, The Steel Construction Institute, Protection of piping systems subject to fires and explosions, Health &Safety Executive, 2005.

W. Breitung, C. Chan, S. B. Dorofeev, A. Eder, B. Gelfand et al., State-of-the-art report on flame acceleration and deflagration-to-detonation, p.7

S. B. Dorofeev, M. S. Kuznetsov, V. I. Alekseev, A. Efimenko, and W. Breitung, Evaluation of limits for effective flame acceleration in hydrogen mixtures, J. Loss Prev. Process Ind, vol.14, pp.583-589, 2001.

C. K. Law, Propagation, structure, and limit phenomena of laminar flames at elevated pressures, Combustion Science and Technology, vol.178, pp.335-360, 2006.

. Rotexo, COmbution SImulation LABoratory, 2015.

M. O. Connaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, A Comprehensive Modeling Study of Hydrogen Oxidation, International Journal of Chemical Kinetics, vol.36, pp.603-622, 2004.

M. S. Kuznetsov, V. Alekseev, A. V. Bezmelnitsyn, W. Breitung, S. B. Dorofeev et al., Effect of obstacle geometry on behaviour of turbulent flames

R. S. Chue, J. F. Clarke, and J. H. Lee, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol.441, pp.607-623, 1913.

A. Velikorodny, E. Studer, S. Kudriakov, and A. Beccantini, Combustion modeling in large scale volumes using EUROPLEXUS code, Journal of Loss Prevention in the Process Industries, vol.35, p.104, 2015.