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Abstract

Periodic structures have properties of controlling mechanical waves. These solutions are used in aircraft, trains,

submarines, space structures where high level of robustness has to be ensured in presence of uncertainty in the nu-

merical models. The paper presents a stochastic formulation for the Bloch analysis of periodic structures, based on

the quadratic 1D and 2D forms of the Wave Finite Element method. In 1D case, numerical examples of periodic

rod and metamaterial rod systems are considered; for the 2D case, homogeneous and periodic plates considered. In

both cases, the effect of uncertainties on wavenumber variation is studied. The accuracy and performance of the

developed method is compared with Monte Carlo simulation (MCS) results. It is found that the uncertainties affects

the wavenumber scattering. Maximum variation of wavenumber occurs at the band gap edge frequencies and trends

are increasing in higher frequency. In terms of computational cost, the presented formulation offers computational

advantages over MCS. The computational cost savings can be a good point for the optimization and reliability study

under uncertainties of complex structures.
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Highlights

• A stochastic quadratic eigenvalue formulation for the periodic media is presented.

• The longitudinal and flexural waves in the 1D and 2D periodic media are simulated.

• In the case of flexural wave, only out of plane flexural wave are generated.

• The formulation offers computational advantages over the Monte Carlo simulation.
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1. Introduction1

The vibroacoustic performance and dynamics of the structure are essential subjects in aeronautics, transport, en-2

ergy, and space. The structures having periodic properties or repeating patterns show a peculiar feature known as3

band gaps. Band gaps are defined as frequency intervals where both sound and vibration are forbidden from propa-4

gating. Application of this concept can be used [1] for vibration reduction, acoustic blocking, acoustic channelling,5

and acoustic cloaking. The periodic models are used for the vibration attenuation and control in dynamic [2], [3]6

and acoustic reduction in railway tracks [4]. Different methods developed in the literature for modelling of periodic7

structures, such as plane wave expansion method [5], finite difference time domain method [6], multiple scattering8

method [7], transfer matrix (TM) method [3], wave finite element method (WFEM) [8], and differential quadrature9

method [9].10

The design of periodic media is generally based on deterministic models without considering the effect of inherent11

uncertainties existing in these media. In general, the design is aimed at controlling as much as possible the mechanical12

waves; however, inherent uncertainties may affect their characteristics. The uncertainties, in terms of material prop-13

erties and geometrical parameters, are mostly exhibited in both manufacturing and assembly processes. To address14

this unavoidable actuality, the effects of uncertainties need to be considered when analysing frequency band structures15

(pass and stop bands).16

Generally, the stochastic characteristics of the periodic media can be determined by studying the design parameter17

uncertainties, which are often modelled by random variables with consideration for spatial variability of the material18

and geometrical properties. The uncertainties in the material properties scatter the wave in comparison with the19

deterministic prediction.20

Miles [10] proposed an asymptotic solution for the one-dimensional wave propagation in heterogeneous elastic21

with the variation of Young’s modulus and density. The application of the Wentzel-Kramers-Brillouin (WKB) approx-22

imation in the structural dynamics for the inhomogeneous system is introduced by Steele [11]. Manohar et al. [12]23

studied the randomness in the wave propagation in waveguides using spectral element analysis. Langley [13] devel-24

oped a method which enables the average value of the inverse squared transmission coefficient to calculated for the25

one dimensional near periodic structure. Arenas [14] studied an incident plane sound wave travelling along a rigid26

duct where the impedance of a particular horn obtained using the WKB approximation. Sarkar et al. [15] presented a27

parametric stochastic finite element approach based on polynomial expansion in conjunction with proper orthogonal28

decomposition method and dynamic element method for the mid-frequency vibration analysis. Ichchou et al. [16]29

proposed a numerical approach using the WFEM based on the TM considering spatially homogeneous variability30

in waveguides using first-order perturbation theory for the random guided viscoelastic media in the broad frequency31

range. Ben Souf et al. [17] presented hybrid WFEM and stochastic wave finite element method (SWFEM) to develop32

a diffusion matrix of the coupling structure. Ben Souf et al. [18] studied the forced response of the random viscoelastic33

media subject to time-harmonic loading by hybridisation of the deterministic WFEM and a parametric probabilistic34
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approach. Ben souf et al. [19] studied uncertainty propagation in the forced response of the periodic coupled structure35

by hybridisation of WFEM and generalised polynomial chaos expansion. In addition they investigated the modal36

uncertainties effect on the random dynamic response of periodic structures [20]. Fabro et al. [21] investigated force37

response of the finite waveguide undergoing longitudinal and flexural motion using WKB approximation for random38

material and geometrical properties. Also derived approximation with considering waveguide with piecewise constant39

material variability to mitigate the effect of the internal reflections which occur due to any local changes in the material40

or geometrical properties and verified with the experimental investigation.41

Recently in the 1D periodic media, Mencik et al. [22] presented a method to compute the forced response of42

the periodic structures with many perturbed substructures. Fabro et al. [23] studied the robustness of the band gap43

by employing wave finite element transfer matrix (WFEM TM) with WKB and Karhunen-Loeve expansion for the44

undulated beam with and without resonators. Li et al. [24] presented a study considering the material and geometrical45

uncertainty on the band structures of an undulated beam with the periodically arched shape. The band gap calculated46

using finite element method (FEM) and uncertainty propagated using the interval analysis based on the Taylor series47

expansion. Bouchoucha et al. [25] proposed the second order perturbation of the one-dimensional SWFEM method48

proposed by Ichchou et al. [16]. Ma et at. [26] studied the dynamic response of the uncertainty frame structure49

and proposed the travelling wave method integrated with interval method considering uncertainty in the geometric50

dimension and external load. Fabro et al. [27] proposed a method to extend the applicability of WKB expansion51

approach using finite element method. The latest development by Zhao et al. [28] studied symplectic eigenvalue52

problem of the random symplectic matrix employing the Rayleigh quotient method for the study of 1D chain with53

homogenous randomness.54

In 2D periodic media with uncertainty, Ben Souf et al. [29] studied the effect of uncertain parameters on sound55

transmission loss for the composite panels using the generalised polynomial chaos expansion applied with a high level56

of uncertainty. Xie et al. [30] investigated the topology optimisation of 2D Phononic crystals (PnCs) with uncertainties57

and proposed surrogate model-based heuristic algorithm. The band diagram computed with the plane wave expansion58

method and interval model is introduced to handle the uncertainties based on Monte Carlo simulation (MCS). Zakian59

et al. [31] proposed a stochastic spectral finite element method for the wave propagation in random media in the 2D60

plate in the time domain.61

The literature reveals that the effects of uncertainty in the material properties, geometry, loading condition and62

model, play a significant role in altering the state of the wave. The motivation of present work is in the development63

of a numerical tool for the stochastic modelling of 1D and 2D periodic media for the weak level of uncertainties at64

reduced computation cost. The choice of spectral problem is motivated by the fact that it offers [32]: a dynamic65

condensation of the element inner degree of freedom (DOF) to reduce computational DOFs; it allows to compute66

group velocity for finding wave directivity; and provides information about imaginary part of the propagative wave67

which enable computation of forced response from wave based method. This paper focused on employing first-order68

perturbation theory to predict the wave dispersion using spectral problem. The formulation proposes a straightforward69
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approach for the stochastic wave modelling in the periodic structure. The main advantage of the formulation is that,70

commercial finite element (FE) packages, and FE routines can be used for meshing capabilities during the modelling71

of the real structure. In this paper, the SWFEM based on transfer matrix [16] is also extended to 1D periodic media72

cases. The innovative contribution is in the development of the stochastic formulation for Bloch analysis of periodic73

structures, based on the quadratic 1D and 2D forms of the Wave Finite Element method. The results of the stochastic74

formulation are compared to those obtained with analytical sampling and MCS results.75

The paper is organized as follows: Section 2 presents the formulation for the 1D periodic media. Section 376

provides a formulation for the 2D periodic media. In Section 4, the numerical results and validation are presented.77

The elapsed time comparison is presented in Section 5. Finally, Section 6 provides the concluding remarks.78

2. SWFEM quadratic formulation: 1D periodic media79

In the deterministic case, dispersion curve extracted by spectral analysis. The use of a state space representation80

is an interesting alternative to the spectral analysis. However, the numerical ill-conditioning may occur when a large81

number of the unit cells are involved in the periodic system model using the TM method [33].82

To overcome this shortcoming for the stochastic modelling, the stochastic quadratic formulation is presented in83

this section for the 1D periodic media. Also the formulation is adopted for the metamaterial system.84

2.1. SWFEM quadratic formulation85

Consider a one-dimensional periodic system, as shown in Fig.1. One dimensional periodic structures are obtained86

by formulating the unit cell and then repeating in the propagation direction. Then, the study of this structure is87

converted into a study of unit cell based on the Floquet-Bloch theorem [34].

