «. Fao and . Aquastat-», , 2016.

. Eurostat, Compilation Guide, Economy-wide Material Flow Accounts (EW-MFA), p.68, 2012.

F. Krausmann, K. Erb, S. Gingrich, C. Lauk, and H. Haberl, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints, Ecological Economics, vol.65, pp.471-487, 2008.

D. Jölli and S. Giljum, Unused biomass extraction in agriculture , forestry and fishery, Data SERI Studies n°3, 2005.

G. Fischer, E. Hizsnyik, S. Prieler, and H. Van-velthuizen, Assessment of biomass potentials for biofuel feedstock production in Europe : Methodology and results, p.75, 2007.

M. Hoogwijk, On the global and regional potential of renewable energy sources, 2004.

H. Rogner, R. F. Aguilera, C. Archer, R. Bertani, S. C. Bhattacharya et al., Energy resources and potentials, pp.423-512, 2012.

E. M. Smeets and A. Faaij, Bioenergy potentials from forestry in 2050: An assessment of the drivers that determine the potentials, Climatic Change, vol.81, pp.353-390, 2007.

H. Yamamoto, K. Yamaji, and J. Fujino, Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique, Applied Energy, vol.63, pp.101-113, 1999.

E. M. Smeets, A. Faaij, I. M. Lewandowski, and W. C. Turkenburg, A bottom-up assessment and review of global bio-energy potentials to 2050, Progress in Energy and Combustion Science, vol.33, pp.56-106, 2007.

D. Bodansky, The Paris Climate Change Agreement: a new hope?, American Journal of International Law, vol.110, issue.2, pp.288-319, 2016.

M. Luomi, Is the Paris Agreement a success and what does it mean for the energy sector?, vol.105, pp.4-7, 2016.