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Figural patterns connect several aspects of mathematical activity central to the work of teaching 

mathematics. In this pilot study, we investigated the solutions of 16 preservice elementary teachers 

to linear figural patterns of different levels of complexity after the completion of a series of six 

teaching sessions of a course in mathematics education. We found that a) most students were able 

to generalize and find the figural number of an arbitrary figure in the sequence; b) about half of the 

students produced mathematically imprecise formulas when translating from an arbitrary number 

into a general algebraic expression; c) the formulas students produced frequently lacked structural 

correspondence with the figural patterns and d) students had difficulties in interpreting figural 

patterns that are more complex. These results indicate that although the course successfully trains 

students to generalize with linear figural patterns, more attention to precisely formulating 

mathematical ideas and to interpretation of more difficult patterns can further improve the training 

of preservice elementary teachers.  
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Introduction 

Research on students’ algebraic thinking has drawn considerable interest over the past decades. For 

Blanton and Kaput (2011), experiences in building, expressing and justifying mathematical 

generalizations constitute the heart of algebra and algebraic thinking. Mason, Burton & Stacey 

(2010) highlight the importance of the generalization process in mathematics when stating that 

“generalizations are the life-blood of mathematics. Whereas specific results may in themselves be 

useful, the characteristically mathematical result is the general one” (p.8). The placement of 

algebraic content within the mathematics curriculum has received considerable attention. For 

example, documents from the National Council of Teachers of Mathematics (2000) in the United 

States, the Department for Education (2014) in England and The Norwegian Directorate for 

Education and Training (2013) recommend the development of algebraic ideas at elementary and 

middle school levels through activities such as generalizing number and figural patterns. Several 

authors have researched algebraic generalizations, but in most cases the target group were pupils in 

primary or middle school (e.g. Carpenter, Franke & Franke, 2003; Becker & Rivera, 2005; Rivera 

& Becker, 2009; Rivera, 2010). There is less research on generalization of pre-service elementary 

teachers (PSETs). A study by Yeúilderea & Akkoç (2010) indicated that PSETs, when trying to find 

the general term of number patterns, described number pattern rules in relation to differences 

between terms and used visual models without a purpose. The study of Rivera & Becker (2003) 

suggests that PSETs who used figural reasoning acquired a better understanding of the 

generalizations they constructed than PSETs who reasoned numerically, even if relationships 



 

 

among numerical values had greater contribution to similarity between the compared entities than 

the figural patterns. Måsøval (2011) studied the factors that constrain PSETs’ establishment and 

justification of formulae and mathematical statements that represent generality in different quadratic 

shape patterns. Her findings indicate three such constraints: The first constraint is related to a 

limited feedback potential in situations where the students are supposed to solve the mathematical 

tasks without teacher intervention. The second constraint is related to obstacles the students face 

when they transform informal mathematical statements expressed in natural language into formal 

algebraic notation. The third constraint is related to challenges with justification of formulae and 

mathematical statements that the students have proposed. Hallagan, Rule & Carlson (2009) found 

that after a problem solving-based teaching intervention, PSETs improved in their ability to 

generalize, however, they encountered more difficulty with determining the algebraic generalization 

for items arranged in squares with additional single items as exemplified by x
2
+1, than with 

multiple sets of items, as exemplified by 4x. Callejo & Zapatera (2016) characterised profiles of the 

teaching competence “noticing students’ mathematical thinking” in the context of pattern 

generalization. PSETs named various mathematical elements to describe the students’ answers but 

did not always use them to interpret the understanding of pattern generalization of each student. 

Their findings allow one to generate descriptors of the development of this teaching competence 

and provide information for the design of interventions in teacher education addressed to support 

the recognition of evidence of students’ mathematical understanding. 

To meet the goals of teaching in the elementary school curriculum, we need to understand more 

about how to better prepare PSETs for this undertaking. As part of a formative evaluation of the 

mathematics education course design, we set out to identify aspects within the course module about 

generalization that require increased attention and emphasis. Specifically, we asked: Which are the 

most common challenges that PSETs still face when solving problems with generalizations of linear 

figural patterns after completing our six-session course module about algebraic generalization?   

Theoretical framework 

According to Radford (1996), the goal of generalizing spatial or numerical patterns is to find an 

expression representing the conclusion derived from the observed facts (concrete numbers). 

Radford claims that the obtained expression is in fact a formula, which is constructed on the basis, 

not of the concrete numbers in the sequence, but on the idea of a general number. Radford asserts 

that “general number” appears as preconcepts to the concept of variable. Hence, he claims that the 

notion of letter as variable is consistent with a generalizing approach to algebra, aiming at 

establishment of relations between numbers. The point is constructing formulae where the symbols 

represent generalized numbers (Radford, 1996). He highlights that one of the most significant 

characteristics of generalization is its logical nature, which makes the conclusion possible. This 

means that the process of generalization is closely connected to that of justification and proof. The 

underlying logic of generalization can be of various types, depending on the student’s mathematical 

thinking. Radford (2008) distinguish between arithmetic and algebraic generalization of the pattern. 