Figure 1: Schematic representation of the periodic structure

88

The variables are displacements as q and forces as F. Introducing the dynamic stiffness matrix (D) = −ω2M +89

K(1 + iη), where K is the stiffness matrix, M is the mass matrix, η is the loss factor and i is the unit imaginary90

number. The node on boundary of the periodic structure is denoted as on left boundary (L), right boundary (R) and91

remaining/internal nodes (I). The displacement DOF q are partitioned into the left (qL) and right (qR). Similarly,92

forces are partitioned into the left (FL) and right (FR). Firstly, the deterministic form of the quadratic eigenvalue93
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problem is obtained. The dynamic of the global waveguide can be expanded on wave solution as follows94

qR = µqL and FR = −µFL (1)

where µ is the propagation constant. Floquet-Bloch condition applied to the dynamic equation, leads to the classic95

quadratic eigenvalue problem [35] in terms of propagation constant96 (
DRL + µiI2n (DLL + DRR) + µ2

i I2nDLR

) (
Φq

)
i
= 0 (2)

where i = 1...2n, n is the cross sectional DOFs, DLL, DRL, DRR and DLR are the element of the dynamic stiffness matrix.97

The wave mode of the global system is
(
(µi, (Φq)i)

)
i=1...2n

. Based on the quadratic eigenvalue form, to accommodate98

the uncertainties effects, the stochastic equation of motion can be expressed in the form99

D̃ q̃ = F̃ (3)

where symbol (̃.) denotes the stochastic entity. The Eq. (3) can be partitioned as follows100  D̃LL D̃LR

D̃RL D̃RR


 q̃k

L

q̃k
R

 =

 F̃k
L

F̃k
R

 (4)

Using the dynamic stiffness matrix symmetry, stochastic quadratic eigenvalue problem can be written as101 (
D̃RL + µ̃iI2n(D̃LL + D̃RR) + µ̃2

i I2nD̃LR

) (
Φ̃q

)
i
= 0 (5)

Using polynomial chaos projection of the variables in the Eq. (5), we can also extract their mean value (.) and standard

deviation (σ). The explicit expression for the standard deviation of the eigenvalues and eigenvectors are derived in

Appendix A. The explicit expression for the standard deviation of the eigenvalues (σµi ) is

σµi =
(
Φq

)T

i

[
σT

DRL
+ µiI2n

(
σDLL + σDRR

)T
+ µ2

i I2nσ
T
DLR

] [
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
−

(
Φq

)T

i

[
σDRL + µi

−1I2n
(
σDLL + σDRR

)
+ µi

−2I2nσDLR

]
[(

Φq

)T

i

[
−(DLL + DRR)T − 2µiI2nD

T
LR

] [
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
−

(
Φq

)T

i

[
µi
−2I2n(DLL + DRR) + 2µi

−3I2nDLR

]]−1
(6)

Explicit expression for the standard deviation of the eigenvectors (σ(Φq)i
) is102

σ(Φq)i
= −

[
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
σDRL + σµiI2n (DLL + DRR) + µiI2n

(
σDLL + σDRR

)
+ 2µiσµi I2nDLR + µ2

i I2nσDLR

] (
Φq

)
i

(7)

Eq. (6) and Eq. (7) are the the explicit expressions for the statistical characterization of the wavenumber using deter-103

ministic eigenvalue solutions in the periodic media.104
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2.2. Internal nodes105

If the formulation requires the dynamic condensation of the inner DOFs at each frequency step, the standard106

deviation of the condensed dynamic stiffness matrix has to be evaluated. Having internal DOFs,(I) as shown in Fig. 2,

Figure 2: Rod element with internal node

107

the DOFs are partitioned into the left boundary DOFs (DL), right boundary DOFs (DR) and internal DOFs (DI).108

Introducing uncertainties in the parameters, the stochastic dynamic stiffness matrix has the following form109

D̃ =


˜̂DLL

˜̂DLI
˜̂DLR˜̂DIL

˜̂DII
˜̂DIR˜̂DRL

˜̂DRI
˜̂DRR

 (8)

where symbol ˜̂(.) represents the stochastic entity from the original dynamic stiffness matrix. The dynamic condensa-

tion and the zero order expansion of the above equation leads to

D =

 DLL DLR

DRL DRR


110

D =

 D̂LL − D̂LI D̂II

−1
D̂IL D̂LR − D̂LI D̂II

−1
D̂IR

D̂RL − D̂RI D̂II

−1
D̂IL D̂RR − D̂RI D̂II

−1
D̂IR

 (9)

The first order expansion leads to the standard deviation of the condensed dynamic stiffness matrix (detailed derivation111

in Appendix B)112

σD =

 σD̂LL
σD̂LR

σD̂RL
σD̂RR

 −
 D̂LI σD̂LI

D̂RI σD̂RI


 D̂II

−1
−D̂II

−1
σD̂II

D̂II

−1

0 D̂II

−1


 σD̂IL

σD̂IR

D̂IL D̂IR

 (10)

where symbol (̂.) represents the mean value from the original dynamic stiffness matrix. The Eq. (10) is used for113

accommodating contribution of standard deviation of the condensed DOFs on the boundary DOFs.114

2.3. Attached resonators115

For the low-frequency range, the band gaps can be achieved by mounting the periodically local resonators. The116

locally resonance (LR) metamaterial-based rod system consists of a uniform rod and periodically attached spring (ki)117
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Figure 3: Unit cell with local resonator

and mass (mi). The number of springs and masses in resonator can be chosen based on targeted band gap character-118

istics as per design of the metamatrial rod [36]. The unit cell of the LR rod shown in Fig.3. Where dynamic stiffness119

matrix (D0) of the resonator at the attachment point can be written as120

D0 = k −
(
k2/

(
k − ω2m

))
(11)

Once the dynamic stiffness matrix for the LR is obtained, then it needs to be attached to the unit cell of the host121

structures. The dynamic stiffness matrix of the LR rod obtained as122

D =

 DLL DLR

DRL DRR

 =

 DLL + D0 DLR

DRL DRR

 (12)

In the host structure, the stochastic equation of motion can be expressed as123  D̃LL D̃LR

D̃RL D̃RR


 q̃k

L

q̃k
R

 =

 F̃k
L

F̃k
R

 (13)

Above expression is similar to the stochastic equation of motion express in Eq. (4). The stochastic wavenumber124

characterization can be obtained by using explicit Eq. (6), Eq. (7) which are discussed in the previous subsection 2.1.125

3. SWFEM quadratic formulation: 2D periodic media126

3.1. Four noded rectangular element127

Considering an infinite thin plate lying in the (x, y) plane and its unit cell is shown in Fig. 4. The unit cell is128

divided into four corner nodes. The unit cell DOFs (q) are divided into four corner nodal DOFs, q1, q2, q3 and q4.129

The vector of nodal DOFs are given by q =
[
qT

1 , q
T
2 , q

T
3 , q

T
4

]T
, similarly, the vector of nodal forces are given by130

f =
[
f T
1 , f T

2 , f T
3 , f T

4

]T
. Where T denotes the transpose.131

The time-harmonic equation of motion of the unit cell can be written as132 (
K − ω2M

)
q = f (14)

where K is the stiffness matrices, M is the mass matrices, ω is the circular frequency, f is the nodal forces vector and133

q is the nodal displacements vector. This equation is used to form the spectral problem involving wavenumber kx, ky134

and frequency ω. The dynamic stiffness matrix can be expressed as D = K − ω2M.135
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Figure 4: Rectangular plate element

Here introducing the periodic structure theory for the unit cell and considering a time-harmonic response ([37])136

the deterministic harmonic equation of motion can be expressed as137 (
K∗

(
λx, λy

)
− ω2M∗

(
λx, λy

))
q1 = 0 (15)

where K∗ = ΛLKΛR and M∗ = ΛLMΛR are the reduced stiffness and mass matrices. λx and λy are the propagation

constants in x and y direction respectively. ΛL and ΛL are matrices which contains the propagation constants from the

periodicity conditions.

