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Abstract

We extend the Compatible Discrete Operator (CDO) schemes to the steady incompressible
Stokes and Navier–Stokes equations. The main features of the CDO face-based schemes are
recalled: a hybrid velocity discretization with degrees of freedom at faces and cells, a stabilized
velocity gradient reconstruction defined on the face-based subcell pyramids, and a discrete
pressure attached to the mesh cells. We introduce a discrete divergence operator that will
account for the velocity-pressure coupling, and a hybrid discretization of the convection term.
The results of several benchmark test cases validate the framework.
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1 Introduction

The Compatible Discrete Operator (CDO) schemes provide a low-order framework which is
part of the so-called mimetic or structure-preserving methods. One of the main advantages
of the CDO schemes is that they can handle polytopal, nonmatching (cf. left part of Fig. 1)
and deformed meshes. Taking advantage of a dual mesh, invisible to the end user, discrete
differential operators are carefully designed to satisfy conservation laws and properties typical
of their continuous counterparts. This special treatment results in optimal order of convergence
in space [3] (first order for the reconstructed gradient and second for the original variable) and
a cell-wise and fully parallelizable building stage ensures good performances of the overall
method. Thanks to its flexibility, the CDO framework allows to define the main problem
variables on different mesh entities, according to their physical nature. Hence, one can choose
to use a cell-, vertex- [3], edge- [8] or face-based [2] scheme.
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Figure 1: Example of cell compatible with CDO. Left cell with hanging nodes.
Center cell with one of its subpyramids pf,c. Right cell with velocity (arrows)
and pressure (circle) DoFs

Here, the Stokes and Navier–Stokes equations (NSE) are discretized by means of face-based
CDO (CDO-Fb) schemes. In this case, the velocity is defined at faces and cells, and the pressure
is defined at cells only. CDO-Fb was introduced initially for the Poisson problem [2] and its key
ingredient is a stabilized subcell gradient reconstruction, which can be bridged to the one used
in the Hybrid Mixed Mimetic (HMM) framework [12] and to a generalization of the Crouzeix-
Raviart framework [10] (GCR). A divergence operator is derived from this gradient and it
is the tool on which the velocity-pressure coupling hinges. Finally, the discretization of the
convection term is inspired by the lowest-order case of the Hybrid High-Order (HHO(k = 0))
method [9]. The Stokes problem in its curl formulation has been already treated by means of
CDO with vertex- and cell-based schemes [4] but here we retain the face-based one.

Let D ⊂ Rd, d = 2, 3, be a bounded connected polyhedral domain and denote by ∂D its
boundary. We consider the following model problem:

−ν∆ u + χ(u · ∇ )u +∇ p = f , in D (1a)

∇ · u = 0 , in D (1b)

where ν > 0 is the viscosity, and χ = 0 for the Stokes equations or χ = 1 for the NSE. For
the sake of simplicity, homogeneous Dirichlet boundary conditions (BC) are considered. The
pressure is uniquely defined by requiring that

∫
D p = 0.

2 Space discretization

A mesh discretizing D is a finite collection C := {c} of nonempty, disjoint, open, polytopal
elements of Rd, d = 2, 3, usually referred to as cells c. The faces f are assumed to be planar
and are gathered in the set F which may be subdivided in two disjoint sets: Fb := {f | f ⊂ ∂D}
collects the boundary faces and Fi := F \ Fb the interfaces. One associates with each face f
a normal vector nf : if f ∈ Fb, nf points outward D and, if f ∈ Fi, the direction is chosen
arbitrarily. For a mesh entity z = c, f, xz denotes its barycenter and |z| its measure. Consider
now a generic cell c. Define the set of faces of the cell c as Fc := {f ∈ F |, f ⊂ ∂c}. For every
f ∈ Fc, nfc := ±nf is the normal vector to the face f pointing outward c, the sign depends
on the direction chosen for nf . The subpyramid obtained by joining the vertices of f to the
barycenter xc of the cell (cf. the central part of Fig. 1) is denoted by pf,c .
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2.1 Discrete functional spaces and differential operators

Given a generic mesh entity z = c, f, P0(z) ≡ R denotes the scalar-valued, zero-th order
polynomials defined on z. We denote with πz : L1(z)→ P0(z) ≡ R the L2-projection (average):
for all s ∈ L1(z), πz(s) =