While in both domains some generalizations do certainly occur, in algebra, a generalization will 

lead to results that cannot be reached within the arithmetic domain. Algebraic pattern generalization 



 

 

involves the students in (1) grasping a commonality, (2) generalizing this commonality to all the 

terms of the sequence, and (3) providing a rule that allows them to directly determine any term of 

the sequence (Figure 1; Radford, 2008).  

 

Figure 1: Radford’s (2008) architecture of algebraic pattern generalizations 

Rivera and Becker (2009) extended Radford’s definition by including the necessity of justification 

at the middle school level. “Students have to provide some kind of explanation that their algebraic 

generalization is valid by a visual demonstration that provides insights into why they think their 

generalization is true.” (p.213-214) Rivera (2010) claims that meaningful pattern generalization 

involves the coordination of two interdependent actions, as follows: (1) abductive–inductive action 

on objects, which involves employing different ways of counting and structuring discrete objects or 

parts in a pattern in an algebraically useful manner; and (2) symbolic action, which involves 

translating (1) in the form of an algebraic generalization.  

Methodological approach 

After a six-session module on algebraic generalization as part of a course in mathematics education, 

16 PSETs completed a digital survey with six tasks about generalization of figural patterns. Before 

data collection, the background of the study and research questions were presented to the PSETs. 

Participation was voluntary and anonymous. Answers were in the form of multimodal digital texts 

including text and freehand drawings. Subsequent to data collection, PSETs’ responses were 

downloaded from the server and sorted according to task. A content analysis was performed 

independently by both authors in order to identify categories of common challenges in the PSETs’ 

algebraic pattern generalization process. 

Course content 

The Mathematics 2 course is an optional course which integrates mathematics and didactics. The 

content of the course previous to data collection was: Rich mathematics conversations, 

Argumentation and proof, Representations, Algebraic thinking, Generalization, Figural numbers, 

Equality, Relational thinking, Models for negative numbers, Realistic Mathematics Education, 

Fractions – multiplication and division, Decimal numbers, Percent, Difficulties in Mathematics.  

A module with six sessions of 180 minutes was devoted to these topics: algebraic thinking, 

generalization, figural numbers, equality and relational thinking. These six sessions were taught in 

English and gave the PSETs the opportunity to discuss several tasks about generalization (not only 

with figural patterns), their different solutions, and challenges for pupils. PSETs also discussed 

several research papers on generalization, equality and relational thinking (e.g. Carpenter, Franke & 

Franke, 2003; Kaput & Blanton, 2005; Becker & Rivera, 2006; Mason, 1996) under the guidance of 

the course instructor.  



 

 

Prior to the Mathematics 2 course, in 2016, the PSETs had completed a two-semester compulsory 

Mathematics 1 course whose main content was: Numbers and the number line; Counting; The 

position system; Addition and subtraction; Multiplication and division; Fractions – models, 

comparison, estimation, addition, subtraction; Probability and statistics in primary school.  

Survey 

The survey consisted of six tasks; for the purpose of this paper we focus only on three of them 

(Figures 2, 3, 4).  

Figure 2: Task 1 

Figure 3: Task 2 

Figure 4: Task 4    

Participants 

PSETs were in their third year of a 4-year undergraduate teacher education program for Grades 1-7 

at Department of Teacher Education, NTNU in Trondheim, Norway. The whole group consisted of 

67 students, but only 20 were present in the last session. For technical reasons we only received 

answers from 16 students. In the third teaching session, PSETs were given a figural pattern task to 

solve on their own. Most PSETs did not complete an answer to the first question about near 

generalization, and all of them gave up answering any of the following questions. All PSETs who 

answered the survey were present at almost all teaching sessions and the majority of them was 



 

 

participating quite actively during the course. Hence, the subjects in this study were likely among 

the most highly motivated students in the class.  

Findings 

Pattern generalization  

The majority of students gave satisfactory answers to most of the figural pattern questions, 

requiring both finding the first few figural numbers (near generalization), as well as generalizing to 

figure number 50 or 100 (far generalization). This requires successful abductive-inductive action 

and shows that the PSETs in the study had learned to generalize the figural patterns. This is indeed 

an encouraging result considering that none of the PSETs could solve figural pattern tasks at the 

beginning of the course. At the same time, it is likely that the sixteen PSETs who participated in the 

survey were also among the highest attaining students in the class.  

Imprecise symbolic action 

For items involving the construction of formulas, typically around half of the subjects formed 

symbolic expressions containing mathematical imprecisions, indicating a potential for improvement 

in symbolic action.  