ΛL =

[
I λ−1

x I λ−1
y I λ−1

x λ
−1
y I

]
138

ΛR =



I

λxI

λyI

λxλyI


(16)

where I is the identity matrix.139

The eigenvalue problem of Eq.( 15) can be expressed as140

D∗
(
ω, λx, λy

)
q1 = 0 (17)

where D∗
(
ω, λx, λy

)
is the reduced dynamic stiffness matrix. For the shake of clarity the reduced dynamic stiffness141

matrix is now represented as D. If reduced dynamic stiffness matrix partitioned as142

D =



D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44


(18)
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Then the eigenvalue problem in Eq. (17) can be written in the following form

[
(D11 + D22 + D33 + D44) + (D12 + D34)λx + (D21 + D43)λ−1

x + (D13 + D24)λy + (D31 + D42)λ−1
y

+D14λxλy + D41λ
−1
x λ
−1
y + D32λxλ

−1
y + D23λ

−1
x λy)

]
q1 = 0 (19)

The solution of Eq. (17) in the case where frequency and one wavenumber in x or y direction are known, the eigenvalue

form becomes a quadratic eigenvalue problem. Then the nonlinear Eq. (19) can be reduced to quadratic eigenproblem

in λx form when λx is unknown and (ω, λy) are given

[
(D21 + D43 + D41λ

−1
y + D23λy) + µi(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy)

+ µ2
i (D12 + D34 + D32λ

−1
y + D14λy) ]

(
Φq

)
i
= 0 (20)

For the stochastic modelling, assume that uncertainties are spatially homogeneous to guarantees the periodicity as-143

sumption to be respected in the stochastic case. The stochastic equation of motion can be expressed as144

D̃
(
ω, λx, λy

)
q1 = 0 (21)

where stochastic dynamic stiffness matrix (D̃) has the form D̃ = (D + σDε). (ε) is Gaussian variable centred and

reduced. Above Eq. (21) extends Eq. (17) to the stochastic case. Then the stochastic spectral problem is expressed as

[
(D̃21 + D̃43 + D̃41λ

−1
y + D̃23λy) + µ̃iI2n(D̃11 + D̃22 + D̃33 + D̃44 + (D̃31 + D̃42)λ−1

y + (D̃13 + D̃24)λy)

+µ̃2
i I2n(D̃12 + D̃34 + D̃32λ

−1
y + D̃14λy)

] (
Φ̃q

)
i
= 0 (22)

where
(̃
µi, φ̃i

)
i=1...2n

are the stochastic waveguide propagation modes. Then stochastic eigensolutions of Eq. (22) are145

expressed as follows146

µ̃i =
(
µi + σµiε

)
φ̃i =

(
φi + σφiε

) (23)

Using polynomial chaos projection of variables in the Eq. (22), extract their mean value (.) and standard deviation147

(σ). The explicit expression for the standard deviation of eigenvalues and eigenvectors obtained from the stochastic148

quadratic eigenvalue problem are given below. A detailed derivation is given in Appendix C.149
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The explicit expression for the standard derivation of the eigenvalues (σµi ) is

σµi =
(
Φq

)T

i

[
(σT

D21
+ σT

D43
+ (σD41λ

−1
y )T + (σD23λy)T ) + µiI2n(σT

D11
+ σT

D22
+ σT

D33
+ σT

D44
+ (σD31λ

−1
y )T + (σD42λ

−1
y )T

+(σD13λy)T + (σD24λy)T ) + µ2
i I2n(σT

D12
+ σT

D34
+ (σD32λ

−1
y )T + (σD14λy)T )

] [
(D

T
21 + D

T
43 + (D41λ

−1
y )T + (D23λy)T )

+σµi I2n(D
T
11 + D

T
22 + D

T
33 + D

T
44 + ((D31 + D42)λ−1

y )T + ((D13 + D24)λy)T ) + µ2
i I2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy)T

]−1

+
[
(D21 + D43 + (D41λ

−1
y )(D23λy)) + µi

−1I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy)

+µi
−2I2n(D12 + D34 + D32λ

−1
y + D14λy)

]
−

(
Φq

)T

i

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + µi

−1I2n(σD11 + σD22 + σD33

+σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy) + µi

−2I2n
(
σD12+ σD34 + σD32λ

−1
y + σD14λy)

]
[(

Φq

)T

i

[
−(D

T
11 + D

T
22 + D

T
33 + D

T
44 + (D31λ

−1
y )T + (D42λ

−1
y )T ) − 2µiI2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy)T )

]
[
(D

T
21 + D

T
43 + (D41λ

−1
y )T + (D23λy)T ) + µiI2n(D

T
11 + D

T
22 + D

T
33 + D

T
44 + ((D31 + D42)λ−1

y )T + (D13 + D24)λT
y )

+µ2
i I2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy))T

]−1 [
(D21 + D43 + (D41λ

−1
y ) + (D23λy)) + µi

−1I2n(D11 + D22 + D33

+D44 + (D31 + D42)λ−1
y + (D13 + D24)λy) + µi

−2I2n(D12 + D34 + D32λ
−1
y + D14λy)

]
−

(
Φq

)T

i[
µi
−2I2n(D11+ D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy) + 2µi
−3I2n(D12 + D34 + D32λ

−1
y + D14λy)

]]−1

(24)

Analogously, the explicit expression for the standard deviation of the eigvenvectors (σ(Φq)i
) is

σ(Φq)i
= −

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + σµi I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y

+(D13 + D24)λy) + µiI2n(σD11 + σD22 + σD33 + σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy)

+2µiI2nσµi (D12 + D34 + D32λ
−1
y + D14λy) + µ2

i I2n(σD12 + σD34 + σD32λ
−1
y + σD14λy)

] (
Φq

)
i[

(D21 +D43 + D41λ
−1
y + D23λy) + µiI2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy)

+ µ2
i I2n(D12 + D34 + D32λ

−1
y + D14λy)

]−1
(25)

Above Eq. (24) and Eq. (25) are the explicit expressions for the statistics of wave propagation using deterministic150

eigenvalue solutions in the periodic media for the 2D cases.151

3.2. Internal nodes152

If the modeling of cells need inner DOFs, a condensed dynamic stiffness matrix is necessary. In case of internal153

node (I) (Fig. 5), the DOFs are partitioned into the boundary DOFs (Dbd) and internal DOFs (DI). The dynamic154

stiffness matrix has the following form155

D =

 D̂bdbd D̂bdI

D̂Ibd D̂II

 (26)

11



Figure 5: Schematic diagram of a thin plate element with inner nodes

where symbol (̂.) represents the elements from the original dynamic stiffness matrix. The standard deviation of the156

condensed dynamic stiffness matrix (derived in Appendix B) can be expressed as157

σDbd =
[
σD̂bdbd

]
−

[
D̂bdI σD̂bdI

]  D̂II

−1
−D̂II

−1
σD̂II

D̂II

−1

0 D̂II

−1


 σD̂Ibd

D̂Ibd

 (27)

where symbol (̂.) represent the mean value from the original dynamic stiffness matrix.158

4. Numerical results and discussion159

The proposed numerical scheme is summarized in the workflow in Fig. 6. In this section, the validation of the160

developed stochastic WFEM based on quadratic eigenvalue (SWFEM QEV) formulation is carried out. In the first161

part, the validation of SWFEM QEV for the 1D periodic rod with band gap is presented. Also, the validation of the162

metamaterial case is discussed. In the second part, the SWFEM QEV formulation is validated for the homogeneous163

and periodic plate and the applicability and accuracy of the formulation is checked.164

4.1. Validation of SWFEM QEV: 1D (longitudinal waves)165

This subsection includes the validation of the SWFEM QEV formulation applied to a 1D periodic rod considering166

the material uncertainty; also the variation of the wavenumber is analyzed with the variation of the input properties.167

4.1.1. Dispersion analysis of periodic rod168

Periodic rod consists of section A of length l1 and section B of length l2 as depicted in the Fig.7. Here cells A and169

B are made of different materials. The validation of the present developed formulation is demonstrated by comparing170

the result with those available from analytical sampling and MCS. The SWFEM QEV is used to study the effect of171
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Figure 6: Workflow of developed SWFEM

parametric uncertainties on the dispersion relation of the longitudinal wave in periodic rod with sections A and B172

made of epoxy and aluminium respectively. The length of l1 and l2 are 1m each with a circular cross section of a173

radius of 0.0644m.174

The reference analytical solution of a periodic rod is based on the following expression of the wavenumber [38]175

cos(kl) = cos
(
ω

ca
la

)
cos

(
ω

cb
lb

)
−

1
2

(
ρaca

ρbcb
+
ρbcb

ρaca

)
sin

(
ω

ca
la

)
sin

(
ω

cb
lb

)
(28)

where ca, cb is the wave velocity in the section A and B respectively and expressed as ca =
√

Ea/ρa and cb =
√

Eb/ρb,176

Ea, ρa, la are the Young’s modulus, the density and length for section A and Ea, ρa, lb for the section B. l is the total177

length of the unit cell.178

Here the stochastic wave finite element method based on transfer matrix (SWFEM TM) [16] is extended to 1D179

periodic media by finding the standard deviation of the condensed dynamic stiffness matrix. A detailed reminder of180

SWFEM TM is presented in Appendix E.181
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Figure 7: Symmetric unit cell of 1D periodic rod

The uncertainty effect is studied considering a variation of (4%) of the Young’s modulus nominal values. It is to182

be mentioned that the input uncertainties are represented inside the bracket (x). The frequency range is up to 2000183

Hz. The sampling method with 10000 samples is used to get the wave characteristics of the analytical wavenumber184

obtained using Eq. (28). As number of number of samples is increased the sampling error is decreased so 10000185

samples are chosen to obtain the reference results. The analytical sampling and MCS results are treated as reference186

result for validation purpose.187

Two node rod element is considered. This element allows treatments of longitudinal wave. The local stiffness and188

mass matrices are assembled into global stiffness and mass matrices in the MATLAB environment with 200 elements189

in the unit cell of the periodic rod. In this way, the wavelength contains at least 20 elements in the frequency range.190

The material and geometric properties are reported in Table 1.