∫
z
s/ |z|. For vector-valued functions s ∈ [L1(z)]d the projection is

applied component-wise: πz(s) := (πz(si))i=1,...,d.
In the CDO-Fb framework the velocity is hybrid, meaning that it has cell- and face-based

degrees of freedom (DoFs). Hence, the global velocity space is

Ûh :=×
c∈C

[P0(c)]d ××
f∈F

[P0(f)]d . (2)

An element of Ûh is denoted by ûh :=
(
(uc)c∈C , (uf)f∈F

)
, where, for a generic z = c, f, uz is

the z-based DoF. Notice that the value at the interfaces is uniquely defined. The velocity DoFs

associated with a cell c are denoted ûc :=
(
uc, (uf)f∈Fc

)
∈ Ûc := [P0(c)]d ××f∈Fc

[P0(f)]d.

The pressure is defined at cells only: Ph :=×c∈C Pc 3 ph := (pc)c∈C, where Pc := P0(c). In
order to take into consideration the velocity BC and the constraint on the pressure average,

one also needs Ûh,0 :=
{

ûh ∈ Ûh |uf = 0 ∀f ∈ Fb
}

, Ph,∗ :=
{
ph ∈ Ph |

∑
c∈C |c| pc = 0

}
. The

right part of Fig. 1 gives an example of local velocity and pressure DoFs for a cell.

2.1.1 Discrete velocity gradient and divergence

For each cell c ∈ C, the discrete local gradient Gc is piecewise constant on the pyramid partition
{pf,c}f∈Fc

(cf. central part of Fig. 1) and is defined as follows: Gc: Ûc → [P0({pf,c}f∈Fc
)]d×d

such that for all f ∈ Fc

Gc(ûc)|pf,c := G0
c(ûc) + β

|f|
|pf,c|

(
(uf − uc)−G0

c(ûc) (xf − xc)
)
⊗ nfc , (3)

where β > 0 is an arbitrary stability parameter and G0
c(û) is a P0-consistent gradient, constant

inside each cell and defined as G0
c(ûc) := 1/ |c|

∑
f∈Fc
|f| (uf − uc) ⊗ nfc. The definition (3) is

the vector-valued version of the gradient introduced in [2]. In the numerical tests, we will use
β = 1, which recovers the GCR framework [10]; the choice β = 1/

√
d gives the HMM one [12].

For each cell c ∈ C, the discrete velocity divergence Dc : Ûc → P0(c) is defined as follows

Dc(ûc) := trace
(
G0

c(ûc)
)

=
1

|c|
∑
f∈Fc

|f|uf · nfc . (4)

Notice that only the face-based DoFs are used (since faces are planar). The discrete velocity
divergence is the tool on which the velocity-pressure coupling hinges. This divergence operator
can be found also in the HMM framework [11].

2.1.2 Discrete advection scheme

The design of the advection scheme is inspired by HHO(k = 0) [9]. We aim at discretizing the

classical advective trilinear form such that
∫
D ((w · ∇)u) · v. Given ûh, v̂h, ŵh ∈ Ûh,0, we use

aadv(ŵh; ûh, v̂h) :=
1

2

∑
c∈C

∑
f∈Fc

|f| (wf · nfc)(uf − uc)(vf + vc)

+θupw
∑
f∈Fi

∑
c∈Cf

|f| |wf · nf | (uf − uc)(vf − vc) , (5)
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where θupw := 1 in one wants a stabilization by upwinding, or θupw := 0 for a centered scheme.
Suppose, for now, that θupw = 0. One has:

aadv(ŵh; ûh, v̂h) + aadv(ŵh; v̂h, ûh) = −
∑
c∈C

|c|Dc(ŵc)uc · vc +
∑
f∈Fb

|f| (wf · nf)uf · vf (6)

obtained by using (4) and by discarding the internal face-defined DoFs since they sum to zero.
The boundary DoFs are kept in order to better show that (6) is the discrete counterpart of a
known integral-by-parts result. Plugging v̂h = ûh into (6) one obtains

aadv(ŵh; ûh, ûh) = −1

2

∑
c∈C

|c|Dc(ŵc)u
2
c . (7)

Supposing there exists µ > 0 such that −1/2Dc(ŵc) ≥ µ for all c ∈ C (this is a discrete
counterpart of the well-known stability hypothesis of the continuous advection problem), then
(7) proves the coercivity of aadv(ŵh; ·, ·).