Answers from task 1 illustrate this point well. While in task 1 (Figure 2) 75 % of PSETs provided 

valid generalizations to pattern number 100, only 50 % of PSETs wrote accurate algebraic formulas. 

Answers from the subjects who did not provide mathematically precise formulas fell into two 

categories: a) inaccurate use of variables, and b) improper use of the equal sign.  

Although the problem text specified that the letter n denotes the figure number, 4 PSETs chose to 

use the letter x for their formula without defining what x denotes. As for subject 3: 

S3:  General formula: N=3*x+1; Because we always want to start with 3 since this is 

the "bush" [that makes up the base of the continuing pattern], then we have to 

multiply this "bush" with x since we do not know which day we want to find. 

Finally we must add 1 since all these shapes have only one "stem". 

The notation F(n) could be used to denote the figural number while the letter x was used instead of 

n to denote the figure number. Subject 11: 

S11:  100* 3 + 1 Corresponding formula: fn= x*3 +1 

These inaccuracies indicate an inflexibility in the students’ appropriation of variables, which might 

be rooted in an experience with solving equations where x stands for the unknown.  

In some answers, PSETs gave the same variable name to the figural number and the figure number, 

as for subjects 5 and 10 below:  

S5:  General formula: N = (Nx3)+1; This expression is correct because figure number 

N will have N number of triangles. These triangles have to be multiplied by 3, 

since each triangle consists of three sticks. Then one has to add 1, which 

corresponds to the stick at the bottom. 



 

 

S10:  General formula: n = n x 3 + 1; Because in each triangle one needs 3 matches, so 

to make 4 triangles one needs 4x3 (12) matches, and to make 100 triangles one 

needs 100x3 (300) matches. Therefore n x 3. In the end one needs to add the one 

match which stands, and then it finally becomes +1. 

These responses indicate a lack of attention to equality and the meaning of the equal sign. It 

appeared not only in solutions of task 1, but also in task 4, as shown in the example below for 

subject 15 (task 4c, Figure 4).  

S15  Here he divides into parts where he circles the same dot twice. n = n + ((n + 1) x 

4) – 2. Have to subtract 2 since this is counted twice. 

Lack of structural correspondence with figural pattern 

Finally, both for correct and incorrect answers, the structure of the formulas given by the PSETs 

often did not correspond to the figural pattern.  

For instance, subjects 5 and 13 responded with the same formula for all three different 

decompositions of the figure in task 4 (Figure 4):  

S13: N = n+2+(nx4); n+2 is the body; nx4 is the arms 

Decomposition c) in task 4 contained overlapping regions that were to be subtracted. Still, subject 7 

provided the formula in reduced form, reinterpreting the figure from the second decomposition of 

the same figure: 

S7:  n*5+2; n is the figural number, 5 is the number that it increases by for each figure, 

+ 2 are the circles that are overlapping encircled, that are constant 

While all students wrote some formula for decompositions in task 4a) and 4b), in task 4c) six 

students wrote “I don’t know”. We could see a similar phenomenon in task 2 (Figure 3). While all 

students gave adequate answers to tasks 2a) and 2b), five students answered task 2c with “I don’t 

know”. Slightly more difficult structures of figural patterns (overlapping regions or the two colors, 

which add a layer of complexity) seem to be challenging for PSETs.    

Discussion and conclusion 

In this paper we investigated sixteen preservice elementary teachers’ solutions to linear figural 

pattern generalization tasks. The analysis of these solutions showed that although PSETs typically 

recognized the underlying structure of linear figural patterns, their algebraic notation and syntax of 

algebra was often imprecise. This observation corresponds to the second constraining factor 

identified in Måsøval (2011), related to formalizing mathematical ideas expressed in natural 

language. Most of the formulas that PSETs provided were meaningful, i.e. the formulas conveyed 

the underlying structure in the figural patterns. However, several solutions were characterized by 

imprecise mathematical language. Variable names commonly were not defined or not used 

consistently, and indicated a lack of attention to equality and to what a variable represented. The 

fact that it wasn’t an interview, where PSETs were not asked for further and detailed explanations 



 

 

of their answers, might support the assumption that this is how their notation and argumentation 

will look like in the classroom.  

A meaningful pattern generalization must be accompanied by a symbolic action (Rivera, 2010). In 

the study of Hill et al. (2008), mathematical errors, including errors in language (conventional 

notation, technical language, general language for expressing mathematical ideas), proved the most 

strongly related to teacher knowledge. In further research we will investigate whether increased 

attention to equivalence, symbolic notation, dependent and independent variables, variable names 

and the accuracy of the mathematical language during teaching sessions on generalization might 

benefit the development of PSETs’ teacher knowledge and better prepare PSETs for teaching 

generalization in real classrooms. The recent decision to incorporate programming into the 

Norwegian mathematics curriculum is also an invitation to investigate the role of programming in 

developing the concept of variables and symbolic action in pattern generalization.  
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