Table 1: Material and geometric properties of periodic rod

Geometry/Property Value

Rod length (A) 1 m

Rod length (B) 1 m

Radius of rod 0.0644 m

Young’s modulus (A) 4.50 ×109 Pa

Young’s modulus (B) 70 ×109 Pa

Mass density (A) 1200 kg/m3

Mass density (B) 2700 kg/m3

Loss factor (A) and (B) 0.001

191

The results obtained with analytical sampling, SWFEM TM, SWFEM QEV, and wave finite method Monte Carlo192
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simulation (WFEM MCS) are compared. The mean values comparison is shown in Fig. 8; there exist two full193

band gaps, first at approximately 418-928 Hz and the other 1184-1847 Hz. It is to be noted that the WFEM MCS194

are performed on WFEM quadratic form. The comparison of the standard deviation is presented in Fig. 9. The195

results are in good agreement. The SWFEM QEV standard deviation is computed considering loss factor on the196

contrary the analytical sampling is computed without damping. It is observed that the effect of the uncertainty on the197

longitudinal wavenumber, at the start of the first band gap, is nearly 3% and 10% nearly at the end of the band gap.198

With increasing frequency, the uncertainty effect is growing as seen that variation is around 33% at the start of second199

bandgap frequency and 35% at the end of the second band gap frequency. It suggests that the effect of the uncertainty200

is increasing with increasing frequency range for longitudinal wavenumber, as expected.
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Figure 8: Mean value of longitudinal wavenumber comparison (Young’s modulus stochastic)

201

4.1.2. Effect of the uncertain parameter on the wavenumber in the periodic rod202

The variation of material parameter scatters the longitudinal wavenumber. Here the focus is to quantify the vari-203

ation of the coefficient of variation (COV) which is defined as (standard deviation /mean value) for the longitudinal204

wavenumber with the variation of COV of the material properties; it also helps to judge the capacity of the developed205

formulation for the range of variation it can accommodate. In the numerical experiment, the material properties,206

namely Young’s modulus and density, are varying with Gaussian distribution. For the comparison 10000 samples207

are used for the WFEM MCS. The input in term of COV is varying up to (7%) about the mean value of the consid-208

ered parameter. In the first case, Young’s modulus is stochastic. The comparison of the COV of the input parameter209

(Young’s modulus stochastic) at discrete frequencies are shown in Fig. 10. From the figure, it is observed that in the210
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Figure 9: Standard deviation of longitudinal wavenumber comparison (Young’s modulus stochastic)

propagation frequency region, the variation the wavenumber is linear; however, this is not withheld when it comes to211

the edge of the band gap frequency. In the low frequency, the variation of wavenumber is significantly affected by the212

variation of the input uncertainty. The highest variation is recorded at the second band gap edge frequency.213

The comparison of stochastic density is shown in Fig. 11. The same behaviour is visible in case of the stochastic214

density. From the graph, it is confirmed that the validity of the developed formulation is limited to roughly 4%215

variation. It is because of the fact that the formulation is based on the first order expansion. The effect of elasticity216

stochasticity is higher than the stochastic density. Also, the significance of the uncertain wavenumber is increasing217

with the increasing frequency of the interest.218

4.1.3. Dispersion analysis of metamaterial rods219

To demonstrate the capability of the developed stochastic formulation to work with a metamaterial system; a220

simple metamaterial based rod system is considered. The system consisting of a uniform rod with a periodically221

attached single degree of freedom (SDOF) local resonators, is evaluated. The metamaterial rod system material and222

geometrical parameters are as presented in Table 2.223

The local resonator frequency of the SDOF resonator is tuned to 500 Hz with a mass ratio of 20% of the host224

system. The resonator with the stiffness 1.6743×106N/m and mass of 0.1696 kg is attached to the left end of the225

host rod. The uncertainty in the host rod is considered in Young’s modulus with (4%) around the nominal value. The226

comparison for WFEM MCS, SWFEM QEV and SWFEM TM is presented. The mean value comparison is shown227
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Figure 10: Variation of the longitudinal wavenumber with varying Young’s modulus, MCS with 10000 samples (blue star line) and present formu-

lation (red diamond line) at discrete frequency
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Figure 11: Variation of the longitudinal wavenumber with varying density, MCS with 10000 samples (blue star line) and present formulation (red

diamond line) at discrete frequency
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Table 2: Metamaterial rod material and geometric properties

Geometry/Property Value

Rod length 1 m

Radius of rod 0.01 m

Young’s modulus 70 ×109 Pa

Mass density 2700 ×109 Pa

Loss factor 0.01

in Fig. 12 and standard deviations comparison in Fig. 13. It can seen from the graphs, the curves are in excellent228

agreement which confirms the validity of the formulation for the simulation of uncertainty in the metamaterial system.229

In Fig. 12 a typical asymmetric resonance gap observed with sharp attenuation at resonator tuned frequency (500 Hz)230

of the SDOF resonator. In the lower tuned frequency, the nature of such attenuation is asymmetric. An indicator is231

used to check the effects of uncertainties. Stochasticity indicator is defined as the ratio of the standard deviation of the232

wavenumber and the mean of the wavenumber at a discrete frequency. It is also expressed as coefficient of variation233

(COV):234

COV = σk/k (29)

where σk is the standard deviation of the wavenumber and k is the mean value of wavenumber. It indicates the spread235

of the wavenumber at discrete frequency step. The stochastic indicator for the metamaterial system is presented in Fig.236

14. From the graph it is visible that roughly 2% variation of the propagative longitudinal wavenumber exist. When237

it comes about the resonance band gap, the variation of 2.63% of the wavenumber occurs at the start of resonance238

band gap frequency (492 Hz) and maximum variation of 2.7% of the wavenumber at the end of resonance band gap239

frequency (552 Hz). Inside the resonance band gap, the variation of wavenumber attains it minimum with 1.4%240

variation. However; it is not completely zero. As a matter of fact, the results shows that the uncertainty alters the241

wave states inside the resonance band gap and uncertainties effects are increasing in higher frequency. Also, the results242

obtained from the SWFEM QEV are in excellent agreement with the WFEM MCS results inside the resonance band243

gap.244

4.1.4. Effect of the uncertain parameter on the wavenumber of metamaterial rod245

To assess the effect of the uncertain input to the variation of the wavenumber of the metamaterial rod system, the246

uncertainty in the host structure is considered. The variation of the wavenumber on the variation of Young’s modulus247

is plotted in Fig. 15. In the case of stochastic density, the variations are shown in Fig. 16. From the graphs, it can248

be observed that with stochastic elastic modulus, the effect on wavenumber is showing linear trends. However; with249

uncertainty density, the band gap widens slightly. Also, around the resonance frequency, effect of the uncertainty is250

nearly minimum. It is noteworthy that in the case of the metamaterial and stochastic host structure, the quadratic251
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Figure 12: Mean value of the real and imaginary part of longitudinal wavenumber comparison (Young’s modulus stochastic)
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Figure 13: Standard deviation of the real and imaginary part of longitudinal wavenumber comparison (Young’s modulus stochastic)

formulation can handle a higher level of uncertainties.252

4.2. Validation of SWEFM QEV: 2D (flexural waves)253

In this section, numerical studies are presented to demonstrate the validity and applicability of the stochastic254

quadratic formulation developed in the paper. Two cases, namely homogenous plate case and periodic plate case are255

discussed; also the wavenumber dispersion is analyzed with the variation of the input parameters.256
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Figure 14: Stochasticity indicator for metamaterial rod system (Young’s modulus stochastic)
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Figure 15: Variation of the longitudinal wavenumber with host structure uncertainty (Young’s modulus stochastic), MCS with 10000 samples (blue

star line) and present formulation (red diamond line) at discrete frequency
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Figure 16: Variation of the longitudinal wavenumber with host structure uncertainty (density stochastic), MCS with 10000 samples (blue star line)

and present formulation (red diamond line) at discrete frequency

4.2.1. Homogeneous plate257

To demonstrate the validity of the formulation in the simple homogenous plate case, numerical simulations are258

performed. A thin plate unit cell is modelled with four node elements with three DOFs at each node. The material259

and geometrical properties are reported in Table 3. The sides of the unit cell are Lx = Ly = 0.005m with thickness