2.2 Discrete bilinear form

The discrete counterpart of problem (1) stemming from the CDO-Fb scheme writes: Find

(ûh, ph) ∈ Ûh,0 × Ph,∗ such that, ∀v̂h ∈ Ûh,0 and ∀qh ∈ Ph,∗

∑
c∈C

∫
c

{νGc(ûc) : Gc(v̂c)− pcDc(v̂c)}+ χaadv(ûh; ûh, v̂h) =
∑
c∈C

∫
c

f · vc , (8a)

∑
c∈C

−Dc(ûc)qc = 0 . (8b)

The Stokes problem (χ = 0 in (1a)) has been analyzed in [11].
A static condensation procedure eliminating the cell-based velocity DoFs can be performed

in order to reduce the size of the global system, which thus becomes dCard(F)+Card(C). The
discarded DoFs are recovered after the solving stage, as a post-processing.

3 Numerical results

The proposed framework is validated on four test cases, two for the Stokes equations (in
2D and 3D), and two for the NSE (both in 2D). When considering the latter, the nonlinear
equations are solved by Picard iterations, and the stopping criterion is evaluated using the
cell-based, discrete L2-norm of the increment, namely

∥∥ûk
h − ûk−1

h

∥∥
C
/
∥∥ûk−1

h

∥∥
C
< ε, where

‖ûh‖2C :=
∑

c∈C |c| ‖uc‖22. When computing the errors, this velocity norm is considered, as well

as the norm of the velocity gradient ‖ûh‖2G,C
:=
∑

c∈C |c| ‖G(ûc)‖22 and the discrete L2-norm

of the pressure‖ph‖2C :=
∑

c∈C |c| p
2
c . The resulting error norms used in the analysis are:

erru :=
‖ûh − π̂h(u)‖C
‖π̂hu‖C

, errgu :=
‖ûh − π̂h(u)‖G,C

‖π̂h(u)‖G,C

, errp :=
‖ph − πh(p)‖C
‖πh(p)‖C

, (9)

where π̂h(u) := ((πc(u))c∈C, (πf(u))f∈F) and πh(p) := (πc(p))c∈C. Let nuu (resp. npu) stand
for the number of velocity (pressure) unknowns. They will be used to evaluate the orders of
convergence in space.

We will use the CDO implementation available via Code Saturne [1], an open-source multi-
purpose CFD solver developed at EDF R&D. The computations have been performed on a
octa-core, Intel i7 laptop with 32GB RAM using PETSc and MUMPS libraries to solve the
linear systems.
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Figure 2: Examples of 2D meshes. Left polygonal. Right progressively refined
Cartesian

3.1 Stokes equations

Two test cases are considered for the Stokes equations (χ = 0 in (1a)).
2D Bercovier–Engelman test case It is proposed in the test case 2.1 of the benchmark

[7]. The sequence of Cartesian meshes (denoted by Hn where n is the number of segments an
edge of the domain is divided into) from [7] and a 2D polygonal family (similarly denoted by
Pn, cf. left part of Fig. 2) have been considered. The results are collected in Table 1.

Table 1: Errors for the 2D Bercovier–Engelman test case - Cartesian and polyg-
onal meshes

mesh nuu npu errgu order erru order errp order
H32 4224 1024 9.15 · 10−4 – 7.71 · 10−4 – 1.06 · 10−1 –
H64 16640 4096 3.16 · 10−4 1.55 1.93 · 10−4 2.02 2.87 · 10−2 1.98
H128 66048 16384 1.35 · 10−4 1.24 4.82 · 10−5 2.01 7.36 · 10−3 1.99
H256 263168 65536 6.41 · 10−5 1.07 1.21 · 10−5 2.01 1.85 · 10−3 1.99
P10 720 121 9.99 · 10−2 – 3.33 · 10−2 – 2.63 · 100 –
P20 2640 441 5.81 · 10−2 0.83 9.07 · 10−3 2.00 7.42 · 10−1 1.96
P30 5760 961 4.07 · 10−2 0.91 4.07 · 10−3 2.05 3.36 · 10−1 2.03
P40 10080 1681 3.13 · 10−2 0.94 2.29 · 10−3 2.05 1.91 · 10−1 2.02

3D Taylor–Green vortex This test case corresponds to Sect. 2.2 of the benchmark
[7]. The meshes used were the Cartesian (Hn) and prismatic with triangular bases (PrTn)
sequences proposed in [7], and one composed of tetrahedra (Tn, the refinement is achieved by
dividing each tetrahedra into 8 subtetrahedra). The results are collected in Table 2.