Table 3: Material properties for homogeneous plate

Geometry/Property Value

Young’s modulus 210 ×109 Pa

Poission’s ratio 0.3

Mass density 7800 kg/m3

Loss factor 0.01

260

h = 0.0005m. The reference analytical solution of a plate is based on following expression of the wavenumber261

k f = 4
√
ρhω2/Dbending (30)

where plate bending stiffness is Dbending = Eh3/12
(
1 − ν2

)
. E is the Young’s modulus, ρ is the density, ν is the262

Poission’s ratio, h is the plate thickness and ω is the circular frequency. The uncertainty effect is studied with variation263

of (4%) of the Young’s modulus around nominal value. The out of plane flexural wave is responsible for transmitting264

most of the acoustic energy. Therefore out of plane flexural wave is the primary wave type taken into account during265
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the numerical analysis. The analytical sampling and WFEM MCS results (both with 10000 samples) are treated as266

reference results for the validation purpose. The mean value comparison of the flexural wavenumber is presented267

in Fig. 17. Also the standard deviation comparison is shown in Fig. 18. The standard deviation is obtained from268

the SWFEM QEV is in excellent agreement with analytical sampling and WFEM MCS resutls. This verifies the269

validity of the stochastic quadratic formulation for the homogenous plate. The stochasticity indicator for the (4%)270

variation in the Young’s modulus is plotted and shown in Fig. 19. From the figure it can be inferred that Young’s271

modulus uncertainty does not shows any variation on the out of plane flexural wavenumber with the frequency. The272

dispersion curve in the (kx, ky) plane at discrete frequencies are presented in Fig. 20. The mean and standard deviation273

comparison is shown in the Fig. 20 for the discrete frequencies. From Fig. 20 it can be observed that the contours274

curves are independent of propagation direction. This is in fact due to the isotropic nature of the plate. There the275

material properties are independent of the direction and, this is also predicted in the simulated results.
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Figure 17: Mean value of out of plane flexural wavenumber in x direction (Young’s modulus stochastic)

276

4.2.2. Effect of the uncertain parameter on out of plane flexural wavenumber of homogeneous plate277

The influence of the uncertainties in the material property on the variation of out of plane flexural wavenumber278

is discussed. The COV of the wavenumber with change of input COV for the range from (1%) to (7%) is analyzed.279

In first case, only Young’s modulus considered as an uncertain input. The comparison of the COV of the flexural280

wavenumber obtained from SWFEM QEV and COV of the WFEM MCS results are presented in Fig. 21. From281

Fig. 21 it can be seen that the flexural wavenumber variation is linear. In the second case, the density is considered282

as the uncertain input parameter. The comparison is presented in Fig. 22; and linear variation of the wavenumber283

is observed. In both cases, the results obtained from SWFEM QEV is very close with the reference WFEM MCS284

results. It shows the accuracy of the formulation for the range of COV considered. From Fig. 21 and Fig. 22, it can285

also be seen that the variations of the flexural wavenumber is slightly higher with uncertain Young’s modulus than the286
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Figure 18: Standard deviation out of plane flexural wavenumber in x direction (Young’s modulus stochastic)
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Figure 19: Stochasticity indicator for out of plane flexural wavenumber in x direction (Young’s modulus stochastic)

uncertain density.287

4.2.3. Periodic plate288

In this subsection, validation of the SWFEM QEV formulation is performed for 2D perioidic plate. Also the flex-289

ural wavenumber dispersion statistics is analyzed with variation of the input parameters. The periodic plate contains290

N repeating unit cell in both x and y direction. Each unit cell consists of an assembly of a 2x2 array of unit cells made291

with sub-plate type A and sub-plate type B. The material properties of the sub-plate types A and B are different. The292

schematic of periodic plate and corresponding unit cell model is shown in Fig. 23. The considered material properties293

are reported in Table 4. The periodic plate unit cell is modeled with four noded elements with three DOFs at each294

node. The sides of the unit cell are Lx = Ly = 0.1m with thickness h = 0.01m.295
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Figure 20: k-space mean value and standard deviation (Young’s modulus stochastic), MCS results (blue star) and present formulation (red diamond)

at discrete frequency
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Figure 21: Variation of the out of plane flexural wavenumber (Young’s modulus stochastic), MCS with 10000 samples (blue star line) and present

formulation (red diamond line) at discrete frequency
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Figure 22: Variation of the out of plane flexural wavenumber (density stochastic), MCS with 10000 samples (blue star line) and present formulation

(red diamond line) at discrete frequency

Table 4: Material properties for homogeneous plate

Geometry/Property Value

Young’s modulus of sub-plate type A 70 ×109 Pa

Young’s modulus of sub-plate type B 4.5 ×109 Pa

Poission’s ratio of sub-plate type A and B 0.3

Mass density of sub-plate type A 2700 kg/m3

Mass density of sub-plate type B 1200 kg/m3

Loss factor of sub-plate type A and B 0.01

The validation of the developed formulation is presented for out of plane flexural wavenumber. The considered296

frequency range is upto 3000 Hz. The Young’s modulus of sub-plate type A and sub-plate type B are considered297

uncertain. The variation of (4%) about the nominal values of Young’s modulus is studied. Since there is no results298

reported in the literature for the the periodic plate with uncertainties, the WFEM MCS with 10000 samples is con-299

sidered as the reference solution. Using (ω, ky) formulation the flexurual wavenumber dispersion is computed and300

comparison of the mean value and standard derivation is shown in Fig. 24 and Fig. 25 respectively. The comparison301

shows the agreement of the SWFEM QEV results with the reference results. It verifies the applicability of formulation302

for periodic plate case. From the mean value comparison shown in Fig. 24, it can be observed, the start of the band303

gap is approximately at 2352 Hz. At the same frequency maximum value of standard deviation is observed in the304
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Figure 23: Schematic of the periodic plate and unit cell of the periodic plate

standard deviation comparison graph shown in Fig. 25. Also inferring to the stochasticity indicator presented in Fig.305

26, the maximum variation of 6.5% of the wavenumber is observed at 2352 Hz. Inside the band gap zone, the variation306

of wavenumber shows the decrease in value of the standard deviation.
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Figure 24: Mean value of out of plane flexural wavenumber in x direction (Young’s modulus stochastic)

307

The dispersion curve in the (kx, ky) plane at discrete frequencies are shown in Fig.27. From Fig.27, It can be seen308

that the contour curves are dependent on the propagation direction. It is due to the periodicity of the plate. It can be309

summaries that the uncertainties affects the out of plane flexural wavenumber scattering and maximum value of the310

variation of out of plane flexural wavenumber occurs at the band gap edge frequencies.311

4.2.4. Effect of the uncertain parameter on the out of plane flexural wavenumber of periodic plate312

The COV of the out of plane flexural wavenumber with uncertain Young’s modulus and uncertain density are313

analyzed. The scattering of the out of plane flexural wavenumber can be taken by allowing the COV of the material314
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Figure 25: Standard deviation out of plane flexural wavenumber in x direction (Young’s modulus stochastic)
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Figure 26: Stochasticity indicator for out of plane flexural wavenumber in x direction (Young’s modulus stochastic)

parameters to vary in the range from (1%) to (7%). In this range, the presented results would be enough to extrapolate315

the results for the COV keeping in mind the limitation of the first-order perturbation method. The variation of the316

out of plane flexural wavenumber for the periodic plate with uncertainty in Young’s modulus is shown in Fig. 28,317

and with uncertainty in density is shown in Fig. 29. It can be observed that the flexural wavenumber COV for the318

uncertain elasticity is higher than uncertain density. This difference in COV is very minimal and can be seen mostly319

with increasing frequency. The COV plots shown the linear variation of out of plane flexural wavenumber in low320

frequency regions, and shifting to higher variation with increasing frequency.321
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Figure 27: k-space mean value and standard deviation of wavenumber (Young’s modulus stochastic)
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Figure 28: Variation of the out of plane flexural wavenumber (Young’s modulus stochastic), MCS with 10000 samples (blue diamond line) and

present formulation (red star line) at discrete frequency

5. Elapsed time comparison322

In the context of uncertainty quantification in periodic media, in crude MCS, the sample selection mainly depends323

on maximum number of simulations, elapsed time and desired accuracy. In order to establish the preeminence of324

SWFEM QEV over the WFEM MCS, the numerical costs involved in computation is compared with that of crude325
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Figure 29: Variation of the out of plane flexural wavenumber (density stochastic), MCS with 10000 samples (blue star line) and present formulation

(red diamond line) at discrete frequency

MCS with 10000 samples. As number of number of samples is increased the sampling error is decreased so 10000326

sample are chosen in the reference results. One test case each for 1D and 2D cases are presented to exhibit the327

elapsed time comparison, because running many computations involving different parameter elapsed time trends are328

approximately equivalent in all cases. The test ran on the mobile workstation with the following characteristics, Intel329

CoreTM i7 7820 HQ CPU@2.90GHz with 32 GB RAM. The comparison of elapsed time is reported in Table 5.

Table 5: Elapsed time comparison

WFEM MCS (10000 samples) SWFEM QEV (single run)

1D periodic media 3840 seconds 5.45 seconds

2D periodic media 14400 seconds 21.57 seconds

330

It can be seen from Table 5 that computational effort by application of SWFEM QEV is much smaller compared331

to WFEM MCS. The employed perturbation method computation efficiency results from the facts, to compute the332

response variability very few additional matrix factorisations are performed. The SWFEM QEV formulation uses333

the deterministic results to evaluate the response variability of the wavenumber. Thus, SWFEM QEV formulation334

has superiority over the WFEM MCS in computation cost, which can turn to great advantage for modeling complex335
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periodic structures.336

6. Conclusion337

This paper presents a computationally inexpensive stochastic spectral approach to study the uncertainties effects338

in 1D and 2D periodic media. In 1D cases, the proposed formulation applied to periodic rod and metamaterial rod on339

the frequency up to 2000 Hz. The comparison of present results is performed with SWFEM TM, WFEM MCS and340

analytical solutions. It provides excellent agreement and a substantial reduction in computation cost. The effect of341

uncertain parameters on the logitudinal wavenumber dispersion investigated considering stochasticity indicator and342

COV study. The effect on variation of longitudinal wavenumber is higher with elastic stochasticity than the stochastic343

density. Noteworthy, that in case of metamaterial rod system, the developed formulation can handle a higher level344

of uncertainties. In 2D cases, the formulation applied to homogeneous plate up to 10000 Hz and periodic plate with345

frequency up to 3000 Hz. In homogenous plate case, it is found that variation of out of plane flexural wavenumber346

is slightly higher with uncertain elasticity than the uncertain density. For periodic plate case, uncertainties affects347

the out of plane flexural wavenumber scattering, and maximum value of the variation of flexural wavenumber occurs348

at the band gap edge frequency. The COV study highlights the linear variation of flexural wavenumber in the low-349

frequency region and shifts to higher variation with increasing frequency. In terms of computation cost, developed350

formulation offers huge cost savings. The computational cost savings are very interesting and can be a good point351

for the optimisation and reliability study under uncertainties of complex periodic structures for damage detection and352

sensitivity analysis. Furthermore, The formulation can be employed for layered media, laminated, fibre reinforced353

and complicated cross-section geometry for determining the variation of dispersion properties, wavemodes, group354

and phase velocities.355
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A. Derivation for the standard deviation of the eigenvalues and eigenvectors for 1D periodic media456

Stochastic eigenvalues (̃µi) and stochastic eigenvectors
(
Φ̃q

)
i

are the solution of the stochastic quadratic equation457

Eq. (5). The zeroth order chaos expansion of Eq. (5) leads to458 (
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

) (
Φq

)
i
= 0 (A.1)

The first order chaos expansion of the stochastic quadratic Eq. (5) leads to[
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]
σ(ΦqL)i

+
[
σDRL + σµi I2n(DLL + DRR) + µiI2n(σDLL + σDRR + 2µiI2nσµi DLR + µ2

i I2nσDLR )
] (

Φq

)
i
= 0 (A.2)

From above equation the standard deviation of eigenvectors σ(Φq)i
can be expressed as

σ(Φq)i
= −

[
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
σDRL + σµiI2n(DLL + DRR) + µiI2n

(
σDLL + σDRR

)
+ 2µiI2nσµi DLR + µ2

i I2nσDLR

] (
Φq

)
i

(A.3)(
Φ̃q

)T

i
, the stochastic left eigenvectors linked with stochastic left eigenvalues µ̃−1

i , which form the stochastic left459

quadratic eigenvalue problem as460 (
Φ̃q

)T

i

(
D̃RL + µ̃−1

i I2n(D̃LL + D̃RR) + µ̃−2
i I2nD̃LR

)
= 0 (A.4)

The first order chaos expansion of stochastic left quadratic eigenvalue leads to

σ(Φq)i

T
[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
+

(
Φq

)T

i

[
σDRL − µi

−2I2nσµi (DLL + DRR)

+µi
−1I2n(σDLL + σDRR ) − 2µi

−3I2nσµi DLR + µi
−2I2nσDR

]
= 0 (A.5)

In the above equation, identification of the targeted terms σ(Φq)i
, σµi and replacement of σ(Φq)i

leads to

−
[ [

DRL + µiI2n(DLL + DRR) + µ2
i I2nDLR

]−1 [
σDRL + σµi I2n(DLL + DRR) + µiI2n(σDLL + σDRR )

+2µiσµi I2nDLR + µ2
i I2nσDLR ](Φq)i

]T [
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
+

(
Φq

)T

i[
σDRL − µ

−2
i I2nσµi (DLL + DRR) + µ−1

i I2n(σDLL + σDRR ) − 2µ−3
i I2nσµi DLR + µ−2

i I2nσDLR

]
= 0 (A.6)

Simplification of the above equation for σµi leads to

σµi I2n

[(
Φq

)T

i

[
−(DLL + DRR)T − 2µiI2nD

T
LR

] [
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
−

(
Φq

)T

i

[
µi
−2I2n(DLL + DRR) + 2µi

−3I2nDLR

]]
=

(
Φq

)T

i

[
σT

DRL
+ µiI2n

(
σDLL + σDRR

)T
+ µ2

i I2nσ
T
DLR

] [
DRL + µiI2n

(
DLL + DRR

)
+ µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n

(
DLL + DRR

)
+ µi

−2I2nDLR

]
−

(
Φq

)T

i

[
σDRL + µi

−1I2n
(
σDLL + σDRR

)
+ µi

−2σDLR

]
(A.7)
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Finally, the analytical expression for the standard deviation of the eigenvalues
(
σµi

)
is

σµi =
(
Φq

)T

i

[
σT

DRL
+ µiI2n

(
σDLL + σDRR

)T
+ µ2

i I2nσ
T
DLR

] [
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
−

(
Φq

)T

i

[
σDRL + µi

−1I2n
(
σDLL + σDRR

)
+ µi

−2I2nσDLR

]
[(

Φq

)T

i

[
−(DLL + DRR)T − 2µiI2nD

T
LR

] [
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
DRL + µi

−1I2n(DLL + DRR) + µi
−2I2nDLR

]
−

(
Φq

)T

i

[
µi
−2I2n(DLL + DRR) + 2µi

−3I2nDLR

]]−1
(A.8)

Also the analytical expression for the standard deviation of the eigenvectors
(
σ(Φq)i

)
is

σ(Φq)i
= −

[
DRL + µiI2n(DLL + DRR) + µ2

i I2nDLR

]−1

[
σDRL + σµiI2n (DLL + DRR) + µiI2n

(
σDLL + σDRR

)
+ 2µiσµi I2nDLR + µ2

i I2nσDLR

] (
Φq

)
i

(A.9)

Eq. (A.8) and Eq. (A.9) are the the explicit expressions for the statistical characterization of the wavenumber using461

deterministic eigenvalue solutions in the 1D periodic media.462

B. Derivation for the standard deviation of the condensed dynamic stiffness matrix for 1D periodic media463

The dynamic condensation and first order expansion of Eq. (9) leads to464

σD =

 σDLL σDLR

σDRL σDRR

 (B.1)

where

σDLL = σD̂LL
− D̂LI D̂II

−1
σD̂IL

+ D̂LI D̂II

−2
σD̂II

D̂IL − σD̂LI
D̂II

−1
D̂IL

σDLR = σD̂LR
− D̂LI D̂II

−1
σD̂IR

+ D̂LI D̂II

−2
σD̂II

D̂IR − σD̂LI
D̂II

−1
D̂IR

σDRL = σD̂RL
− D̂RI D̂II

−1
σD̂IL

+ D̂RI D̂II

−2
σD̂II

D̂IL − σD̂RI
D̂II

−1
D̂IL

σDRR = σD̂RR
− D̂RI D̂II

−1
σD̂IR

+ D̂RI D̂II

−2
σD̂II

D̂IR − σD̂RI
D̂II

−1
D̂IR

Above expressions are organized in the matrix form as465

σD =

 σD̂LL
σD̂LR

σD̂RL
σD̂RR

 −
 D̂LI σD̂LI

D̂RI σD̂RI


 D̂II

−1
−D̂II

−2
σD̂II

0 D̂II

−1


 σD̂IL

σD̂IR

D̂IL D̂IR

 (B.2)

To simplify the computation, standard deviation of the condensed dynamic stiffness matrix is466

σD =

 σD̂LL
σD̂LR

σD̂RL
σD̂RR

 −
 D̂LI σD̂LI

D̂RI σD̂RI


 D̂II

−1
−D̂II

−1
σD̂II

D̂II

−1

0 D̂II

−1


 σD̂IL

σD̂IR

D̂IL D̂IR

 (B.3)

where symbol (̂.) represents the mean value from the original dynamic stiffness matrix.467
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C. Derivation for the standard deviation of the eigenvalues and eigenvectors for 2D periodic media468

The first order chaos expansion of stochastic spectral problem in Eq. (22) leads to

[
(D21 + D43 + D41λ

−1
y + D23λy) + µiI2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy)

+µ2
i I2n(D12 + D34 + D32λ

−1
y + D14λy)

]
σ(Φq)i

+
[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + σµiI2n (D11 + D22

+D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy) + µiI2n(σD11 + σD22 + σD33 + σD44 + σD31λ