3.2 Navier–Stokes equations

Two test cases are considered for the Navier–Stokes equations (χ = 1 in (1a)).
Burggraf flow It consists in a manufactured polynomial solution of the 2D NSE presented

in [6]. The centered scheme was considered (θupw = 0 in (5)). The viscosity is ν = 1/100.
About 15 Picard iterations were needed to reach the prescribed tolerance ε = 10−7. Two
sequences of meshes have been considered: the Cartesian one (Hn) from [7], and one composed
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Table 2: Errors for the 3D Taylor–Green Vortex- Cartesian, tetrahedral and
prismatic meshes

mesh nuu npu errgu order erru order errp order
H4 720 64 4.36 · 10−1 – 3.18 · 10−1 – 4.83 · 10−1 –
H8 5184 512 2.60 · 10−1 0.79 1.05 · 10−1 1.69 1.49 · 10−1 1.70
H16 39168 4096 1.36 · 10−1 0.96 2.82 · 10−2 1.95 3.95 · 10−2 1.92
H32 304128 32768 6.91 · 10−2 1.00 7.18 · 10−3 2.00 1.00 · 10−2 1.98
T6 15090 2383 3.39 · 10−1 – 8.99 · 10−2 – 1.45 · 10−1 –
T12 117552 19064 1.76 · 10−1 0.96 2.39 · 10−2 1.94 5.65 · 10−2 1.36
T24 927744 152512 8.86 · 10−2 1.00 6.07 · 10−3 1.99 2.49 · 10−2 1.18

PrT10 16200 2000 3.12 · 10−1 – 9.18 · 10−2 – 1.64 · 10−1 –
PrT20 124800 16000 1.67 · 10−1 0.92 2.72 · 10−2 1.79 6.60 · 10−2 1.32
PrT30 415800 54000 1.13 · 10−1 0.97 1.28 · 10−2 1.88 3.96 · 10−2 1.26
PrT40 979200 128000 8.54 · 10−2 0.99 7.40 · 10−3 1.92 2.81 · 10−2 1.20

of nonmatching squares (HRn, cf. right part of Fig. 2), obtained by progressively refining the
Cartesian meshes. The results are collected in Table 3.

Table 3: Errors for the 2D Burggraf flow - Cartesian and refined Cartesian
meshes

mesh nuu npu errgu order erru order errp order
H32 4224 1024 2.40 · 10−1 – 1.73 · 10−2 – 1.33 · 10−2 –
H64 16640 4096 1.20 · 10−1 1.01 4.35 · 10−3 2.01 3.39 · 10−3 1.98
H128 66048 16384 6.01 · 10−2 1.00 1.09 · 10−3 2.00 8.53 · 10−4 1.99
H256 263168 65536 3.01 · 10−2 1.00 2.73 · 10−4 2.02 2.14 · 10−4 1.99
HR80 12984 3124 1.74 · 10−1 – 2.19 · 10−2 – 2.38 · 10−2 –
HR160 50960 12496 8.85 · 10−2 0.99 5.95 · 10−3 1.90 6.59 · 10−3 1.85
HR320 201888 49984 4.44 · 10−2 1.00 1.51 · 10−3 1.99 1.69 · 10−3 1.96

2D lid-driven cavity It is proposed in the test case 6 of the benchmark [7]. Two values
of the viscosity have been considered: ν = 1/400, 1/1000. Computations have been run on
Cartesian meshes with edges divided into 127, 255, and 511 segments. The centered scheme was
considered (θupw = 0 in (5)). The prescribed tolerance for the Picard iterations is ε = 10−7,
less than 25 iterations were needed for ν = 1/400 and less than 30 for 1/1000. In Fig. 3, one can
find the plots of the computed vertical and horizontal velocity profiles on the symmetry axes
for three Cartesian meshes as well as those from references [13] and [5]. Some computations
have been run with an upwind scheme (θupw = 1 in (5)) for the advection term, and the results
on the velocity profiles were less accurate on the coarser meshes than those obtained with the
centered one.
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