−1
y

+σD42λ
−1
y + σD13λy + σD24λy) + 2µiI2nσµi (D12 + D34 + D32λ

−1
y + D14λy) + µ2

i I2n(σD12 + σD34

+σD32λ
−1
y + σD14λy)

] (
Φq

)
i
= 0 (C.1)

From above equation the standard deviation of the eigenvectors is

σ(Φq)i
= −

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + σµi I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y

+(D13 + D24)λy) + µiI2n(σD11 + σD22 + σD33 + σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy)

+2µiI2nσµi (D12 + D34 + D32λ
−1
y + D14λy) + µ2

i I2n(σD12 + σD34 + σD32λ
−1
y + σD14λy)

] (
Φq

)
i

[
(D21

+D43 + D41λ
−1
y + D23λy) + µiI2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy)

+ µ2
i I2n(D12 + D34 + D32λ

−1
y + D14λy)

]−1
(C.2)

(
Φ̃q

)T

i
, the left stochastic eigenvectors linked with stochastic left eigenvalues µ̃−1

i , which form the stochastic left

quadratic eigenvalue problem as

(
Φq

)T

i

[
(D̃21 + D̃43 + D̃41λ

−1
y + D̃23λy) + µ̃−1

i I2n(D̃11 + D̃22 + D̃33 + D̃44 + (D̃31 + D̃42)λ−1
y

+(D̃13 + D̃24)λy) + µ̃−2
i I2n(D̃12 + D̃34 + D̃32λ

−1
y + D̃14λy)

]
= 0 (C.3)

First order chaos expansion of the stochastic left eigenvalue problem leads to

σ(Φq)i

T
[
(D21 + D43 + D41λ

−1
y + D23λy) + µi

−1I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy)

+µi
−2I2n(D12 + D34 + D32λ

−1
y + D14λy)

]
+

(
Φq

)T

i

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) − µi

−2I2nσµi (D11 + D22

+D33 + D44 + (D31 + D42)λy

)
+ µi

−1I2n(σD11 + σD22 + σD33 + σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy)

−2µi
−3I2nσµi (D12 + D34 + D32λ

−1
y + D14λy) + µi

−2I2n(σD12 + σD34 + σD32λ
−1
y + σD14λy)

]
= 0 (C.4)
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Inserting σ(Φq)i
in the above equation and simplification leads to the standard deviation of the eigenvalue as

σµi =
(
Φq

)T

i

[
(σT

D21
+ σT

D43
+ (σD41λ

−1
y )T + (σD23λy)T ) + µiI2n(σT

D11
+ σT

D22
+ σT

D33
+ σT

D44
+ (σD31λ

−1
y )T + (σD42λ

−1
y )T

+(σD13λy)T + (σD24λy)T ) + µ2
i I2n(σT

D12
+ σT

D34
+ (σD32λ

−1
y )T + (σD14λy)T )

] [
(D

T
21 + D

T
43 + (D41λ

−1
y )T + (D23λy)T )

+σµi I2n(D
T
11 + D

T
22 + D

T
33 + D

T
44 + ((D31 + D42)λ−1

y )T + ((D13 + D24)λy)T ) + µ2
i I2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy)T

]−1

+
[
(D21 + D43 + (D41λ

−1
y )(D23λy)) + µi

−1I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1
y + (D13 + D24)λy)

+µi
−2I2n(D12 + D34 + D32λ

−1
y + D14λy)

]
−

(
Φq

)T

i

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + µi

−1I2n(σD11 + σD22 + σD33

+σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy) + µi

−2I2n
(
σD12+ σD34 + σD32λ

−1
y + σD14λy)

]
[(

Φq

)T

i

[
−(D

T
11 + D

T
22 + D

T
33 + D

T
44 + (D31λ

−1
y )T + (D42λ

−1
y )T ) − 2µiI2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy)T )

]
[
(D

T
21 + D

T
43 + (D41λ

−1
y )T + (D23λy)T ) + µiI2n(D

T
11 + D

T
22 + D

T
33 + D

T
44 + ((D31 + D42)λ−1

y )T + (D13 + D24)λT
y )

+µ2
i I2n(D

T
12 + D

T
34 + (D32λ

−1
y )T + (D14λy))T

]−1 [
(D21 + D43 + (D41λ

−1
y ) + (D23λy)) + µi

−1I2n(D11 + D22 + D33

+D44 + (D31 + D42)λ−1
y + (D13 + D24)λy) + µi

−2I2n(D12 + D34 + D32λ
−1
y + D14λy)

]
−

(
Φq

)T

i[
µi
−2I2n(D11+ D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy) + 2µi
−3I2n(D12 + D34 + D32λ

−1
y + D14λy)

]]−1

(C.5)

The explicit expression for the standard deviation of the eigvenvectors is

σ(Φq)i
= −

[
(σD21 + σD43 + σD41λ

−1
y + σD23λy) + σµi I2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y

+(D13 + D24)λy) + µiI2n(σD11 + σD22 + σD33 + σD44 + σD31λ
−1
y + σD42λ

−1
y + σD13λy + σD24λy)

+2µiI2nσµi (D12 + D34 + D32λ
−1
y + D14λy) + µ2

i I2n(σD12 + σD34 + σD32λ
−1
y + σD14λy)

] (
Φq

)
i[

(D21 +D43 + D41λ
−1
y + D23λy) + µiI2n(D11 + D22 + D33 + D44 + (D31 + D42)λ−1

y + (D13 + D24)λy)

+ µ2
i I2n(D12 + D34 + D32λ

−1
y + D14λy)

]−1
(C.6)

Above Eq. (C.5) and Eq. (C.6) are the explicit expressions for the statistics of wave propagation using deterministic469

eigenvalue solutions in the periodic media for the 2D cases.470

D. Derivation for the standard deviation of the condensed dynamic stiffness matrix for 2D periodic media471

The dynamic stiffness matrix from Eq. (26) is in the following form472

D =

 D̂bdbd D̂bdI

D̂Ibd D̂II

 (D.1)

where symbol (̂.) represents the elements from the original dynamic stiffness matrix. The dynamic equation of motion473

can be written as474  D̂bdbd D̂bdI

D̂Ibd D̂II


 qbd

qI

 =

 fbd

fI

 (D.2)
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Considering no external forces applied on the cells internal DOFs such that fI = 0 then475  D̂bdbd D̂bdI

D̂Ibd D̂II


 qbd

qI

 =

 fbd

0

 (D.3)

The above equation expressed in condensed form as476

Dbdqbd = fbd (D.4)

where condensed dynamic stiffness matrix expressed as477

Dbd = D̂bdbd − D̂bdI D̂−1
II D̂Ibd (D.5)

Considering uncertainties in the parameters, the dynamic stiffness matrix is uncertain.The stochastic condensed dy-478

namics stiffness matrix written as479

D̃bd =
˜̂Dbdbd −

˜̂DbdI
˜̂D−1

II
˜̂DIbd (D.6)

where symbol ˜̂(.) represents the stochastic entity from the original dynamic stiffness matrix. The first order expansion480

of the above equation leads to481

σDbd = σD̂bdbd
− D̂bdI D̂II

−1
σD̂Ibd

+ D̂bdI D̂II

−2
σD̂II

D̂Ibd − σD̂bdI
D̂II

−1
D̂Ibd (D.7)

This can also be expressed as482

σDbd = σD̂bdbd
− D̂bdI D̂II

−1
σD̂Ibd

+ D̂bdI D̂II

−1
σD̂II

D̂II

−1
D̂Ibd − σD̂bdI

D̂II

−1
D̂Ibd (D.8)

Above expression can be expressed in the matrix form and the standard deviation of the condensed dynamic stiffness483

matrix is484

σDbd =
[
σD̂bdbd

]
−

[
D̂bdI σD̂bdI

]  D̂II

−1
−D̂II

−1
σD̂II

D̂II

−1

0 D̂II

−1


 σD̂Ibd

D̂Ibd

 (D.9)

where symbol (̂.) represents the mean value from the original dynamic stiffness matrix.485

E. Stochastic wave finite element method (Transfer Matrix) reminder486

In one dimensional periodic structure, the nodes on boundary of the periodic structure is denoted as on left bound-487

ary (L), right boundary (R) and remaining/internal nodes (I). The displacement degrees of freedom (DOF) q are488

partitioned into the left (qL) and right (qR). Similarly, forces are partitioned into the left (FL) and right (FR). To489

accommodate the uncertainties effects random field is considered as a supplementary dimension through the spatial490

discretisation employing the finite element steps by discretization of one sub-element of length (d). The discretisation491

leads to stochastic dynamic equilibrium of any substructure in following manner492

(D̃)

 q̃k
L

q̃k
R

 =

 F̃k
L

F̃k
R

 (E.1)
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where (D̃) is the stochastic complex dynamic stiffness matrix of the substructure, condensed on left and right bound-493

aries degree of freedom at the pulsation ω494

(D̃) = −ω2M̃ + K̃(1 + iη) (E.2)

where M̃, K̃ are the stochastic mass and the stiffness matrix respectively, η is the structural loss factor and i is the unit495

imaginary number.496

In the probabilistic tools, the parametric approach allows considering the uncertainties parameters (material, geo-497

metrical properties, etc.) as random quantities. The random variables are modelled using the first order perturbation,498

as Gaussian variables, such that the dynamical equilibrium is expressed as499

[
−ω2

(
M + σMε

)
+

(
K + σKε

)
(1 + iη)

]  q(k)
L + σ(k)

qL ε

q(k)
R + σ(k)

qR ε

 =

 F
(k)
L + σ(k)

F ε

F
(k)
R + σ(k)

F ε

 (E.3)

The ( ) symbol denotes the mean value of the random variable, σ is the standard deviation and ε is a Gaussian centered500

variable. In the expression M, K, q, F are mean quantities of the mass matrix, the stiffness matrix, the displacements501

vector and the load vector; and σM , σK , σq, σF are their respective standard deviation. The stochastic problem in502

Eq. (E.1) can be partitioned in the following way503  D̃LL D̃LR

D̃RL D̃RR


 q̃k

L

q̃k
R

 =

 F̃k
L

F̃k
R

 (E.4)

Using polynomial chaos projection of the variable in the Eq. (E.4), their mean value and standard deviation can be504

expressed in following form505  DLL + σDLLε DLR + σDLRε

DRL + σDRLε DRR + σDRRε


 qL + σqLε

qR + σqRε

 =

 FL + σFLε

FR + σFRε

 (E.5)

In the above expression D,q,and F are the mean quantities of the dynamic operators, the displacement vectors and506

the loads respectively; and σD,σq,σF are their standard deviations. It is to be noted that Eq. (E.5) is valid and can507

accommodate the stochastic behavior of the stiffness and mass matrices.508

The stochastic kinematic variables, q̃,and F̃ are represented through stochastic state vectors as ũL =
(̃
qT

L − F̃T
L

)T
509

and ũR =
(̃
qT

R F̃T
R

)T
;and related by the stochastic transfer matrix S̃ .510

ũk
R = S̃ .ũk

L (E.6)

Alternatively511  qR + σqRε

FR + σFRε

 =

 S LL + σS LLε S LR + σS LRε

S RL + σS RLε S RR + σS RRε


 qL + σqLε

−FL − σFε

 (E.7)

The zeroth order expansion of the Eq. (E.7) leads to512  qR

FR

 =

 S LL S LR

S RL S RR


 qL

−FL

 (E.8)
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Similarly, the zeroth order development of the Eq. (E.5) leads to the following513  FL

FR

 =

 DLL DLR

DRL DRR


 qR

qR

 (E.9)

The expansion of Eq. (E.9) leads to514  qR

FR

 = −

 DLR 0

DRR −1


−1  DLL 1

DRL 0


 qL

−FL

 (E.10)

Eq. (E.8) and Eq. (E.10) has similarity and can be written as S LL S LR

S RL S RR

 = −

 DLR 0

DRR 1


−1  DLL 1

DRL 0


515

S =

 −DLR
−1

DLL −DLR
−1

DRL − DRRDLR
−1

DLL −DRRDLR
−1

 (E.11)

Similarly, the first order development of the Eq. (E.7) leads to516  σqR

σFR

 =

 S LL S LR

S RL S RR


 σqL

−σFL

 +

 σS LL σS LR

σS RL σS RR


 qL

−FL

 (E.12)

The expansion of the Eq. (E.12) leads to517  DLR 0

DRR −1


 σqR

σFR

 +

 DLL 1

DRL 0


 σqL

−σFL

 +

 σDLL 0

σDRL 0


 qL

−FL

 +

 σDLR 0

σDRR 0


 qR

FR

 = 0 (E.13)

Introducing

 qR

FR

 from Eq. (E.8), above equation leads to518

 DLR 0

DRR −1


 σqR

σFR

 = −

 DLL 1

DRL 0


 σqL

−σFL

−

 σDLL 0

σDRL 0

 +

 σDLR 0

σDRR 0


 S LL S LR

S RL S RR



 qL

−FL

 (E.14)

The simplification of Eq. (E.14), the standard deviation of the stochastic left state vector expressed as σqR

σFR

 = −

 DLR 0

DRR −1


−1  DLL 1

DRL 0


 σqL

−σFL

 −
 DLR 0

DRR −1


−1 

 σDLL 0

σDRL 0


+

 σDLR 0

σDRR 0


 S LL S LR

S RL S RR



 qL

−FL

 (E.15)

Eq. (E.15) represents the standard deviation of the stochastic left state vectors of Eq. (E.5), similarly Eq. (E.12)519

represents the standard deviation of the stochastic left state vectors of Eq. (E.7). Here comparison of Eq. (E.15) and520

Eq. (E.12), and identification of σS , leads to write521  σS LL σS LR

σS RL σS RR

 = −

 DLR 0

DRR −1


−1 

 σDLL 0

σDRL 0

 +

 σDLR 0

σDRR 0


 S LL S LR

S RL S RR


 (E.16)
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Introducing S from Eq. (E.11) in the above equation leads to522  σS LL σS LR

σS RR σS RR

 = −

 DLR 0

DRR −1


−1 

 σDDL 0

σDRL 0

 +

 σDLR 0

σDRR 0



 −DLR

−1
DLL −DLR

−1

DRL − DRRDLR
−1

DLL −DRRDLR
−1


(E.17)

Then the standard deviation of stochastic transfer matrix is523

σS =

 −DLR 0

−DRR 1


−1  σDLL σDLR

σDRL σDRR


 1 0

−DLR
−1

DLL −DLR
−1

 (E.18)

Eq. (E.18) is only valid for the single cell, in case of complex geometry, the internal degree of freedom can be524

removed using dynamic condensation. The expression for the standard deviation of the condensed dynamic stiffness525

matrix derived in Appendix B. Following the steps of the deterministic development, a stochastic eigenvalue problem526

formulated as527

S̃ φ̃i = µ̃iφ̃i∣∣∣S̃ − µ̃iI2n

∣∣∣ = 0
(E.19)

where
(̃
µi, φ̃i

)
i=1...2n

are the stochastic waveguide propagation modes. Then stochastic eigensolutions of Eq. (E.19) are528

expressed as follows529

µ̃i =
(
µi + σµiε

)
φ̃i =

(
φi + σφiε

) (E.20)

The stochastic eigenvalues are associated to eigenvectors. Then the zeroth order expansion leads to530

(
S − µiI2n

)
φi = 0 (E.21)

Similarly, the first order expansion of Eq. (E.19) leads to531

(
S − µiI2n

)
σφi +

(
σs − σµi I2n

)
φi = 0 (E.22)

In order to extract the first order perturbation of eigenvalues and eigenvectors, use the left propagation constants. Here532

φ̃T
i Jn is a left eigenvector of S̃ which is associated to the eigenvalue 1

µ̃i
. where533

Jn =

 0 In

−In 0

 (E.23)

The left stochastic eigenvalue problem can be established as534

(
φ̃T

i Jn

)
S̃ =

1
µ̃i

(
φ̃T

i Jn

)
(E.24)

The first order expansion of Eq. (E.24) leads to535

(
σφi

)T
Jn

(
S −

1
µ̃i

I2n

)
+ φ

T
i Jn

σS +
1

µ2
i

σµi I2n

 = 0 (E.25)
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Simplification of Eq. (E.22) and Eq. (E.25) leads to standard deviation of eigenvalues
(
σµi

)
as536

σµi =

[(
φi

)T
σT

S

(
S

T
− µiI2n

)−1
Jn

(
S −

(
1
µ̃i

I2n

)
−

(
φi

)T
JnσS

)]
[(
φi

)T
(
S

T
− µiI2n

)−1
Jn

(
S −

(
µi

)−1 I2n

)
− 1

µ2
i

(
φi

)T
Jn

]+ (E.26)

Similarly, the standard deviation of the eigenvectors
(
σφi

)
is537

σφi = −
[
S − µiI2n

]+ [
σS − σµi I2n

]
φi (E.27)

where + is pseudo inverse538

Using Eq. (E.26) and Eq. (E.27), the statistics of the wave characteristics can be expressed using the standard539

deviation of the propagation constants.540

Let us consider statistics of the wavenumber expressed as541

k̃ =

( i
d

)
log µ̃ (E.28)

where stochastic wave number expressed k̃ = k + σkε.542

Once the zeroth and first order terms of the stochastic eigenvalue computed, then we can use the statistics of k543

from Eq. (E.28) to find mean value and dispersion from the mean value. The mean of the wavenumber expressed as544

k =

( i
d

)
log(µ) (E.29)

Similarly, the dispersion of the wavenumber from the mean can be expressed as545

σk =

( i
d

) σµ
µ

(E.30)

where d is substructure length.546
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